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Simple Summary: Understanding avian migratory routes is crucial for identifying important
stopover sites during migration and for implementing targeted conservation efforts at these key
locations. The Black-faced Spoonbill (Platalea minor) is a Class I protected species in China; however,
research on it has been extremely limited to date. This study reconstructs the population-level
migratory trajectories of the Black-faced Spoonbill based on citizen science data. The results indicate
that Wenzhou, Xiamen, Shantou, Shanwei, Hsinchu, Chiayi, and Tainan are significant stopovers
for this species. There are multiple migratory pathways for the Black-faced Spoonbill across the
southeastern coastal region of China. This study also validates the application of citizen science data
in restoring species migration trajectories. The findings enhance our understanding of the migratory
patterns of the Black-faced Spoonbill and provide valuable insights for its conservation.

Abstract: Migration is a critical ecological process for birds. Understanding avian migratory routes
is essential for identifying important stopover sites and key foraging areas to ensure high-quality
stopovers for birds. The Black-faced Spoonbill (Platalea minor), a national Grade I protected wild
animal in China, is classified as endangered on the IUCN Red List of Threatened Species. Studying the
migratory routes of the Black-faced Spoonbill and identifying critical stopover sites across different
life histories is vital for its conservation. However, research on the migratory routes of this species
has been very limited. This study, utilizing citizen science data and the Level-order-Minimum-cost-
Traversal (LoMcT) algorithm, reconstructs the migratory trajectories of the Black-faced Spoonbill
from 2018 to 2022. The results show that Wenzhou, Xiamen, Shantou, Shanwei, Hsinchu, Chiayi,
and Tainan are significant stopovers for this species. The Black-faced Spoonbill is actively migratory
during the migration season across the southeastern coastal region of China. The simulation results
of this study reveal the migratory routes and activity patterns of the Black-faced Spoonbill, providing
critical support for its conservation.

Keywords: citizen science data; LoMcT; multi-trajectory reconstruction

1. Introduction

Avian migration is driven by a multitude of environmental factors, resulting in the
regular seasonal movements of birds between breeding and wintering grounds [1–3].
The migration trajectories of birds can reveal important stopover sites and critical nodes
during their migration process or can elucidate the transmission pathways of highly
pathogenic avian influenza [4,5]. Investigating avian migratory trajectories enables the
effective determination of the timing, routes, and key stopover points of their migrations.
This targeted approach provides sufficient resource support and species protection during
the migration process and reduces the risk of avian influenza pandemics.
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Common methods for studying avian migration include the direct observation of
migratory birds, radar tracking, banding and recapture, museum specimen distribution
studies, isotopic labeling, geolocator deployment and retrieval, satellite telemetry, labora-
tory experiments, and mathematical modeling estimates [6–9]. However, these methods
sometimes offer poor resolution, often require substantial technical and financial resources,
and do not provide sufficient information at the population level [10–12]. Historically, the
study of animal migration routes has primarily relied on tracking data. Some scientists de-
velop various computational models, algorithms, and simulations to understand migration
patterns, dynamics, and the relationships between migration and environmental factors
based on tracking data [13–15], while others conduct in-depth, population-scale studies
on specific species’ migration routes, timings, and habitat preferences using extensive
tracking databases [16,17]. With the exponential growth in global citizen science data on
bird observations, which has greatly improved temporal and spatial resolution, scientists
have made it feasible to reconstruct avian migration patterns using citizen science data.

Some studies suggest that avian migration behavior is a response to extreme climate
conditions, and their migratory lifestyle may be crucial for adapting to climate change and
preventing population decline [18]. Consequently, researchers initially used citizen science
data combined with species distribution models to predict species distribution ranges and
future distribution patterns under climate change scenarios [19,20]. Subsequently, some
researchers integrated citizen science data with mechanical models, meteorological data,
and land use data to reconstruct and restore the dynamics of migratory bird populations
in North America during the migration season [3]. Others have employed mathematical
models to calculate annual migratory trajectories, migration speeds, and changes in timing
and locations for species, based on extensive bird observation records in North America.
These models are enhanced by overlaying geographic coverage information and adding
resistance surfaces, facilitating the exploration of avian seasonal migration strategies using
citizen science data [21,22].

In the absence of tracking data, these methods gradually expanded the data sources
for studying migration trajectories and improved the accuracy of reconstructed routes.
However, a common limitation of these algorithms is their tendency to overemphasize shifts
in the centroid of data distribution during population migration, leading to highly biased
prediction results and failing to provide detailed migratory trajectories. This changed
when researchers developed the Level-order-Minimum-cost-Traversal (LoMcT) algorithm
based on the eBird dataset. This method, by clustering, grouping, and reconstructing
multiple trajectories at the population level, enabled the simulation of multiple trajectories
in the avian migration process [23]. This algorithm, relying solely on citizen science
data, overcomes the traditional bias towards hotspots of citizen science activities, yielding
scientific and reliable simulations of avian migration trajectories.

