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Simple Summary: Lead is a major source of heavy metal pollution, which can harm both the
environment and people’s health. High levels of Pb can slow down the growth and development of
insects and may even cause them to die by damaging their cells. The aim of this study was to explore
gene expression in the midgut of Bombyx mori when exposed to lead (Pb). This study gives us new
insights into how insects protect themselves from Pb challenge and helps us understand the complex
ways insects get rid of harmful substances at a deeper level.

Abstract: Lead (Pb) is a major source of heavy metal contamination, and poses a threat to biodiversity
and human health. Elevated levels of Pb can hinder insect growth and development, leading to
apoptosis via mechanisms like oxidative damage. The midgut of silkworms is the main organ exposed
to heavy metals. As an economically important lepidopteran model insect in China, heavy metal-
induced stress on silkworms causes considerable losses in sericulture, thereby causing substantial
economic damage. This study aimed to investigate Pb-induced detoxification-related genes in the
midgut of silkworms using high-throughput sequencing methods to achieve a deeper comprehension
of the genes’ reactions to lead exposure. This study identified 11,567 unigenes and 14,978 transcripts.
A total of 1265 differentially expressed genes (DEGs) were screened, comprising 907 upregulated
and 358 downregulated genes. Subsequently, Gene Ontology (GO) classification analysis revealed
that the 1265 DEGs were distributed across biological processes, cellular components, and molecular
functions. This suggests that the silkworm midgut may affect various organelle functions and
biological processes, providing crucial clues for further exploration of DEG function. Additionally,
the expression levels of 12 selected detoxification-related DEGs were validated using qRT-PCR, which
confirmed the reliability of the RNA-seq results. This study not only provides new insights into the
detoxification defense mechanisms of silkworms after Pb exposure, but also establishes a valuable
foundation for further investigation into the molecular detoxification mechanisms in silkworms.

Keywords: Bombyx mori; midgut; lead; transcriptome; gene expression; antioxidant defense mechanisms

1. Introduction

With the rapid development of global industrialization, heavy metal pollution caused
by activities such as mining, metal processing and smelting, chemical manufacturing, and
factory emissions has become a notable environmental concern in numerous regions across
the globe [1,2]. The primary heavy metals of concern comprise chromium (Cr), copper (Cu),
zinc (Zn), cadmium (Cd), mercury (Hg), and lead (Pb) [3].
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The accumulation of excessive heavy metal ions in soil causes extensive damage to the
ecological environment, significantly reducing soil productivity and occasionally leading to
degradation [4]. Moreover, heavy metal ions pose a threat to plants, animals, and humans
through ecological cycles [5]. In the early 20th century and from the 1950s to the 1970s,
Japan witnessed infamous incidents of metal contamination, such as Itai-itai disease and
Minamata disease, leading to the deaths of thousands of individuals [6,7]. In 2016, a water
contamination incident in Flint, Michigan, USA, resulted in hundreds of local children
being detected with elevated blood Pb (PbB) levels above normal ranges [8]. Pb, which
has been used by humans since 4000 BCE, was one of the earliest metals discovered by
humans [9]. Ancient civilizations, such as the Romans, extensively used Pb for constructing
water pipes owing to the advanced engineering technology available at the time. However,
research progress has led to the discovery that this application might pose public health
concerns because Pb breakdown in water can be harmful to human health [10,11]. In
the Balkan Peninsula region, the development of mineral resources has led to significant
Pb pollution, recorded at approximately 600 BCE. Human activity-induced Pb content
gradually increased, reaching its peak at approximately 1620 BCE [11]. During the In-
dustrial Revolution in Europe from the 19th to 20th centuries, Pb was commonly used in
industries like batteries, printing, coatings, and pipelines, leading to significant pollution.
For example, the deposition of atmospheric Pb in peat bogs in rural parts of western and
central Switzerland increased significantly from 40 to 80 times between 1880 and 1920,
and from 80 to 100 times between 1960 and 1980, increasing risks to both the local human
population and the ecological environment [12]. Despite its widespread use in various
industries, including battery production, construction, automobile manufacturing, and
military applications, its use has been restricted to certain applications, such as Pb pipes
and Pb-based paints, owing to environmental and health concerns [13,14]. The evolving
awareness and understanding of the harmful impacts of Pb on human health and the
environment have prompted more cautious use and management practices over time.

