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Simple Summary: This study introduces a novel system called MCP for estimating the poses of
multiple chickens using advanced deep learning techniques. Through automatically detecting and
analyzing the postures of chickens, the MCP system helps to assess their behavior and welfare more
effectively. The developed system uses a method known as transfer learning, which improves its
accuracy and efficiency. The test results show that our system performs well, making it a valuable
tool for poultry managers and researchers aiming to enhance animal welfare through technology.
This work paves the way for future advancements in animal behavior analysis and could be adapted
to other species as well.

Abstract: Poultry managers can better understand the state of poultry through poultry behavior
analysis. As one of the key steps in behavior analysis, the accurate estimation of poultry posture
is the focus of this research. This study mainly analyzes a top-down pose estimation method of
multiple chickens. Therefore, we propose the “multi-chicken pose” (MCP), a pose estimation system
for multiple chickens through deep learning. Firstly, we find the position of each chicken from the
image via the chicken detector; then, an estimate of the pose of each chicken is made using a pose
estimation network, which is based on transfer learning. On this basis, the pixel error (PE), root
mean square error (RMSE), and image quantity distribution of key points are analyzed according to
the improved chicken keypoint similarity (CKS). The experimental results show that the algorithm
scores in different evaluation metrics are a mean average precision (mAP) of 0.652, a mean average
recall (mAR) of 0.742, a percentage of correct keypoints (PCKs) of 0.789, and an RMSE of 17.30 pixels.
To the best of our knowledge, this is the first time that transfer learning has been used for the pose
estimation of multiple chickens as objects. The method can provide a new path for future poultry
behavior analysis

Keywords: chicken; multi-objective; top-down; pose estimation; transfer learning

1. Introduction

Animal health and welfare is a key concern for animal researchers [1]. Animal postures
and their corresponding behaviors contain important information that allows managers to
better assess the health and welfare of animals [2]. One of the most common methods for
monitoring animal posture behavior is the use of sensor technology [3]; however, in animal
posture research, contact sensors may cause a stress response. Computer vision has the
advantage of no contact, which can reduce the influence on animal posture behavior [4,5].
Studying animal posture often requires analyzing offline videos, but manually analyzing
these offline videos is a time- and labor-intensive task [6]. Therefore, automated pose
estimation methods and analysis tools can improve the efficiency of animal researchers [7,8].
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Before deep learning flourished, traditional animal pose estimation was measured by
placing markers on the target animal [9], using a body model with edge features [10], or
using decoders with artificial features [11].

In recent years, the rapid popularity of human pose estimation methods based on
deep learning has made animal pose estimation possible. Human pose estimation is
a computer vision technology that detects and recognizes human body joint positions
and their relationships using algorithms to reconstruct human postures [12–14]. It is
widely used in action recognition [15], virtual reality [16], behavior analysis [17], and
sports monitoring [18]. It typically involves detecting joints and constructing the human
skeleton using 2D images or 3D data from cameras. Deep learning methods, such as
convolutional neural networks (CNNs) and graph convolutional networks (GCNs), have
greatly improved the accuracy and robustness of pose estimation, enabling real-time and
high-precision applications [19,20]. Therefore, more and more animal researchers are trying
to use deep learning methods to estimate animal poses, and much great progress has
been made.

Mathis et al. successfully applied a convolutional neural network (CNN) to human
and animal pose estimation and developed deeplabcut, which can analyze the frame of
an animal pose [21]. Pereira et al. developed the LEAP pose estimation software (Ver. 1.0)
to analyze animal poses, and verified the performance of the software using fruit fly im-
ages [22]. Graving et al. developed a software platform called DeepPoseKit (Ver. 1.0) based
on a GPU fast peak detection algorithm to estimate animal postures automatically [23].
Li et al. compared various pose estimation networks and found that a stacked hourglass
network can obtain good results in the estimation of cattle body postures [24]. Zhu et al.
used the improved two-stream RGB-D Faster R-CNN algorithm to automatically identify
five postures of lactating sows, among which the average precision of standing, sitting,
sternal recumbency, ventral recumbency, and lateral decubitus recumbency were 99.74,
96.49, 90.77, 90.91, and 99.45% [25]. Marshall et al. developed the CAPTURE platform to
automatically track mouse posture behavior [26].

