

  animals-14-01598




animals-14-01598







Animals 2024, 14(11), 1598; doi:10.3390/ani14111598




Article



Complete Mitochondrial Genomes of Nannostomus Pencilfish: Genome Characterization and Phylogenetic Analysis



Wei Xu 1,†, Jingzhe Tai 1,†, Ke He 2, Tangjun Xu 1, Gaoji Zhang 1, Boyu Xu 1 and Hongyi Liu 1,*





1



The Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China






2



College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China









*



Correspondence: hongyi_liu@njfu.edu.cn






†



These authors contributed equally to this work.









Citation: Xu, W.; Tai, J.; He, K.; Xu, T.; Zhang, G.; Xu, B.; Liu, H. Complete Mitochondrial Genomes of Nannostomus Pencilfish: Genome Characterization and Phylogenetic Analysis. Animals 2024, 14, 1598. https://doi.org/10.3390/ani14111598



Academic Editor: Dimitrios Loukovitis



Received: 28 April 2024 / Revised: 20 May 2024 / Accepted: 27 May 2024 / Published: 29 May 2024



Abstract

:

Simple Summary


To complement the genetic information of the pencilfish, a popular aquarium ornamental fish, we sequenced the mitochondrial genomes of four common pencilfish species. Their genome structure, nucleotide composition, codon usage, and phylogeny were comparatively analyzed. The results indicate that the four mitogenomes exhibited a typical circular structure. The gene order of the four Nannostomus pencilfish was similar to that of other fish. Our phylogenetic analyses support the current classification of the family Lebiasinidae. This study provides new data for the breeding and study of pencilfish.




Abstract


Although the pencilfish is a globally popular economic fish in the aquarium market, its taxonomic classification could be further refined. In order to understand the taxonomy of species of the genus Nannostomus (Characiformes, Lebiasinidae) and their phylogenetic position within the order Characiformes, in this study, we characterized mitochondrial genomes (mitogenomes) from four Nannostomus species for the first time. The four mitogenomes exhibited the typical circular structure, with overall sizes varying from 16,661 bp to 16,690 bp. They contained 13 protein-coding genes (PCGs), 2 ribosomal RNA genes (rRNAs), 22 transfer RNA genes (tRNAs), and 1 control region (CR). Nucleotide composition analysis suggested that the mitochondrial sequences were biased toward A and T. Bayesian inference and maximum likelihood analyses based on PCGs support the family Lebiasinidae classification, described using four Nannostomus species, clustering together with Lebiasina multimaculata from the same family. The results of this study support the current taxonomic classification of the family Lebiasinidae. Phylogenetic analysis also suggested that gene rearrangement would not significantly impact the phylogenetic relationships within the order Characiformes. These results might provide new data regarding the phylogeny and classification of the order Characiformes, thus providing a theoretical basis for the economic development of aquarium fish markets.
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1. Introduction


The family Lebiasinidae, which belongs to the order Characiformes, consists of over 70 valid species of small freshwater fish that are widely distributed across South and Central America, spanning from Costa Rica to Argentina [1]. Lebiasinidae is divided into two subfamilies, Lebiasininae (which includes the genera Derhamia, Lebiasina, and Piabucina) and Pyrrhulininae (which includes the genera Copeina, Copella, Nannostomus, and Pyrrhulina) [2]. The latter represents the most diverse clade, and the genus Nannostomus is the most species-rich genus in the subfamily [2]. Most species in Nannostomus are slender and pencil-shaped, with lengths ranging from 1.5 cm to 7 cm, and are highly popular in the aquarium market under the popular name “pencilfish” [1,3,4]. The global aquarium trade has up to 5300 freshwater fish species available for sale each year, with about 1 billion individuals [5]; of these, species in the order Characiformes account for a certain share [1,4]. Despite its economic importance, there have been incomprehensive reports about its basic biological data, including genetic information [3,6]. Given the wide variety of species, diverse body colors, and limited gene sequence databases, understanding the taxonomy of species in the genus Nannostomus poses a significant challenge [2]; the phylogenetic position of family Lebiasinidae within the order Characiformes could be further refined [7]. The phylogenetic position of Lebiasinidae within the order Characiformes has been a topic of frequent discussion [8,9].