The silkworm (Bombyx mori), belonging to the order Lepidoptera and family Bombyci-
dae, is a unique silk-producing insect of significant cultural and economic importance in
China. Since the Xia Dynasty, China has been domesticating silkworms by selectively breed-
ing them from mulberry tree pests and developing sericulture techniques. This tradition
has persisted to the present day, continually contributing to economic benefits. However,
prolonged domestication has resulted in silkworms gradually losing their resistance to
drugs and pathogenic microorganisms [15–17]. Heavy metal ions and other harmful sub-
stances absorbed by mulberry trees accumulate in their leaves. Silkworms feed on these
leaves, which negatively affects their growth, development, and silk production, which in
turn adversely impacts the silk industry [18,19]. Therefore, investigating the toxic effects of
heavy metals on silkworms is imperative.

The sensitivity of silkworms to heavy metals, drugs, and pesticides has made them
ideal model organisms for assessing health and safety as well as studying environmen-
tal pollution mechanisms [16,20,21]. Therefore, in-depth research on the toxic effects of
harmful substances such as heavy metals on silkworms is essential. This will enable the
implementation of appropriate protective measures, ensuring the sustainable development
of the silk industry while safeguarding the ecological environment and human health.
Several studies have been conducted to reduce the damage caused by Pb by better under-
standing its adverse effects and toxic mechanisms. For instance, research on the housefly
(Musca domestica) has shown that Pb stress causes changes in the morphology of its blood
cells, with an increase in the original blood cells and a decrease in phagocytic cells, leading
to impaired phagocytic function and weakening of the organism’s repair capacity [22].
Similarly, studies on tobacco cutworm (Spodoptera litura) have shown that Pb and Zn stress
increases the gaps between midgut cells, disrupts mitochondrial structure, and ruptures
the nuclear membrane [23,24]. In contrast, the accumulation of Cd and Pb in the intestines
of mice (Mus musculus) was relatively low. However, Cd exhibits significant genotoxic
effects in both the upper and lower gastrointestinal tract [25]. Studies in the soil-mulberry
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silkworm-silkworm food chain have shown that Pb ions can accumulate in various parts
of silkworms, such as larvae, feces, and silk, via a translocation process [26]. However,
many uncertainties remain regarding the molecular toxicology of Pb ions, particularly the
molecular detoxification mechanisms of animals and the molecular-level toxic effects of
Pb ions. Studies on invertebrates, particularly insects, are limited, and there are still many
unknown areas that require further exploration.

RNA sequencing, also known as RNA-seq, is a transcriptome analysis technique that
utilizes deep sequencing technology to produce transcriptome profiles. When compared
with alternative methods, RNA-seq is a reliable method for accurately quantifying the levels
of specific transcripts. Additionally, RNA-seq contributes to improving our understanding
of the host’s genetic responses to various chemical elements and their underlying molecular
mechanisms [27]. Pb, a toxic heavy metal, can cause damage to numerous organs in the
body [28]. In this study, the silkworm was chosen as a model organism to investigate the
toxicity mechanism of Pb [29]. The larval midgut, responsible for digesting mulberry leaves
and absorbing nutrients, was selected as the target organ for the toxicological experiments.
Heavy metal ions enter the organism through this organ, which is also considered an
important immunological barrier against exogenous factors and pathogens [30,31]. A com-
prehensive transcriptome analysis of the larval midgut was conducted to better understand
the toxicity of Pb and the mechanisms of the silkworm response to Pb. One group was
fed normal mulberry leaves, whereas the other group was fed mulberry leaves soaked
in a solution of C4H6O4Pb·3(H2O). The toxic effects of Pb were analyzed by identifying
differentially expressed genes (DEGs).

2. Materials and Methods
2.1. Silkworm Strain and Lead Exposure

The hybrid silkworm variety “Jingsong × Haoyue” was selected as the experimental
model. The rearing conditions for the silkworm larvae were as follows: a temperature of
27 ◦C, a humidity level of 70% to 75%, a light cycle of 12 h light and 12 h darkness, and
fresh mulberry leaves were provided as food three times a day.