For multi-animal pose estimation, Pereira et al. proposed SLEAP, a multi-animal pose
estimation system that can track and estimate the poses of two animals (1024 × 1024) at a
speed of 320 frames per second (FPS) [27]. Chen et al. developed a tracking system called
AlphaTracker to study social interaction between mice [28]. Walter et al. proposed a rapid
multi-animal pose estimation system called TRex, which can track and identify more than
100 unmarked individuals [29]. Lauer et al. used the improved DeepLabCut algorithm
to analyze the parenting behavior of adult mice, marmoset home-cage behavior, and fish
schooling behavior [30].

Another study focused on extracting a chicken’s posture and the geometric configura-
tion of multiple body parts [31]. The initial work on animal pose estimation was all about
extending deep learning algorithms designed for human pose estimation. However, there
are few published studies on the multi-objective pose estimation of poultry, so we aimed to
estimate the poses of poultry using a deep learning-based pose estimation algorithm. In this
study, we re-study multi-person pose estimation and apply it to multi-chicken pose estima-
tion. The model is mainly composed of two steps: the first step is a multi-chicken detection
module, and the second step is a single-chicken pose estimation module. Combining these
two modules, the model can estimate the pose of multiple chickens.

The main contributions of this study are as follows:
The study proposes a multi-chicken pose estimation system based on transfer learning

called MCP, which adopts a top-down mode to automatically estimate the pose of each
chicken in the image.

The pose estimation algorithm proposes a CKS index to evaluate the similarity degree
of chicken keypoints through improving the object keypoint similarity (OKS) index.

A lower RMSE of the pixels is beneficial to the subsequent analysis of a chicken’s
motion and behavior.
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2. Materials and Methods
2.1. Experimental Environment

The experiment in this study was conducted at a poultry farm in Gaoming District,
Foshan City, Guangdong Province, China. In the study, a high-definition camera (Logitech
C922, Europe SA, Lausanne, Switzerland) was used to capture video images of chickens.
The experiment object was K90 jute broiler chickens, which were between 40 and 70 weeks
old. The captured video frame rate was 30 FPS, and the resolution was 1920 × 1080 pixels.
As a low-cost product, this camera can be used in practical livestock environments. A
total of 29 videos, including multiple chickens, were collected in this experiment. The
experiment was performed in accordance with the guidelines approved by the Experimental
Animal Administration and Ethics Committee of South China Agriculture University
(SYXK-2019-0136).

2.2. Data Preprocessing

The chicken data set was constructed from 29 videos, including 3831 images in total.
Figure 1 shows some images from the data set. The images included instances of single and
multiple chickens, and the data set was randomly mixed into a training set, a validation
set, and a test set. In order to reduce the memory consumption of GPU during training,
all images collected were preprocessed using OpenCV and adjusted to a resolution of
640 × 640 pixels. Among them, the ratio of the training set, verification set, and test set was
8:1:1, respectively (3063/384/384), used for network training/verification/testing. In order
to achieve accurate multi-chicken pose estimation results, we needed to annotate the images
for network learning. In the selection of chicken keypoints, the reference pose selected was
composed of 10 keypoints [32]. In all pictures, the ground truth (GT), keypoints, and the
connection between the keypoints of each chicken were marked for data modeling.
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2.3. Top-Down and Bottom-Up Mode

Traditional multi-person pose estimation is classified according to abstract features and
pixel features, which can be divided into top-down and bottom-up modes. Similarly, the
multi-chicken pose estimation process can also be divided into top-down and bottom-up
modes according to the priority of the abstract features and pixel features.