In the realm of animals, the mitochondrial genome (mitogenome) is a small, circular genome, ranging in size from 15 to 18 kb [10,11]. It generally contains 13 protein-coding genes (PCGs), 22 transport RNA (tRNA) genes, 2 ribosomal RNA (rRNA) genes, and 1 control region (CR) [12,13]. The 13 PCGs are NADH dehydrogenase subunit 1 (ND1), NADH dehydrogenase subunit 2 (ND2), Cytochrome c oxidase subunit I (COX1), Cytochrome c oxidase subunit II (COX2), ATP synthase F0 subunit 8 (ATP8), ATP synthase F0 subunit 6 (ATP6), Cytochrome c oxidase subunit III (COX3), NADH dehydrogenase subunit 3 (ND3), NADH dehydrogenase subunit 4L (ND4L), NADH dehydrogenase subunit 4 (ND4), NADH dehydrogenase subunit 5 (ND5), NADH dehydrogenase subunit 6 (ND6), and Cytochrome b (Cytb) (arranged in the common order in the mitogenome of the order Characiformes) [12,13]. The utilization of mitogenomes in molecular identification and phylogenetic analysis is prevalent due to their rapid evolution rate, simple structure, low molecular weight, and maternal inheritance [14,15]. Certain mitochondrial gene fragments, namely 16S rRNA, COX1, and Cytb, have been extensively employed in phylogenetic analyses [16,17]. However, the utilization of partial mitochondrial sequences is constrained by their limited capacity to provide comprehensive information [11]. On the other hand, the complete mitogenome offers a higher level of resolution and sensitivity, making it more suitable for the examination of phylogenetic relationships and species classification [18,19].



With the application of next-generation sequencing technology, there has been a growing number of mitogenomes sequenced in recent years [20]. However, only a limited number of complete mitogenomes are available in the family Lebiasinidae [3,6], and no complete mitogenome is available in the genus Nannostomus. In this study, we present the complete mitogenomes of four Nannostomus species, namely Nannostomus beckfordi, Nannostomus marilynae, Nannostomus marginatus, and Nannostomus unifasciatus. Specifically, the mitochondrial characteristics of these four species, including their gene order, genome size, nucleotide composition, codon usage, and tRNA secondary structure, are comparatively analyzed with other species within the order Characiformes. This study provides new data regarding the phylogeny and classification of Nannostomus pencilfish and the order Characiformes, thus providing a theoretical basis for the economic development of aquarium fish markets.




2. Materials and Methods


2.1. Sample Collection and DNA Extraction


All fish specimens were procured from an aquarium market located in Tianjin, China. Samples of these four fish were identified through morphological and molecular identification, utilizing the resources provided by the WorldFish Center’s FishBase database (https://www.worldfishcenter.org/fishbase, accessed on 11 October 2023) [21] and NCBI (https://www.ncbi.nlm.nih.gov/, accessed on 11 October 2023) [3,8]. The sample used for morphological identification was fresh. In addition, the fish purchased was a normal shape with a complete body. Total DNA was extracted from each fin using the FastPure Cell/Tissue DNA Isolation Mini Kit (Vazyme™, Nanjing, China) and stored in a refrigerator at −20 °C for follow-up.




2.2. Mitogenome Sequencing and Assembly


Library construction and sequencing were carried out by Shanghai Personal Biotechnology Co., Ltd. (Shanghai, China) on the NovaSeq X Plus platform (Illumina, CA, USA) following the manufacture’s protocol for 150 bp paired-end reads. The depth of the sequencing was 3×. To generate clean data, low-quality sequences were removed. Clean reads were utilized in the assembly of the complete mitogenomes, using Geneious Prime 2023 using Lebiasina multimaculata (AP006766.1) as a template, and both ends of the final assembly were manually examined for any potential overlap in order to construct the circular mitogenomes. The medium sensitivity/speed option was used for the assembly. Consensus sequences were generated with a 50% base call threshold, obtaining the complete mitogenomes.




2.3. Sequence Analysis


Conservative domains of the mitogenomes were identified using two tools: BLAST CD-Search (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi, accessed on 26 November 2023.) and MITOS server (http://mitos.bioinf.uni-leipzig.de/index.py, accessed on 26 November 2023.). Gene maps of the mitogenomes were generated utilizing the CG View server (http://cgview.ca/, accessed on 28 November 2023). The formulas “AT-skew = (A − T)/(A + T)” and “GC-skew = (G − C)/(G + C)” were used to measure nucleotide bias [22]. A heatmap was plotted using heatmap tools in the genescloud platform (https://www.genescloud.cn, accessed on 30 November 2023). The tool was developed from the pheatmap package (V1.0.8), which was slightly modified to improve the layout style [23]. The data were normalized using z-scores. The analysis of relative synonymous codon usage (RSCU), as well as non-synonymous (Ka) and synonymous substitutions (Ks), was conducted using MEGA X software [24]. For RSCU analysis, coding regions were concatenated. tRNA genes were identified using the tRNAscan-SE Search Server (http://lowelab.ucsc.edu/tRNAscan-SE/, accessed on 30 November 2023 [25].