Lead acetate (C4H6O4Pb·3(H2O)) purchased from Fuchen (Tianjin) Chemical Reagent
Co., Ltd., with a purity of ≥99.5%. Dissolve 20 mg of lead acetate raw material in 1mL
of double-distilled water to make the stock solution, then dilute the stock solution with
double-distilled water to prepare working solutions of 0.2 mg/L. Immerse mulberry leaves
in 500 mL of imidacloprid working solution for 1 minute, air dry, and use to feed 5th instar
larvae starting from the third day, three times a day, until cocooning. Each experimental
group consists of 20 larvae with three biological replicates. The control group’s mulberry
leaves were treated with double-distilled water (ddH2O).

2.2. Determination of Enzyme Activity

After being exposed to trace amounts of lead (Pb), the detoxifying enzyme activity was
evaluated in both the control (CK) and lead-exposed (Pb) groups. The P450 enzyme activity
was determined using a cytochrome P450 assay kit from Grace Biotechnology Ltd., Suzhou,
Jiangsu, China, following the company’s instructions. Additionally, the activities of the
GST and CarE enzymes were assessed using kits from Nanjing Jiancheng Bioengineering
Institute, Nanjing, Jiangsu, China, and the manufacturer’s guidelines were followed for
these measurements.

2.3. Midgut Collection and RNA Extraction

At the 48-h mark post lead (Pb) exposure, a random selection of 30 fifth instar larvae
was made. The midguts were swiftly extracted, chilled on ice, and dissected to eliminate
their contents. They were then washed with a cold solution of phosphate-buffered saline
(pH 7.4). Isolation of total RNA from these midgut tissues was carried out with TRIzol
reagent (Invitrogen, Carlsbad, CA, USA), along with the use of chloroform, isopropanol,
75% ethanol, and DEPC-treated water, all in accordance with the manufacturer’s guidelines.
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Subsequent to the extraction process, the RNA was checked for any signs of degradation
and contamination through a 1% agarose gel analysis. The RNA’s purity, concentration,
and integrity were determined using the NanoDrop (Impen, Westlake Village, CA, USA),
Qubit 2.0 (Life Technologies, Carlsbad, CA, USA), and Agilent 2100 (Agilent Technologies,
Santa Clara, CA, USA) instruments, respectively.

2.4. Library Construction and High-Throughput Sequencing

A cDNA library was constructed using the Seq RNA Sample Prep Kit (Illumina,
San Diego, CA, USA). mRNA was enriched using magnetic beads coated with oligo(dT).
Subsequently, the mRNA was fragmented using fragmentation buffer. Single-stranded
cDNA was synthesized using mRNA as a template using reverse transcriptase and random
hexamers. Subsequently, second-strand synthesis was carried out to generate a stable
double-stranded structure. These double-stranded cDNA fragments were then end re-
paired, and an ‘A’ base was inserted at the 3′ end. Sequencing adapters were ligated. PCR
amplification was performed and the resulting amplicons were purified using AMPure XP
beads to obtain the final cDNA library. Transcriptome sequencing of the cDNA libraries
from the ck and Pb-exposed groups was performed using an Illumina HiSeq 2000 platform.

2.5. De Novo Assembly and Functional Annotation

Illumina HiSeq sequencing generated raw data (raw reads) and high-quality clean
data were obtained after quality control processes, such as removal of low-quality se-
quences and adapters. The obtained clean reads were assembled de novo using Trinity
software v2.15.1 on the reference transcriptome. TransDecoder software v5.3.0 was used to
predict the coding region sequences and the corresponding amino acid sequences of the
unigenes. To obtain comprehensive gene functional information, the unigene sequences
were compared with the NCBI non-redundant protein/nucleotide sequences (Nr) [32,33],
Swiss-Prot (a manually annotated and reviewed protein sequence database) [34], Protein
family (Pfam) [35], Clusters of Orthologous Groups of proteins (eggNOG) [36], Gene Ontol-
ogy (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) [37] databases using
the BLAST software v2.9.0. This comparison facilitated the annotation of the unigenes with
relevant information.