As shown in Figure 2, the top-down mode starts with high-level abstract features,
first detecting the chicken and generating the chicken’s position within the bounding box
(Bbox). Then, the pose estimation of the chicken in each Bbox was made. In contrast, the
bottom-up mode starts with low-level pixel features, first predicting the locations of all the
joints or keypoints for each bird in the input image and then grouping these key points
through chicken model fitting or other algorithms to determine which bird these keypoints
belong to.
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2.4. The Basic Structure of MCP Algorithms

All of the algorithms used in this study were written in the Python language. As
shown in Figure 3, the MCP pose estimation system is mainly divided into two steps. The
first step is a multi-chicken detection module, and the second step is a single-chicken pose
estimation module.
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Firstly, a Bbox was generated around each chicken using the multi-chicken detector.
Then, the Bboxes were cropped and adjusted to the same size. Finally, these Bboxes were
input into the pose estimation network, and, finally, the pose of each chicken was obtained.

2.4.1. The Basic Structure of the MCP Algorithms

In the study, the detector used for multi-chicken detection was YOLOX, which is an
open-source object detector (Megvii; 2021) [33]. The YOLOX-Darknet53 backbone network
neck structure is the same as YOLOV3. The YOLOX network is shown in Figure 4.

On the input side of the network, YOLOX mainly adopts the Mosaic and MixUp
data-enhancement methods. The Mosaic data-enhancement method mainly performs
splicing via random scaling, random clipping, and random arrangements, which has a
good detection and improvement effect for small objects. Figure 5 shows a typical example
of Mosaic data enhancement.
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MixUp is an additional enhancement strategy that builds on the Mosaic process.
Figure 6 shows a typical example of MixUp data enhancement.
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2.4.2. Single-Chicken Pose Estimation

The pose estimation network is shown in Figure 7.
The pose estimation network consists of EfficientNet pretrained on ImageNet and

several deconvolution layers. EfficientNet was first proposed by Google in 2019 to optimize
the network for efficiency and accuracy using a composite model scaling method to balance
the three dimensions of resolution, depth, and width [34]. In this study, the feature
information of the chicken keypoints was extracted through EfficientNet; then, the spatial
feature information of the chicken keypoints was obtained by using a deconvolution layer,
and finally, the pose of the chicken was obtained by using keypoint connection. The problem
with EfficientNet’s proposed composite model scaling method is as follows: (α, β, γ) is a
set of parameters that require solutions, as shown in Equation (1):
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depth : d = αϕ

width : ω = βϕ

resolution : γϕ

s.t. : α·β2·γ2 ≈ 2
α ≥ 1, β ≥ 1, γ ≥ 1

(1)

where (α, β, γ) measures the proportion of the depth, width, and resolution of the network.
Among them, β and γ are squared in the constraint as, if the width or resolution is doubled,
the amount of calculation will increase by four times; however, if the depth is doubled, the
amount of calculation will only be doubled.
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2.5. Evaluation Metrics

In order to evaluate the accuracy of the system, CKS, mAP, mAR, and PCK were used
to calculate the pose estimation effect of multiple chickens [35]. OKS was derived from
the intersection over union (IoU) in object detection, which aims to calculate the similarity
between human keypoints and predicted points [36]. The CKS was improved by OKS, and
CKS can be expressed as per Equation (2):

CKS(B T, BP) =
N

∑
i=1

e
−
∥BT

i − BP
i ∥

2
2

2αβ2
i vi/

N

∑
i=1

vi (2)

where BT and BP are the true point and predicted point, respectively, with N nodes. In
this research, N is equal to 10. vi denotes the visibility, and when this is equal to 0, this

means that point i is invisible and 1 means that point i is visible. −∥BT
i −BP

i ∥
2
2

2αβ2
i

expresses the

center of the true point position at the location of the detection, which is evaluated using
a non-normalized Gaussian function. As a scale factor, α represents the area of chicken
detection frame. β2

i is the normalization factor of point i of the chicken. The larger the
value of β2

i , the more difficult it is to mark point i. In the study, point body_center is equal
to 0.107, and the others are equal to 0.025. Equation (2) describes the similarity relationship
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between GT and predicted value of a chicken. The range is [0, 1], where 0 is completely
dissimilar, and 1 is completely similar.