In 2021, the Black-faced Spoonbill was listed as a Class I protected species in China
under the “National Key Protected Wildlife Catalogue”, and is classified as endangered
by the International Union for Conservation of Nature (IUCN) Red List of Threatened
Species [24,25]. Although it was common along the eastern coast of China in the 1930s, the
distribution and the population size of this species have significantly declined due to water
pollution and wetland destruction caused by human activities. By the 1980s, the population
had decreased to fewer than 300 individuals [26]. It is the only endangered species among
the six species of the family Threskiornithidae with a highly restricted distribution. It is
generally believed to breed on the Korean Peninsula and winter in Fujian, Guangdong,
Hong Kong, Macau, Taiwan, and Hainan in China, with occasional sightings in Liaon-
ing, Shanghai, and Jiangsu, as well as in Southeast Asia including Vietnam, Thailand,
and the Philippines [27,28]. Because Black-faced Spoonbills have rarely been observed
historically, they are the least studied species within the Threskiornithidae family. Initial
research on the Black-faced Spoonbill commenced only after its breeding sites were first
discovered in China in 1999. Although recent years have seen systematic observations and
studies on the population, distribution, and habitat of the Black-faced Spoonbill, overall,
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the related research remains extremely limited, making further studies both urgent and
necessary [28,29].

This study employs the Level-order-Minimum-cost-Traversal (LoMcT) algorithm,
using citizen science data, to simulate the population-level migratory trajectories of the
Black-faced Spoonbill across common habitats in China over a five-year period. The re-
search aims to address the following issues: (1) To what extent can the algorithm accurately
reconstruct the migratory trajectories of the Black-faced Spoonbill? (2) To capture the
migratory dynamics of the Black-faced Spoonbill populations within the studied regions.
(3) To identify the main activity areas of the Black-faced Spoonbill. By addressing these
questions, this study will provide insights into the distribution and population dynamics of
the Black-faced Spoonbill and offer targeted conservation recommendations for the species.

2. Materials and Methods
2.1. Data Collection

The occurrence data for the Black-faced Spoonbill were obtained from the Global
Biodiversity Information Facility (GBIF) at https://www.gbif.org/ (accessed on 10 February
2024). On the occurrence data download page, the scientific name “Platalea minor Temminck
& Schlegel, 1849” was entered and after reviewing the annual data volume, the time range
was restricted to the years 2018 to 2022, yielding a total of 36,098 records (Table 1).

Table 1. Data of Black-faced Spoonbill from 2018 to 2022 in GBIF.

Occurrences Per Dataset Count

EOD—eBird Observation Dataset 22,354
2021_nsmk_biodiversity_observations_bird_197960 5784
2021_nsmk_biodiversity_observations_bird_136784 5784

Bird survey of Budai salt pans in Taiwan 812
iNaturalist Research-grade Observations 787

Taiwan New Year Bird Count 298
Ecological Records of Birds in Chenglong Wetlands 86

Dataset of long-term bird monitoring in Qigu wetlands 59
Observation.org, Nature data from around the World 53
Occurrence dataset of waterbirds in Tiaozini Wetland 39
Biological Collection of the National Taiwan Museum 1

The Survey Data of Mianhua and Huaping Islets Wildlife Refuge 1
Occurrence dataset of birds in the Sihong Hongze Lake Wetland National Nature Reserve 1

2.2. Data Processing and Computation

The LoMcT algorithm used in this study was developed by Shi Feng et al. in 2021,
comprising the following four main steps: data processing, clustering, grouping, and
multi-trajectory fitting [23]. For the formulas and specific procedures, please refer to Feng’s
paper [23]. In this study, Python was used for data cleaning, and Pandas was employed for
data mining and trajectory reconstruction [30].

Data were cleansed and processed to retain only the species name, longitude, latitude,
and observation date. To avoid redundancy during computation, duplicate records from
the same day were removed. Since occurrence data based on visual observations by citizen
scientists can have large positional errors, especially those falling into the sea, these were
considered unreliable. Therefore, using the map coastline as a reference, points falling
into the sea were removed, retaining only those on land. After initial processing, a total of
20,156 records were retained (Figure 1).