2.6. Differential Gene Expression and Gene Enrichment Analysis

Bowtie program [38] was used to align the reads obtained from sequencing various
samples with the unigene library. Expression levels were estimated based on the align-
ment results combined with RSEM software v1.3.3 [39]. Gene expression calculations used
fragments per kilobase per million (FPKM) values [40], which can be directly compared be-
tween different samples to assess gene expression differences. DEGSeq software v1.30.0 [41]
was then used to identify genes with differential expression across sample groups. The
filtering process involved the use of IDEG6 software for chi-square tests, and the obtained
p-values were corrected using multiple hypothesis testing (false discovery ratio [FDR]).
Genes with FDR < 0.01 and a fold change in FPKM ratio of 2 or more (|Fold Change| ≥ 2)
between samples were considered as differentially expressed genes.

Subsequently, GOSeq R [42] and KOBAS [43] were used for GO functional enrichment
and KEGG pathway enrichment analyses of DEGs to further investigate their potential
roles. Gene enrichment analysis utilizes biological information databases and statistical
tools to enrich specific genes in known functional biological pathways or modules, thereby
providing a better understanding of gene function from a biological perspective.

2.7. Quantitative Reverse-Transcription PCR (qRT-PCR) Analysis

For the comparison between the 48 h ck and 48 h Pb-exposed groups, 12 DEGs
were randomly selected for qRT-PCR analysis. Primers were designed using the Primer
Premier 5 software (Table S1). Each sample contained three biological replicates. RNA was
extracted and reverse-transcribed into cDNA using the PrimeScript® RT reagent kit with
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gDNA Eraser (Vazyme, Nanjing, China) kit, following the manufacturer’s instructions.
β-Actin was used as the internal reference. The SYBR® Premix Ex TaqTM II kit (TaKaRa,
Kusatsu, Japan) was used and quantitative fluorescence detection was performed using
the Applied Biosystems detection system (Bio-Rad, Hercules, CA, USA). Each experiment
was performed in triplicate. Relative gene expression was determined using the (2–∆∆Ct) Ct
method [44]. Single-factor analysis of variance was conducted using SPSS 20.0 software,
and p < 0.05 indicated statistically significant differences.

3. Results and Discussion
3.1. Determination of Enzyme Activity

Given its current prevalence and harmfulness, lead is considered the second most
hazardous environmental toxin. As shown in Figure 1, there was a general increase in
the activity of the P450 detoxification enzyme. The activity of the GST enzyme showed a
significant increase. Furthermore, the activity of the CarE enzyme was markedly enhanced
compared with the control group. The alterations observed in these biochemical markers
suggest that exposure to lead (Pb) triggered the detoxification mechanisms within the
silkworm, B. mori. Several studies have shown toxic effects of lead on different insects
such as honeybees (A. mellifera) [45], the tobacco cutworm (S. litura) [46], and the fruit fly
(Drosophila melanogaster) [47]. The results show that the midgut of insects has a beneficial
detoxification reaction that boosts their ability to withstand exposure to lead.
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Figure 1. The enzyme activity indicators of P450, GST, and CarE in the midgut of the 48 h control
group and the 48 h Pb treatment group. The activity of detoxifying enzymes under lead (Pb) stress
was demonstrated. The values were significantly different to the control at the same time point when
marked with asterisks (* p < 0.05).

3.2. De Novo Assembly of the Transcriptome

The ck and Pb-exposed groups yielded 54,308,482 and 43,522,228 raw reads, respec-
tively. After filtering out low-quality reads, short sequences, and low-complexity sequences,
51,994,280 and 41,385,924 clean reads were obtained from the ck and Pb-exposed groups,
respectively. The number of clean bases for both groups was 7,679,161,985 and 6,128,133,619,
respectively. The Q30 values for the two groups were 93.72% and 93.78%, respectively. The
G+C content was 51.78% and 50.92% in the ck and Pb-exposed groups, respectively. Trinity
software detected 14,723 transcripts. A total of 11,320 unigenes were identified. Addition-
ally, using the transcripts assembled by Trinity as a reference sequence (ref), the aligned
clean reads were 42,649,323 (82.03%, ck) and 34,592,406 (83.58%, Pb-exposed) (Table S2).
The assembly results showed that 5203 transcripts were within the range of 0–600 bp,
4564 transcripts were within the range of 600–1200 bp, 3474 transcripts were within the
range of 1200–1800 bp, and 8666 transcripts were >1800 bp (Figure 2, Table S3). These find-
ings indicate data of high quality, reliable unigenes, and suitability for annotation analyses.