mAP is an indicator that was originally described by Pascal VOC, which has been
widely used in human pose estimation [37]. mAP calculates the GT of OKS at each threshold
and predicts the value of the class true positive (TP) or false positive (FP), where the
thresholds are as follows: {0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0,85, 0.90, 0.95}:

P =
TP

TP + FP
(3)

AP = ∑ maxB̃≥BP(B̃)/101B̃∈{0,0.01,...,1} (4)

mAP =
10

∑
i=1

AP/10 (5)

where P is precision and AP is the average of the best accuracy values for 101 thresholds.
mAR is defined as the mean average recall with different OKS thresholds.

R =
TP

TP + FN
(6)

AR = maxROKSi (7)

mAR =
10

∑
i=1

AR/10 (8)

where R is recall, FN is a false negative, and AR represents the maximum recall rate under
the current OKS.

PCK is another indicator commonly used in human pose estimation. It is usually
reported as PCKh in human pose estimation, using the human head length as a normalized
reference. This indicator calculates the proportion when the normalized distance between
the detection keypoint and its corresponding GT is less than the set threshold.

3. Results and Discussion
3.1. Experimental Setting

The MCP presented in this study was trained on the Windows operating system
(Windows 10 Pro). During training, the CUDA 11.2 and CUDNN 8.2 platforms were used,
where the GPU was an NVIDIA GTX 1080TI (Python version 3.7.10 and torch version 1.7.0.)
The training parameters of the experiment are shown in Table 1.

Table 1. The training parameters of the experiments.

Module Object Detection Pose Estimation

Input size 640 × 640 512 × 512
Batch size 4 4

Epoch 300 200
Learning rate 1 × 10−3 1 × 10−3

Optimizer SGD Adam

The object detection and pose estimation training parameters are shown in Table 1. In
the training process, the stochastic gradient descent (SGD) optimizer was used to optimize
the object detection network, and the adaptive moment estimation (Adam) optimizer was
used to optimize the pose estimation network. The initial learning rate was 1 × 10−3, and
this dropped by 50% every five steps.
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3.2. Experimental Results

In this study, the performance of three YOLOX series detection algorithms (YOLOX,
YOLOX-M, and YOLOX-S) and EfficientNet pose estimation were calculated. Table 2 shows
the results of the pose estimation for multiple chickens.

Table 2. Performance of multi-chicken pose estimation algorithms.

Algorithm mAP mAR PCK Speed (FPS)

YOLOX + EfficientNet 0.601 0.727 0.771 20.46
YOLOX-M + EfficientNet 0.604 0.705 0.797 20.80
YOLOX-S + EfficientNet 0.652 0.742 0.789 22.16

The experimental results show that the mAP and mAR of the YOLOX + Efficient-
Net algorithm are 0.601 and 0.727, respectively. The mAP and mAR of the YOLOX-M +
EfficientNet algorithm are 0.604 and 0.705, respectively, and the mAP and mAR of the
YOLOX-S + EfficientNet algorithm are 0.652 and 0.742, respectively. Although the PCK
score of YOLOX-S + EfficientNet was not as high as that of YOLOX-M + EfficientNet, the
overall difference is not significant; the detection speed of YOLOX-S + EfficientNet was
faster, and the size was smaller. In summary, YOLOX-S + EfficientNet was more suitable
for the detection and pose estimation of multiple chickens.

Figure 8 shows the PE of different keypoints.
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As shown in Figure 8, there are a total of 10 keypoints, namely body_center, body_tail,
body_knee_left, body_knee_right, body_heel_left, body_heel_right, eye_left, eye_right,
comb, and beak. For the chickens, we can see that some keypoints of the body were fairly
accurate, while others were relatively inaccurate. In particular, due to the similarity around
body_center, the keypoints near the chicken’s center are very difficult to predict, resulting in
an error of 30+ pixels in the test set. Here, PE is defined as the Euclidean distance between
the real point and the predicted point [38].