To address the absence of data on certain dates, nearest neighbor interpolation was
used; for example, linear interpolation using the time and location data of the k-nearest
neighbors was used to complete continuous location information. After testing, k was set to
6 in this study. To correct local biases in observation data, the Space Local Deviation Factor
(SLDF) algorithm was used for anomaly detection, retaining 80% of the data sorted by SLDF

https://www.gbif.org/
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values [31]. The Mean-Shift Clustering algorithm, a density-based unsupervised clustering
method that ensures the stability of clusters, was used to identify the main clusters [32]. The
core part of the algorithm calculated centroid distances between adjacent days, assuming
that the shortest distance between two centroids had the minimum migration cost, and
flight paths were determined based on the distances between adjacent centroids. Finally, a
generalized additive model was used to fit longitude, latitude, and dates in chronological
order, matching latitude and longitude coordinates on the same date. By connecting these
coordinate points, the final migration trajectory results were formed [23].
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3. Results
3.1. Migration Trajectories across Different Years

The migratory trajectories of the Black-faced Spoonbill from 2018 to 2022 were re-
constructed, showing distinct grouping patterns during the early phases of each annual
migration cycle. According to the logic of the LoMcT algorithm [23], multiple migration
trajectories were identified for each year. Different life histories of the species’ migration
are marked with various colors (Figure 2), with reconstructed trajectories indicating that
migrations in spring and autumn primarily occur over straits, while breeding season trajec-
tories are shorter and wintering trajectories are longer and predominantly over land. The
migration trajectories suggest that the Black-faced Spoonbill’s movements within the region
are mostly curvilinear, likely optimizing for suitable environmental conditions, like wind
speed and direction, to minimize energy expenditure. Multiple trajectory maps illustrate
the dispersion or concentration within the species population during different migration
periods. Convergence points on multiple trajectories likely represent ecologically valuable
stopovers with abundant food supplies.

Over five years, the migration trajectories revealed that Wenzhou, Xiamen, Shantou,
Shanwei, Hsinchu, Chiayi, and Tainan are critical stopovers for the Black-faced Spoonbill.
The triangular area formed by Zhangzhou, Chaozhou, and Shantou, and the belt area
formed by New Taipei, Taoyuan, and Hsinchu, serve as breeding areas, while the belt
formed by Xiamen, Quanzhou, Putian, and Fuzhou, and the western coastline of Taiwan,
serve as wintering areas. Overall, the activity range during the breeding season is the
smallest, while the range during the wintering and autumn migration periods is the largest.

According to current knowledge, most of the Black-faced Spoonbills residing in
China’s southeastern coastal area are residents [33]. However, the data, showing certain
fluidity in monthly occurrence records (Figure 3), indicate that a portion of the population
within China is migratory. Our migration trajectory reconstructions also reflect that during
certain periods each year, multiple populations form distinct migration trajectories.
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Figure 2. A diagram of the whole migration cycle of the Black-faced Spoonbill in 2018 to 2022. Blue
lines represent the wintering migration trajectories. Red lines represent the breeding migration
trajectories. Green lines represent the spring migration trajectories. Yellow lines represent the autumn
migration trajectories. The map (a) shows the migration trajectories of the Black-faced Spoonbill
in 2018; the map (b) shows the migration trajectories of the Black-faced Spoonbill in 2019; the
map (c) shows the migration trajectories of the Black-faced Spoonbill in 2020; the map (d) shows
the migration trajectories of the Black-faced Spoonbill in 2021; the map (e) shows the migration
trajectories of the Black-faced Spoonbill in 2022.
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3.2. Analysis of Departure Times and Flight Speeds

We calculated the deviation distances and migration speeds of the Black-faced Spoon-
bill during each migration. For instance, in 2018, Figure 4a shows the daily Euclidean
deviation distances during the migration process. The x-axis represents the day of the
year, while the y-axis shows the periodic changes in the deviation distance between the
trajectory positions and a straight line connecting the start and end points on each date in
the Mercator coordinate system. Figure 4b shows the population migration speed of the
Black-faced Spoonbill in 2018. From these graphs, it is observed that at around day 170,
approximately in late June, the Black-faced Spoonbills reach their breeding grounds; by day
270, around late September, they leave the breeding area to commence autumn migration.
They arrive at the wintering grounds around day 320, approximately mid-November (see
Appendix A for charts of other years). A summary table of migration start and end times
across other years is provided (Table 2).
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Table 2. Annual start and end month of the migratory behavior for the Black-faced Spoonbill population.

Year
Spring Migration Autumn Migration

Start Month End Month Start Month Start Month

2018 March June September November
2019 March May September November
2020 March June September November
2021 April June July November
2022 February May July September

4. Discussion

This study represents the first use of citizen science data to simulate the population-
level migratory trajectories of the Black-faced Spoonbill, demonstrating that populations
of this species undergo seasonal migrations throughout the year in China’s southeastern
coastal region. At the population level, this species exhibits multiple migratory routes;
typically beginning spring migration from February to April, reaching breeding sites by
June; and starting autumn migration in either July or September, with most arriving at
wintering grounds by November.