2.4. Phylogenetic Analysis


We constructed a concatenated dataset, consisting of the base sequences of the 13 PCGs from a total of 49 species. This dataset was utilized to investigate the phylogenetic relationships within the order Characiformes. Details of the species included in the analysis can be found in Table 1. Cyprinus carpio was employed as an outgroup in this study. All operations were performed in PhyloSuite software package v1.2.3 [26]. The alignment of the datasets was performed in batches using MAFFT v7.505 software [27]. MACSE was used to optimize alignments using the classic “Needleman–Wunsch” algorithm [28]. ModelFinder was used to partition the codons and determine the best-fit model for the phylogenetic analyses [29]. Unlike the Akaike Information Criterion (AIC), the Bayesian Information Criterion (BIC) considers the number of samples. When the number of samples is too large, the BIC can effectively prevent the excessive model complexity caused by excessive model precision [30]. The results of the best-fit model are as follows:



Best-fit model of BI according to BIC:



GTR + F + I + G4: ATP6, GTR + F + I + G4: ATP8 + COX2 + ND4L, GTR + F + I + G4: COX1, GTR + F + I + G4: COX3 + ND1, GTR + F + I + G4: Cytb, GTR + F + I + G4: ND2, GTR + F + I + G4: ND3 + ND4 + ND5, GTR + F + I + G4: ND6.



Best-fit model of ML according to BIC:



TIM2 + F + I + G4: ATP6, TIM2 + F + I + I + R4: ATP8 + COX2 + ND4L, TIM2 + F + I + I + R4: COX1, TIM2 + F + I + I + R4: COX3 + ND1, TIM2 + F + R5: Cytb, TIM2 + F + I + I + R4: ND2, GTR + F + I + I + R4: ND3 + ND4 + ND5, TPM2u + F + R4: ND6.



Phylogenetic trees were constructed using Bayesian inference (BI) and maximum likelihood (ML) methods [31,32]. The BI tree was reconstructed using MrBayes 3.2.6 with four Markov chains (three hot chains and one cold chain). Markov chains were run for 1,000,000 generations and were sampled every 100 generations. The consensus trees based on majority rule were assessed by combining the outcomes of duplicated analyses while discarding the first 25% of generations. The ML tree was reconstructed using IQ-TREE with 1000 bootstrap replicates. Phylogenetic trees were visualized and edited using iTOL (https://itol.embl.de/, accessed on 30 November 2023) [33].





3. Results


3.1. Genome Organization and Composition


The four complete mitogenomes were classically circular, double-stranded molecules, with sizes of 16,690 bp, 16,667 bp, 16,661 bp, and 16,681 bp (Figure 1). Among these species, N. marginatus had the smallest mitogenome, while N. beckfordi had the largest. The mitogenomes of the four fish contained 13 PCGs, 22 tRNAs, 2 rRNAs, and 1 noncoding CR. Nine genes, including eight tRNAs and ND6, were encoded on the minor strand, while the remaining genes were located on the major strand (Table 2).



The nucleotide composition analysis suggested that four mitogenomes were biased toward A and T (Figure 2a). In addition, this AT bias (A+T > G+C) was also evident in PCGs, RNAs, and CRs. CRs exhibited the highest A+T content, while PCGs, tRNAs, and rRNAs displayed an A+T content similar to that of the total mitogenomes (Figure 2a). The results of the skewness analysis indicated that the AT skews of four mitogenomes were all positive, while the GC skews were predominantly negative (Figure 2b). Differing from L. multimaculata in the same family, the GC skews of tRNAs in Nannostomus were all positive. To determine the nucleotide composition of the order Characiformes, the A+T content and AT skew of 48 mitogenomes (including 14 families: Alestidae, Characidae, Chilodontidae, Citharinidae, Curimatidae, Distichodontidae, Erythrinidae, Gasteropelecidae, Hemiodontidae, Hepsetidae, Lebiasinidae, Parodontidae, Prochilodontidae, and Serrasalmidae) were calculated (Table 1 and Figure 3). The 48 Characiformes mitogenomes had a comparable nucleotide composition; the A+T content was always higher than the G+C content in the total genome (52.45~69.97%), PCGs (51.58~65.16%), tRNAs (54.13~60.96%), and rRNAs (51.37~59.71%). The AT skews were almost positive, indicating a higher occurrence of A than T.



Multiple overlaps between adjacent genes were detected (Table 2). Eight gene overlaps were observed in N. beckfordi and N. unifasciatus, nine in N. marginatus, and ten in N. marilynae, all ranging from 1 to 10 bp. The largest overlaps among the four mitogenomes were all located between ATP8 and ATP6.