PEi =
√
(irealx − ipredictx)

2 + (irealy − ipredicty)
2 (9)

where i denotes a keypoint.
We conducted statistical calculations on the number of CKS score images in the test

set, as shown in Figure 9.
As shown in Figure 9, although there are many images for which the CKS values are

very close to 1.0, the main reason for the difference between the mAP and mAR indicators
may be the number and distribution of the outliers.
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In addition to the above evaluation indicators, the offset of each keypoint in the
training set, verification set, and test set was also analyzed, as shown in Table 3, which is
represented by pixel dispersion degree or RMSE. When compared with GT, the RMSE of
the model at the predicted position is smaller, which verifies that the model proposed in
this paper is reliable for detecting each keypoint.

Table 3. RMSE values of chicken keypoints.

Keypoint Training Set Verification Set Test Set

body_center 6.84 8.52 25.76
body_tail 5.64 7.56 23.85

body_knee_left 4.32 6.44 13.48
body_knee_right 4.29 6.15 17.56
body_heel_left 3.62 6.42 7.68

body_heel_right 3.64 5.86 8.15
eye_left 2.94 3.54 4.45

eye_right 2.87 4.15 4.86
comb 4.85 8.52 12.84
beak 1.84 4.81 6.54

Average 5.31 7.56 17.30

As shown in Figure 10, some results of the test set are as follows: the upper part is the
original image, and the lower part is the result after MCP processing.
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However, some chicken positions were not accurately identified or missed, as shown
in Figure 11.
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As shown in Figure 11, some keypoints were not fully recognised. This is because we
used a top-down approach, where points near the edges may be missed due to the precision
limitations of the detection algorithm. If a keypoint is not within the detection box in the
first stage of detection, it can result in misdetection. Additionally, due to the similarity of
points near the center, some central points were not predicted accurately. Meanwhile, if
one of the chicken’s feet is occluded, the left foot may be misidentified as the right foot.

In this study, a multi-chicken pose estimation method based on transfer learning was
proposed. The experimental results show that the algorithm performs well in keypoint
detection. In fact, the points that are difficult to annotate during pose labeling often result
in larger pixel errors during prediction. This is because the complexity and ambiguity in
accurately identifying these points can lead to inconsistencies in the training data which,
in turn, affects the model’s ability to predict these points with high precision [39,40].
Addressing this issue requires more advanced techniques and higher-quality annotations
to reduce prediction errors and improve the overall pose estimation accuracy. The accurate
pose estimation of multiple chickens can be helpful for subsequent motion and behavior
analysis [41]. In the future, the accuracy of the chicken keypoints can be further improved,
and the local pose of chickens can be constructed for the measurement of a chicken’s body
size [42,43].

4. Conclusions

The study proposed MCP, a top-down pose estimation system for multiple chickens.
The system can recognize the poses of multiple chickens in an image. The experimental
results show that YOLOX-S + EfficientNet is suitable for multi-chicken detection and pose
estimation, achieving an mAP of 0.652, an mAR of 0.742, and a PCK of 0.789, with a speed
of 22.16 FPS. The RMSEs of different keypoints in the training set, validation set, and test
set were 5.31, 7.56, and 17.30 pixels, respectively. Therefore, the system has certain reference
significance for subsequent researchers in the field of poultry posture.

To the best of our knowledge, this is the first time that transfer learning has been
used for the pose estimation of multiple chickens, but there is much more work to be
carried out. For future work, such as multi-chicken pose occlusion, 3D data sets with
depth information can be used to better solve the problem. In addition, the bottom-up
pose estimation of multiple chickens is also a challenging task that deserves further study.
Including reflections, shadowing, and low contrast as aspects of image comparison in future
work will also be important for improving the robustness and accuracy of the system.
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