We used StringTie software v2.2.0 to assemble each sample individually and then
merged them together. Subsequently, we conducted statistical analysis and visualization
on the assembled results.
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3.3. Functional Annotation of Unigenes

To gain a more comprehensive understanding of the molecular functions of these
genes, unigenes were compared using six different databases. The number of unigenes
that were successfully matched with each database was as follows: NR, 16,195 (91.55%);
Swiss-Prot, 10,306 (58.26%); Pfam, 10,950 (61.9%); EggNOG, 15,253 (86.22%); GO, 12,460
(70.44%); and KEGG, 8476 (47.91%) (Table S4).

3.4. Analysis and Identification of Differentially Expressed Genes (DEGs)

DEG-seq was used to analyze all unigenes, with a threshold set at Padjust < 0.001 and
log2 (fold-change) ≥ 1 [48]. A total of 1265 significant DEGs were identified between the
Pb-exposed and ck groups, comprising 907 upregulated and 358 downregulated genes
(Figure 3). In the volcano plot, red, blue, and gray dots represent significantly upregulated
unigenes, significantly downregulated unigenes, and unigenes with no significant differen-
tial expression, respectively. The extent of expression change in upregulated differentially
expressed genes (DEGs) was found to be less pronounced than that in downregulated
DEGs (Figure 2). Our results indicate that this particular gene expression profile could be
associated with exposure to Pb.

3.5. GO Functional Classification Analysis of the DEGs

GO classification is a comprehensive gene function classification system that comprises
three ontologies: biological process (BP), cellular component (CC), and molecular function
(MF). Functional analysis of DEGs was conducted using the Blast2GO software and the GO
database. In this study, 1,265 DEGs were categorized into three primary categories. Figure 4
shows the top 22, 14, and 10 enriched GO terms in the BP, CC, and MF categories, respec-
tively. In the BP category, “cellular process” (661 DEGs), “metabolic process” (537 DEGs),
“biological regulation” (328 DEGs), and “cellular component organization or biogenesis”
(228 DEGs) were the most enriched subcategories. CC included “cell part” (768 DEGs),
“organelle” (481 DEGs), “organelle part” (461 DEGs), “membrane part” (381 DEGs), and
“protein-containing complex” (327 DEGs). In MF, “binding” (617 DEGs), “catalytic ac-
tivity” (515 DEGs), “transporter activity” (131 DEGs), and “structural molecule activity”
(77 DEGs) were predominant. These findings suggested that Pb stimulation in the silkworm
midgut may involve various cellular functions and biological processes, providing valuable
resources for investigating the potential functions of DEGs.
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3.6. KEGG Pathway Analysis of DEGs