3.2. Protein-Coding Genes and Codon Usage


The total lengths of the PCGs in Nannostomus were 11,431 bp, 11,433 bp, 11,432 bp, and 11,431 bp, accounting for 68.49% (N. beckfordi) to 68.62% (N. marginatus) of their total mitogenomes, respectively. All PCGs were encoded on the major strand, except for ND6 on the minor strand (Figure 1 and Table 2). Among the 13 PCGs presented in these four mitogenomes, ATP8 exhibited the smallest size at 168 bp, while ND5 displayed the largest size at 1839 bp.



The majority of PCGs in the four mitogenomes start with the ATG codon, with the exception of ND1 in N. marginatus, which starts with the ATT codon, and COX1 in all four mitochondrial genomes, which starts with the GTG codon. The termination codon varied across these PCGs, namely TAA, TAG, AGG, and T. Across all mitogenomes, the frequency of the termination codon TAA was consistently higher than that of the other three termination codons, whereas the occurrence of the termination codon AGG was the lowest. The usage of the initiation codon and termination codon in 48 mitogenomes was calculated (Table 1 and Figure 4). The Characiformes species are relatively conservative in their use of initiation codons, and their preferences were almost consistent with those of the four newly sequenced species, starting with ATG (Figure 4). However, COX1 of the Characiformes species mainly started with GTG. All Characiformes species share the termination codons TAA, TAG, AGG, and T (Figure 4). Specifically, ND1, ATP8, ATP6, COX3, ND4L, and ND5 predominantly employ TAA as the termination codon, while COX1 primarily utilizes AGG as the termination codon. Additionally, ND6 mainly uses TAG as the termination codon, and ND2, COX2, ND3, ND4, and Cytb predominantly use T as the termination codon.



An RSCU analysis was conducted to investigate the codon usage patterns in the four mitogenomes of Nannostomus (Figure 5). The RSCUs of the four mitogenomes exhibited a high degree of similarity. In addition, RSCU analysis revealed a preference for A/T nucleotides at the third codon position, which was consistent with the biased usage of A+T nucleotides evident in the frequencies of codons. The evolutionary pattern of PCGs in Nannostomus was analyzed using Ka/Ks ratios (Figure 6). Apart from that of ND3, the Ka/Ks ratios of the PCGs were lower than 1.




3.3. rRNA, tRNA Genes, and CR


Two rRNAs, 12S rRNA and 16S rRNA, were transcribed from the major strand in the four mitogenomes (Table 2). 12S rRNA was located between tRNA-Phe and tRNA-Val, while 16S rRNA was found between tRNA-Val and tRNA-Leu. The sizes of the 12S rRNA ranged from 953 bp to 956 bp, while the 16S rRNA varied from 1682 bp to 1696 bp in the mitogenomes.



Twenty-two tRNAs (66–76 bp in size) were interspersed in the four mitogenomes altogether, with fourteen from the major strand and eight transcribed from the minor strand (Table 2). The total lengths of the tRNAs were 1563 bp in N. beckfordi, 1559 bp in N. marilynae, 1565 bp in N. marginatus, and 1559 bp in N. unifasciatus, accounting for 9.36%, 9.35%, 9.39%, and 9.35% of their total mitogenomes, respectively.



CR was found between the genes tRNA-Pro and tRNA-Phe in these four mitogenomes. The sizes of CRs in four mitogenomes ranged from 997 bp (N. marginatus) to 1012 bp (N. beckfordi), accounting for 5.98% to 6.06% of the A+T contents in the CRs of the four mitogenomes, exhibiting consistently higher values than PCGs and RNAs, ranging from 69.88% to 72.20% (Figure 2). Lebiasinidae species had CRs of a similar size, but the length of the repeat units and the number of repeats in them were different (Figure 7). The repeat units of CRs were predominantly dimers and, to a lesser extent, trimers.




3.4. Phylogenetic Relationships


A total of 48 species from 15 families of the order Characiformes were included in the phylogenetic analyses. Additionally, one species from the order Cypriniformes (C. carpio) was selected as the outgroup to establish the phylogenetic trees, our aim being to understand the phylogenetic relationships within the order Characiformes (Table 1). The BI and ML trees shared a similar topological structure, with well-supported values for each clade (Figure 8). Four Nannostomus species in this study were clustered together with L. multimaculata of the same family. Within the order Characiformes, the families Citharinidae and Distichodontidae diverged with species in other families early in the evolutionary history of Characiformes fishes.