The Black-faced Spoonbill is an endangered species and research on it started late,
with the least amount of studies among Threskiornithidae birds [28,34]. Some sources
suggest that in Fujian, China, the Black-faced Spoonbill is a resident bird, though it is
extremely rare [28]. Although the trajectory simulations of this study have shown multiple
migratory paths, they are mainly concentrated in the southeastern coastal region of China,
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with no results for broader areas. This phenomenon may be due to the fact that although
species distribution records indicate the presence of Black-faced Spoonbills in Russia, Korea,
China, and Southeast Asia [35], they are rarely found in these locations in reality. Without
tracking data, understanding the complete migratory routes through the regions of Russia,
Korea, China, and Southeast Asia presents practical challenges. While the methods used in
this paper have been validated as credible, the inherent limitations of citizen science data
mean that reconstructing species migration trajectories based solely on this data inevitably
faces constraints.

Based on the deviation distances and migration speeds during the Black-faced Spoon-
bill’s migration, we inferred the annual start and end times of the migratory behavior for
the population. However, as seen from the results in Table 2, the start and end times for
2022 differ significantly from other years. To find the cause, we examined the temperature
data for the southeastern coastal region of China for the corresponding year and discovered
that the temperatures in 2022 were lower than in previous years, which could be the reason
for the different migration timing of the Black-faced Spoonbill population. This finding
also demonstrates that the results obtained from citizen science data can accurately reflect
the annual temperature changes, indirectly validating the reliability of our findings.

It is commonly believed that species tend to follow the shortest path during migra-
tion; if a migratory path is curved, it suggests that the species has chosen to detour to
avoid obstacles [36]. Based on this principle, by examining our trajectory lines, it can be
determined that areas where multiple migration trajectories are concentrated are important
stopover sites during the migration. Therefore, we identify Wenzhou, Xiamen, Shantou,
Shanwei, Hsinchu, Chiayi, and Tainan as critical stopovers for the Black-faced Spoonbill.
The triangular area formed by Zhangzhou, Chaozhou, and Shantou, and the belt-like region
formed by New Taipei, Taoyuan, and Hsinchu, serve as breeding areas, while the belt-like
region formed by Xiamen, Quanzhou, Putian, and Fuzhou, along with the western coast
of Taiwan, serve as wintering areas. Monthly frequency data show that the Black-faced
Spoonbill is more frequently observed during the wintering season and is observed less
so during the breeding season. This may lead to our reconstructed trajectories showing a
smaller range of activity during the breeding period and larger ranges during the wintering
and autumn migration periods.

Overall, our study demonstrates that citizen science data can be applied to the sim-
ulation of species population-level migration trajectories, challenging the long-standing
reliance on tracking data for studying species migration. As citizen science data continue
to accumulate, this method has the potential to be applied to more species, helping to fill
gaps in the human understanding of migration trajectories for many species. However,
we must acknowledge that due to the limitations of citizen science data, our results are
not as accurate as those obtained from actual migration tracking. Yet, tracking data only
reflect individual trajectories and cannot represent the whole population. Therefore, fu-
ture research should combine avian tracking data with citizen science data to optimally
reconstruct avian migration trajectories.

5. Conclusions

This study utilized the LoMcT algorithm and citizen science data to simulate the migra-
tory routes of the Black-faced Spoonbill. The results show that this algorithm can simulate
multiple migratory trajectories at the population level for the Black-faced Spoonbill. In the
absence of tracking data, this method currently offers an advanced means of capturing the
migratory dynamics of the Black-faced Spoonbill population. The triangular area formed by
Zhangzhou, Chaozhou, and Shantou, along with the belt-like region formed by New Taipei,
Taoyuan, and Hsinchu, serve as breeding areas, while Xiamen, Quanzhou, Putian, and
Fuzhou, along with the western coast of Taiwan, serve as wintering areas. The results of this
study are largely consistent with those obtained by JIA et al. based on tracking data [26], in-
dicating that the Black-faced Spoonbill primarily migrates along the eastern coastal regions
of China. Due to the limited availability of tracking data, other studies have either failed
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to provide detailed migration routes or have only reconstructed inland migration paths.
In contrast, this study utilizes extensive citizen science data to reconstruct the migration
trajectories within the active regions of the Black-faced Spoonbill. In future design and
management plans for nature reserves for endangered waterbirds such as the Black-faced
Spoonbill, it is essential to consider the combined effects of seasonal changes and landscape
connectivity. Integrating new technologies such as satellite remote sensing, camera traps,
and geographic information systems (GISs) will be crucial. A multidisciplinary approach
should be adopted to conduct targeted conservation and planning.
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