KEGG is a bioinformatics database used for gene function analysis, providing valuable
categorization for understanding the complex biological functions of genes [43]. There-
fore, we conducted KEGG pathway annotation to investigate the biological functions and
metabolic pathways of these DEGs between the ck and Pb-exposed groups (Figure 5). The
KOBAS software was used to map all DEGs to terms in the KEGG database and allocate
them to six KEGG biochemical pathways, including “Metabolism”, “Genetic Information
Processing”, “Environmental Information Processing”, “Cellular Processes”, “Organismal
Systems”, and “Human Diseases.” The results revealed that DEGs were most enriched in
“Translation” (79 DEGs), followed by “Environmental adaptation” (74 DEGs), “Transport
and catabolism” (68 DEGs), and “Energy metabolism” (67 DEGs). This suggests that Pb
may affect the digestive and metabolic systems of silkworms.
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Among all the genes with KEGG annotations, 805 DEGs were assigned to 297 KEGG
pathways. A scatter plot of the top 20 enriched pathways with a p-value ≤ 0.05 is shown
in Figure 6. These enriched pathways were broadly categorized into three functional cate-
gories: “Transport and catabolism”, “Carbohydrate metabolism”, and “Digestive system”.
The pathways related to “Transport and catabolism” include “Lysosome” and “Phago-
some”. “Carbohydrate metabolism-related pathways” include “Oxidative phosphoryla-
tion”. Pathways related to the “Digestive system” include “Thermogenesis”, “Retrograde
endocannabinoid signaling”, and “Cardiac muscle contraction” (Figure 6). Among these
pathways, lysosomes were of particular interest because they are the primary degradative
organelles in most eukaryotic cells [49]. They possess an acidic lumen, consisting of ap-
proximately 60 acidic hydrolases that function as a critical intracellular digestive system
and play a crucial role in maintaining cellular homeostasis [50]. Therefore, Pb may affect
individual development by influencing the digestion of midgut nutrition. In recent years,
lysosomes have been recognized as central hubs for cellular metabolism, with significant
cell-signaling regulators located on the lysosomal surface [51].
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3.7. EggNOG Functional Classification of DEGs

EggNOG is a publicly accessible database containing homologous groups of proteins
at different classification levels, each with integrated and summarized functional anno-
tations [52]. EggNOG annotation reveals that “Posttranslational modification, protein
turnover, chaperones (O)” (136 instances) have the highest representation, indicating the
significant biological role of this functional category in the studied organism. It involves
processes such as protein post-translational modifications, protein degradation and fold-
ing, as well as molecular chaperones. Therefore, this result suggests that these biological
processes may be highly active and important in the studied organism. Following this,
“Translation, ribosomal structure and biogenesis (J)” (109 instances) is the second most
represented category, which encompasses functions related to RNA translation, ribosomal
structure, and biogenesis. This indicates that protein synthesis is a crucial component
of organismal survival and function, with these genes likely playing important roles in
maintaining cellular function and life processes.

Additionally, “Carbohydrate transport and metabolism (G)” (97 instances) is rep-
resented, involving functions related to carbohydrate transportation, degradation, and
utilization. This suggests the importance of carbohydrates in metabolism, with these genes
likely playing key roles in maintaining energy balance and life processes. Furthermore,
four DEGs are associated with “Defense mechanisms (V)”. This suggests that these genes
may play important roles in the organism’s defense against external pressures, pathogens,
or other harmful factors. These differentially expressed genes may participate in biological
processes such as immune responses, antioxidant stress responses, and toxin metabolism,
indicating their potential regulatory roles in the organism’s adaptability and survival
capabilities (Figure 7).
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Figure 7. COG annotated classification statistical map of DEGs. The x-axis represents the COG
functional annotation class and the y-axis represents the gene number. A for RNA processing and
modification, B for chromatin structure and dynamics, C for energy production and conversion,
D encompasses cell cycle control, cell division, and chromosome partitioning. Additionally, E pertains
to amino acid transport and metabolism, F to nucleotide transport and metabolism, G to carbohy-
drate transport and metabolism, H to coenzyme transport and metabolism, I to lipid transport and
metabolism, and J to translation, ribosomal structure, and biogenesis.