4. Discussion


The mitogenomes of the four fish contained 13 PCGs, 22 tRNAs, 2 rRNAs, and 1 noncoding CR, which is typical of vertebrates [10,34,35]. The gene orders of the four fish were found to be identical to the common order of Characiformes, which was previously sequenced [13,36,37]. For nucleotide composition, four mitogenomes had an AT bias (A+T > G+C), which is consistent with previous studies [13,38]. The AT skews were almost positive, indicating a higher occurrence of A than T, as has also been observed in other published Teleostei genomes [10,39]. Some PCGs in the four mitogenomes start with unusual codons, such as ATT and GTG. Previous studies have documented the occurrence of atypical initiation codons in Characiformes, such as Astyanax paranae and Hemigrammus armstrongi [13,40]. Most of the gene overlap regions appeared between PCGs and PCGs, with the largest overlaps all located between ATP8 and ATP6, consistent with other fish mitogenomes [41,42,43,44]. Apart from ND3, the Ka/Ks ratios of other PCGs were lower than 1. This suggests that purifying selection might play a predominant role in shaping the evolutionary patterns of PCGs, meaning that, in most cases, selection eliminates the deleterious mutation, and the protein is unchanged [45]. COX1 had the lowest average Ka/Ks value, suggesting that it was under drastic selection pressure and evolved slowly [46].



The mitogenome structure of the order Characiformes is generally conserved [47], with infrequent occurrences of gene rearrangement events. Through an examination of the available mitogenomes of the Characiformes species in GenBank (https://www.ncbi.nlm.nih.gov/, accessed on 30 November 2023; Table 1), our investigation revealed instances of gene rearrangement in four species: Hoplias intermedius, Metynnis hypsauchen, Moenkhausia sanctaefilomenae, and Myloplus rubripinnis. However, the structure of CRs varied widely among Lebiasinidae species (Figure 7). Previous research has shown that the CRs of fish vary significantly between different species and even within the same species [47,48].



The phylogenetic trees also emphasized the unstable relationships within the family Characidae, which was consistent with previous studies [13,49]. Some Characidae species were clustered with species from other genera (Figure 8). In studies on the genus Brycon, some suggest that the genus Brycon should be classified under the family Characidae [50,51], while others suggest it should be classified under the family Bryconidae [52,53]. Studies in recent years have mainly supported the classification of the genus Brycon belonging to the family Bryconidae [54]. In the phylogenetic analyses in this study, the phylogenetic relationship of the genus Brycon with other species in the family Characidae was, indeed, distant. Therefore, our study also supports the inference that the genus Brycon should be classified under the family Bryconidae. It is evident that species that have undergone gene rearrangement were clustered together with species of the same family, although M. sanctaefilomenae did not cluster with other species in the same genus. Previous studies have indicated that phylogenetic trees based on PCGs are more stable and representative than those based on RNAs [13,55,56]. Therefore, the phylogenetic analyses based on PCGs in this study suggest that gene rearrangement would not significantly impact the phylogenetic relationships within the order Characiformes. Although the Characiformes mitogenome is relatively conserved [47], gene rearrangement events have been discovered in many taxa. In addition, there are still a large number of Characiformes species whose complete mitogenomes have not yet been published, and our knowledge on the structure of Characiformes mitogenomes, especially the pattern and underlying mechanisms of gene rearrangements, is far from comprehensive. Therefore, it is necessary to obtain mitogenome data on more species of the order Characiformes. The selection of species from the genus Nannostomus in this study, as well as other species from the Lebiasinidae family in previous studies, was limited, thereby hindering the ability to conduct a comprehensive analysis. Consequently, to enhance our comprehension of the relationships within this family, it would be helpful to incorporate a broader range of species in forthcoming research endeavors.




5. Conclusions


In summary, the four mitogenomes exhibited a typical circular structure, with the overall sizes varying from 16,661 bp to 16,690 bp, containing 13 PCGs, 2 rRNAs, 22 tRNAs, and 1 CR. Nucleotide composition analysis suggested that the mitochondrial sequences were biased towards A and T. The gene order of the four Nannostomus pencilfish was similar to that of other Osteichthyes fish. Phylogenetic analyses support the current classification of the family Lebiasinidae. The phylogenetic analyses in this study suggest that gene rearrangement would not significantly impact the phylogenetic relationships within the order Characiformes. These findings provide new data on the phylogeny and classification of the order Characiformes, thereby establishing a theoretical foundation for the sustainable development of aquarium fish markets.
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Figure 1. Mitogenomes of Nannostomus beckfordi (a), Nannostomus marilynae (b), Nannostomus marginatus (c), and Nannostomus unifasciatus (d). Yellow blocks: CR, green blocks: rRNAs, light purple blocks: tRNAs, dark purple blocks: PCGs. 
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Figure 2. Nucleotide composition of various datasets of mitogenomes. Hierarchical clustering of Lebiasinidae species (y-axis) based on the content (a) and skewness (b). 
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Figure 3. A+T content vs. AT-skew in the 48 mitogenomes of the order Characiformes. (a) Total genome; (b) PCGs; (c) tRNAs; (d) rRNAs. 
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Figure 4. Initiation codon (a) and termination codon (b) usage for the mitochondrial genome protein-coding genes of 48 Characiformes species. 
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Figure 5. RSCUs of three species of Nannostomus; the termination codon is not included. 
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Figure 6. Ka/Ks values for the 13 PCGs of four Nannostomus mitogenomes. 
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Figure 7. The organization of the control region in five Lebiasinidae mitochondrial genomes. The colored ovals indicate the tandem repeats; the remaining regions are shown with green boxes. 






Figure 7. The organization of the control region in five Lebiasinidae mitochondrial genomes. The colored ovals indicate the tandem repeats; the remaining regions are shown with green boxes.



[image: Animals 14 01598 g007]







[image: Animals 14 01598 g008] 





Figure 8. The BI (a) and ML (b) phylogenetic trees based on the nucleotide datasets for 13 PCGs from the mitogenomes of 49 species, with the common gene order and rearrangement within Characiformes (yellow boxes indicate the events of gene rearrangement). 
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Table 1. The mitogenomes of Characiformes and Cypriniformes used in this study.
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	Order.
	Family
	Genus
	Species
	Size (bp)
	Accession No.





	Characiformes
	Alestidae
	Abramites
	Abramites hypselonotus
	16,685
	MW541938.1



	
	
	Megaleporinus
	Megaleporinus elongatus
	16,774
	KU980144.1



	
	
	
	Megaleporinus obtusidens
	16,682
	KY825191.1



	
	
	Phenacogrammus
	Phenacogrammus interruptus
	16,652
	AB054129.1



	
	Bryconidae
	Brycon
	Brycon henni
	16,885
	KP027535.1



	
	
	
	Brycon nattereri
	16,837
	MT428073.1



	
	
	
	Brycon orbignyanus
	16,802
	KY825192.1



	
	
	Salminus
	Salminus brasiliensis
	17,721
	KM245047.1



	
	Characidae
	Astyanax
	Astyanax aeneus
	16,769
	BK013055.1



	
	
	
	Astyanax mexicanus
	16,768
	BK013062.1



	
	
	Hemigrammus
	Hemigrammus armstrongi
	16,789
	MW742324.1



	
	
	
	Hemigrammus bleheri
	17,021
	LC074360.1



	
	
	
	Hemigrammus erythrozonus
	16,710
	MT484070.1



	
	
	Hyphessobrycon
	Hyphessobrycon amapaensis
	17,824
	MW742322.1



	
	
	
	Hyphessobrycon elachys
	17,224
	MW315747.1



	
	
	
	Hyphessobrycon flammeus
	16,008
	MW315748.1



	
	
	
	Hyphessobrycon herbertaxelrodi
	17,417
	MT769327.1



	
	
	
	Hyphessobrycon pulchripinnis
	17,618
	MW331227.1



	
	
	Moenkhausia
	Moenkhausia costae
	15,811
	MW366831.1



	
	
	
	Moenkhausia sanctaefilomenae
	18,437
	MW407181.1



	
	
	Paracheirodon
	Paracheirodon axelrodi
	17,100
	AB898197.1



	
	
	
	Paracheirodon innesi
	16,962
	KT783482.1



	
	Chilodontidae
	Chilodus
	Chilodus punctatus
	16,869
	AP011984.1



	
	Citharinidae
	Citharinus
	Citharinus congicus
	16,453
	AP011985.1



	
	Curimatidae
	Curimata
	Curimata mivartii
	16,705
	KP025764.1



	
	
	Curimatopsis
	Curimatopsis evelynae
	16,779
	AP011988.1



	
	Distichodontidae
	Distichodus
	Distichodus sexfasciatus
	16,555
	AB070242.1



	
	Erythrinidae
	Hoplias
	Hoplias intermedius
	16,629
	KU523584.1



	
	
	
	Hoplias malabaricus
	16,638
	AP011992.1



	
	Gasteropelecidae
	Carnegiella
	Carnegiella strigata
	17,852
	AP011983.1



	
	Hemiodontidae
	Hemiodopsis
	Hemiodopsis gracilis
	16,731
	AP011990.1



	
	Hepsetidae
	Hepsetus
	Hepsetus odoe
	16,803
	AP011991.1



	
	Lebiasinidae
	Lebiasina
	Lebiasina multimaculata
	16,899
	AP006766.1



	
	
	Nannostomus
	Nannostomus beckfordi
	16,690
	OR857846



	
	
	
	Nannostomus marilynae
	16,667
	OR857847



	
	
	
	Nannostomus marginatus
	16,661
	OR857848



	
	
	
	Nannostomus unifasciatus
	16,681
	OR857849



	
	Parodontidae
	Apareiodon
	Apareiodon affinis
	16,679
	AP011998.1



	
	Prochilodontidae
	Ichthyoelephas
	Ichthyoelephas longirostris
	16,840
	KP025763.1