3.8. Validation of Differentially Expressed Genes Using qRT-PCR

To further validate the reliability of the RNA-seq data, we randomly selected 12 DEGs
related to detoxification and antioxidant defense, including CYP49A1, CYP6K1, CYP6B6,
CYP4C1, CYP4G15, CYP6AB4, GST03, Txn2, CuZn-SOD, HSP70, HSP90, and HSP90B1.
The expression levels of these genes were detected using qRT-PCR. The results showed
that, compared to the ck group, the expression trends of the genes in the Pb-exposed group
were consistent with the transcriptome expression analysis, confirming the reliability of the
RNA sequencing results (Figure 8).
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While the midgut of silkworms is primarily responsible for food digestion and nutrient
absorption, it also metabolizes exogenous toxins, such as toxic plant secondary metabo-
lites and insecticides [53]. Studies have revealed the presence of various detoxification
enzymes in the midgut that play vital roles in various biological processes. Cytochrome
P450 enzymes (CYP), which are widely distributed in insect tissues, particularly in the
midgut, function as Phase I detoxification enzymes that directly interact with numerous
endogenous and exogenous substrates to reduce their toxicity efficiently [54,55]. Guo et al.
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demonstrated the significant role of CYP subfamily genes in the insecticide metabolism and
resistance of locusts, addressing the functional and regulatory mechanisms of the CYP6F
subfamily genes in locusts [56]. Glutathione-S-transferases (GSTs) are key detoxification
enzymes that catalyze the reduction of exogenous and Phase II endogenous substances
using glutathione [57]. Montella et al. [58] highlighted the crucial role of GSTs and glu-
tathione (GSH) in the detoxification of peroxides and oxidized DNA bases, providing a vital
protective mechanism. These detoxification enzymes collaborate in the midgut to ensure
efficient processing of harmful substances from the environment, thereby maintaining
the physiological balance and adaptability of insects. The thioredoxin (TXN) system, an
NADPH+ H + /FAD redox effector, promotes cellular survival by maintaining the inter-
nal balance, bioenergy, detoxification networks, and preventing oxidative stress-related
diseases. Research by Jun Lu et al. [59] suggested that antioxidant functions include DNA
and protein repair, reduction of ribonucleotide reductase, methionine sulfoxide reductase,
and regulatory enzymes, as well as modulation of numerous oxidative stress-sensitive
transcription factors. Superoxide dismutase (SOD) is a ubiquitous enzyme family that cat-
alyzes the dismutation of superoxide anions effectively. A study by Adesina [60] reported
that SOD activity in insects treated with herbal insecticide formulations increased with
the concentration and exposure time. Increased concentrations of active components in all
treated samples stimulated SOD production, resulting in higher dismutation of superoxide
anions (O2−). Heat shock proteins (HSP) are essential molecular chaperones that play a
significant role in insect response to stress stimuli. Wang et al. [61] reported that HSPs
confer thermal or cold resistance to whiteflies (Bemisia tabaci), protecting them from the
adverse effects of temperature conditions, emphasizing the molecular evolutionary charac-
teristics and response mechanisms of HSP genes in whiteflies under temperature stress.
Detoxification enzymes in silkworms include P450, GST, and CarE [31]. As many as 17
P450 enzymes are reported to be highly expressed in the intestine of silkworms, including
CYP4, CYP6, and CYP9, indicating their significant role in metabolizing metal toxins and
under metal stress [62]. Previous studies have shown upregulation of P450 gene expression
in the intestine of silkworms exposed to fenvalerate, indicating their importance in fen-
valerate metabolism. In this study, after 48 hours of lead exposure, P450 enzyme activity
significantly increased, and the transcription levels of genes such as CYP49A1, CYP6K1,
CYP6B6, CYP4C1, CYP4G15, CYP6AB4, GST03, Txn2, CuZn-SOD, HSP70, HSP90, and
HSP90B1 increased upon exposure to lead for 48 hours. These results are consistent with
observations articles, who found increased expression of P450 genes in tobacco cutworms
exposed to lead [63,64]. Additionally, the GST03 gene within the GST family (involved
in xenobiotic degradation and metabolism) was identified and upregulated, consistent
with the increased GST activity observed by Chen et al. in tobacco cutworm larvae after
Pb treatment.

4. Conclusions

In summary, in this study, we analyzed the midgut transcriptome of silkworms fed
with mulberry leaves soaked in C4H6O4Pb·3(H2O) and ddH2O. A total of 11,567 unigenes
were identified and annotated using functional databases such as NR, Swiss-Prot, Pfam,
eggNOG, GO, and KEGG. Among the identified 1265 DEGs, 907 were upregulated, and 358
were downregulated. This study elucidated the transcriptome of silkworms and deepened
our understanding of detoxification-related genes in silkworms. It also provides a new
perspective for understanding the detoxification defense mechanisms of silkworms against
Pb exposure, aiding further research.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ani14121822/s1, Table S1. Primer sequences for qRT-PCR, Table S2. RNA-seq
reads, Table S3. Summary of the assembly of B. mori, Table S4. A summary of unigenes was annotated
in databases.
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