	
	
	Prochilodus
	Prochilodus argenteus
	16,697
	KR014816.1



	
	
	
	Prochilodus costatus
	16,699
	KR014817.1



	
	
	
	Prochilodus lineatus
	16,699
	KM245045.1



	
	Serrasalmidae
	Colossoma
	Colossoma macropomum
	16,703
	KP188830.1



	
	
	Metynnis
	Metynnis hypsauchen
	16,737
	MH358334.1



	
	
	Myloplus
	Myloplus rubripinnis
	16,662
	MH358336.1



	
	
	Piaractus
	Piaractus brachypomus
	16,722
	KJ993871.2



	
	
	
	Piaractus mesopotamicus
	16,722
	KM245046.1



	
	
	Pygocentrus
	Pygocentrus nattereri
	16,706
	AP012000.1



	Cypriniformes
	Cyprinidae
	Cyprinus
	Cyprinus carpio
	16,592
	OL693871.1










 





Table 2. General features of the mitogenomes of Nannostomus beckfordi, Nannostomus marilynae, Nannostomus marginatus, and Nannostomus unifasciatus.
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Gene

	
Position

	
Size (bp)

	
Orientation

	
Codon

	
Intergenic Nucleotides

(bp)




	
From

	
To

	
Initiation

	
Termination






	
tRNA-Phe

	
1/1/1/1

	
70/70/71/70

	
70/70/7/70

	
+/+/+/+

	

	

	
0/0/0/0




	
12S rRNA

	
71/71/72/71

	
1026/1025/1024/1024

	
956/955/953/954

	
+/+/+/+

	

	

	
0/0/0/0




	
tRNA-Val

	
1026/1025/1024/1024

	
1097/1096/1095/1095

	
72/72/72/72

	
+/+/+/+

	

	

	
−1/−1/−1/−1




	
16S rRNA

	
1098/1097/1096/1096

	
2793/2786/2777/2785

	
1696/1690/1682/1690

	
+/+/+/+

	

	

	
0/0/0/0




	
tRNA-Leu

	
2796/2789/2779/2788

	
2871/2864/2854/2863

	
76/76/76/76

	
+/+/+/+

	

	

	
2/2/1/2




	
ND1

	
2872/2865/2852/2864

	
3846/3839/3826/3838

	
975/975/975/975

	
+/+/+/+

	
ATG/ATG/ATT/ATG

	
TAG/TAA/TAA/TAA

	
0/0/−3/0




	
tRNA-Ile

	
3851/3843/3832/3842

	
3922/3914/3903/3913

	
72/72/72/72

	
+/+/+/+

	

	

	
4/3/5/3




	
tRNA-Gln

	
3921/3913/3902/3912

	
3991/3983/3972/3982

	
71/71/71/71

	
−/−/−/−

	

	

	
−2/−2/−2/−2




	
tRNA-Met

	
3992/3983/3973/3986

	
4061/4052/4042/4055

	
70/70/70/70

	
+/+/+/+

	

	

	
0/−1/0/3




	
ND2

	
4062/4053/4043/4056

	
5106/5099/5087/5100

	
1045/1047/1045/1045

	
+/+/+/+

	
ATG/ATG/ATG/ATG

	
T/TAG/T/T

	
0/0/0/0




	
tRNA-Trp

	
5107/5098/5088/5101

	
5178/5169/5160/5172

	
72/72/73/72

	
+/+/+/+

	

	

	
0/−2/0/0




	
tRNA-Ala

	
5182/5173/5163/5176

	
5250/5241/5231/5244

	
69/69/69/69

	
−/−/−/−

	

	

	
3/3/2/3




	
tRNA-Asn

	
5252/5243/5233/5246

	
5324/5315/5305/5318

	
73/73/73/73

	
−/−/−/−

	

	

	
1/1/1/1




	
tRNA-Cys

	
5354/5346/5337/5349

	
5420/5411/5402/5414

	
67/66/66/66

	
−/−/−/−

	

	

	
29/30/31/30




	
tRNA-Tyr

	
5421/5412/5403/5415

	
5490/5481/5470/5483

	
70/70/68/69

	
−/−/−/−

	

	

	
0/0/0/0




	
COX1

	
5492/5483/5472/5485

	
7048/7039/7028/7041

	
1557/1557/1557/1557

	
+/+/+/+

	
GTG/GTG/GTG/GTG

	
AGG/AGG/AGG/AGG

	
1/1/1/1




	
tRNA-Ser

	
7040/7031/7020/7033

	
7110/7101/7090/7103

	
71/71/71/71

	
−/−/−/−

	

	

	
−9/−9/−9/−9




	
tRNA-Asp

	
7115/7106/7096/7108

	
7184/7175/7165/7177

	
70/70/70/70

	
+/+/+/+

	

	

	
4/4/5/4




	
COX2

	
7198/7189/7180/7192

	
7888/7879/7870/7882

	
691/691/691/691

	
+/+/+/+

	
ATG/ATG/ATG/ATG

	
T/T/T/T

	
13/13/14/14




	
tRNA-Lys

	
7889/7880/7871/7883

	
7962/7953/7944/7956

	
74/74/74/74

	
+/+/+/+

	

	

	
0/0/0/0




	
ATP8

	
7964/7955/7946/7958

	
8131/8122/8113/8125

	
168/168/168/168

	
+/+/+/+

	
ATG/ATG/ATG/ATG

	
TAA/TAA/TAA/TAA

	
1/1/1/1




	
ATP6

	
8122/8113/8104/8116

	
8805/8796/8787/8799

	
684/684/684/684

	
+/+/+/+

	
ATG/ATG/ATG/ATG

	
TAA/TAA/TAA/TAA

	
−10/−10/−10/−10




	
COX3

	
8805/8796/8787/8799

	
9590/9581/9572/9584

	
786/786/786/786

	
+/+/+/+

	
ATG/ATG/ATG/ATG

	
TAA/TAA/TAA/TAA

	
−1/−1/−1/−1




	
tRNA-Gly

	
9590/9581/9572/9584

	
9662/9652/9647/9655

	
73/72/76/72

	
+/+/+/+

	

	

	
−1/−1/−1/−1




	
ND3

	
9663/9653/9648/9656

	
10,008/9998/9993/10,001

	
346/346/346/346

	
+/+/+/+

	
ATG/ATG/ATG/ATG

	
T/T/T/T

	
0/0/0/0




	
tRNA-Arg

	
10,009/9999/9994/10,002

	
10,079/10,067/10,063/10,071

	
71/69/70/70

	
+/+/+/+

	

	

	
0/0/0/0




	
ND4L

	
10,080/10,068/10,064/10,072

	
10,376/10,364/10,360/10,368

	
297/297/297/297

	
+/+/+/+

	
ATG/ATG/ATG/ATG

	
TAA/TAA/TAA/TAA

	
0/0/0/0




	
ND4

	
10,370/10,358/10,354/10,362

	
11,750/11,738/11,734/11,742

	
1381/1381/1381/1381

	
+/+/+/+

	
ATG/ATG/ATG/ATG

	
T/T/T/T

	
−7/−7/−7/−7




	
tRNA-His

	
11,752/11,740/11,735/11,744

	
11,821/11,808/11,804/11,813

	
70/69/70/70

	
+/+/+/+

	

	

	
1/1/0/1




	
tRNA-Ser

	
11,822/11,809/11,805/11,814

	
11,889/11,876/11,872/11,881

	
68/68/68/68

	
+/+/+/+

	

	

	
0/0/0/0




	
tRNA-Leu

	
11,891/11,878/11,874/11,883

	
11,963/11,950/11,946/11,955

	
73/73/73/73

	
+/+/+/+

	

	

	
1/1/1/1




	
ND5

	
11,964/11,951/11,947/11,956

	
13,802/13,789/13,785/13,794

	
1839/1839/1839/1839

	
+/+/+/+

	
ATG/ATG/ATG/ATG

	
TAA/TAA/TAA/TAA

	
0/0/0/0




	
ND6

	
13,799/13,786/13,782/13,791

	
14,317/14,304/14,300/14,309

	
519/519/519/519

	
−/−/−/−

	
ATG/ATG/ATG/ATG

	
TAG/TAA/TAG/TAA

	
−4/−4/−4/−4




	
tRNA-Glu

	
14,318/14,305/14,301/14,310

	
14,386/14,372/14,369/14,377

	
69/68/69/68

	
−/−/−/−

	

	

	
0/0/0/0




	
Cytb

	
14,392/14,378/14,375/14,383

	
15,534/15,520/15,518/15,525

	
1143/1143/1144/1143

	
+/+/+/+

	
ATG/ATG/ATG/ATG

	
TAA/TAA/T/TAA

	
5/5/5/5




	
tRNA-Thr

	
15,536/15,522/15,519/15,527

	
15,607/15,595/15,592/15,599

	
72/74/74/73

	
+/+/+/+

	

	

	
1/1/0/1




	
tRNA-Pro

	
15,609/15,597/15,596/15,601

	
15,678/15,666/15,664/15,670

	
70/70/69/70

	
−/−/−/−

	

	

	
1/1/3/1




	
CR

	
15,679/15,667/15,665/15,671

	
16,690/16,667/16,661/16,681

	
1012/1001/997/1011

	

	

	

	
0/0/0/0
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