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Simple Summary: This study investigated the challenge of monitoring the activity movement pattern
of dairy cows during the transition period and forecasted the calving day on tropical dairy farms. This
study used activity behavioral data from 298 before-calving and 347 after-calving Holstein Friesian
cows, as well as machine learning models for predicting birth. This study demonstrates that the cows
giving birth for the first time had a shorter rest period and an increased activity pattern. Additionally,
this study found that machine learning models can predict the day of birth. These findings could
help farmers improve management and enhance animal welfare during this critical period.

Abstract: This study examined changes in the activity patterns of tropical dairy cows during the
transition period to assess their potential for predicting calving days. This study used the AfiTag-
II biosensor to monitor activity, rest time, rest per bout, and restlessness ratio in 298 prepartum
and 347 postpartum Holstein Friesian cows across three lactation groups (1, 2, and ≥3). The data
were analyzed using generalized linear mixed models in SPSS, and five machine learning models,
including random forest, decision tree, gradient boosting, Naïve Bayes, and neural networks, were
used to predict the calving day, with their performance evaluated via ROC curves and AUC metrics.
For all lactations, activity levels peak on the calving day, followed by a gradual return to prepartum
levels within two weeks. First-lactation cows displayed the shortest rest duration, with a prepartum
rest time of 568.8 ± 5.4 (mean ± SE), which is significantly lower than higher-lactation animals. The
random forest and gradient boosting displayed an effective performance, achieving AUCs of 85%
and 83%, respectively. These results indicate that temporal changes in activity behavior have the
potential to be a useful indicator for calving day prediction, particularly in tropical climates where
seasonal variations can obscure traditional prepartum indicators.

Keywords: animal welfare; activity behavior; smart biosensor; transitional period; machine learning
algorithm; tropical climate

1. Introduction

Dairy cows’ behavior serves as a valuable window into their well-being, offering
comprehensive insights into their physiological state, health, and even affective states [1,2].
However, conventional methods often rely on subjective human observations, making them
time-consuming, labor-intensive, and prone to inter-observer variability [3]. Addressing
these limitations necessitates an automated, quantifiable, and precise system for dairy
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cow behavior monitoring, particularly for animal health and welfare. Sensing technology
and smart biosensors offer significant potential for continuous, real-time monitoring of
behavioral variations [2,4], reducing workload and veterinary costs while maximizing farm
efficiency and profitability [5].

Several studies on dairy cows’ behavior during the transition period (TP) in temperate
and subtropical climates have been reported [6,7]. The unique climatic characteristics of
the tropics, characterized by high ambient temperatures and humidity [8], substantially
influence behavior and productivity [9]. For instance, heat stress often causes increased
restlessness and altered eating patterns compared to cooler climates [10]. This divergence
underscores the critical need for targeted research in tropical environments to optimize
dairy cow management and productivity under these challenging conditions.

Monitoring dairy cow behavior during the transition period (TP) is vital for identifying
health and reproductive issues. Observing changes in activity, eating, rumination, and
social interactions can signal potential problems [11–15]. In tropical climates, precise
interpretation of these behaviors is essential for effective herd management and enhancing
productivity and reproductive success. Additionally, analyzing movement patterns of dairy
cows during the TP can indicate discomfort or stress, thereby improving management
strategies for tropical dairy farming [16,17].

Machine learning (ML), a subset of artificial intelligence (AI), holds significant poten-
tial for making robust predictions in dairy farm operations by utilizing diverse data sets,
including animal status, environmental factors, and management practices, which improve
adaptability and efficacy [18]. However, the effectiveness of ML algorithms, primarily
developed and tested in temperate and subtropical climates for predicting calving events
through behavioral analysis [16,19], remains largely unproven in tropical settings. These
algorithms, which detect behavioral changes like decreased eating and rumination [20] and
altered activity patterns [16,21], signaling impending calving [22], are crucial for under-
standing health and reproductive issues [23]. Yet, their applicability to tropical conditions,
which may induce different behavioral responses during the TP, is still uncertain.

Our research addresses this crucial gap by comprehensively characterizing the behav-
ioral patterns of dairy cows in Thailand during the TP under unique climatic conditions,
while simultaneously adapting and validating ML algorithms for calving predictions in
tropical environments. This dual approach facilitates a robust evaluation of the algorithms’
efficacy and generalizability within tropical settings, ultimately enabling the development
of accurate and reliable prediction alerts for dairy farmers.

2. Materials and Methods
2.1. Animal, Housing, and Calving Management

Data from 347 Holstein Friesian dairy cows (lactation 1.5 ± 0.75, range 1–4, gestation
length 279 ± 28 days) were collected from Sithichoke Dairy Farm in the Nakhon Ratchasima
Province, Thailand, from July 2021 to March 2023. Within this cohort, 298 cows (189 animals
in lactation No. 1, 69 animals in lactation No. 2, and 40 animals in lactation No. ≥3) had
complete data covering the 14-day prepartum, while 347 (249 animals in lactation No. 1,
57 animals in lactation No. 2, and 41 animals in lactation No. ≥3) animals had complete
data covering the 14-day postpartum.

The climatic conditions in Thailand are characterized as hot and humid, with a mean
temperature of 27 ◦C and a mean relative humidity of 74%. The mean monthly temperature
ranges from 24 ◦C in December to 30 ◦C (the highest temperature) in April. The temperature
humidity index (THI) is lowest in winter (almost mean of 73) and highest in summer (almost
mean of 80) [24]. Dairy cows were managed following standard farm protocols, including
being moved to the calving pen three weeks before the anticipated calving date based on
the last insemination dates and health records. The calving barn was an enclosure with
rubber bedding, located adjacent to the lactating cow barn and within visual range of the
calving area. The bedding was maintained as necessary, and it was thoroughly cleaned
with fresh water following each calving event.
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The dairy cow received a total mixed ration twice daily at 06:00–06:30 and 17:00–
17:30. The description of feed formulation used for TMR, and the chemical composition
of feed analysis is given in Table 1. The barn featured a completely open longitudinal
side with natural sunlight and a dedicated feed bunk. Dairy farm personnel managed
the supplementary artificial light in the barn to ensure adequate daytime illumination for
eating activities and dairy cow behavior monitoring. Clean and fresh water was available
24 h a day.

Table 1. Description of feed formulation and chemical composition of TMR used in study.

Ingredients Inclusion (kg/day)

Soya bean meal 1.1
Napier grass 30

Rice straw 4
Premix 0.14

Molasses 0.2
Selenium 0.08

Total 35.52

Proximate analysis (dry matter basis)

Dry matter% 36.7
Crude protein% 16.7

Crude fat% 2.0
Crude fiber% 27.5

Ash% 26.1

Detergent analysis (dry matter basis)

NEFL 27.7
ADF% 25.03
NDF% 39.26
ADL% 3.29

Cellulose% 21.74
Hemicellulose 14.23

NEF: Energy content (Mcal/kg); ADF: Acid detergent fiber; NDF: Neutral detergent fiber; and ADL: Acid
detergent lignin.

On-site farm staff continuously monitored the calving pens. Dairy cows exhibiting
calving signs (the appearance of a water bag) were closely monitored. If no progress was
observed in calving, a vaginal obstruction examination was performed by the farm manager
and professionally trained dairy farm personnel. Calving events were classified as normal if
animals required slight assistance from one person [25]. Calving events involving multiple
personnel, calf repositioning, or surgical intervention were classified as dystocia [26,27].
Post-parturition, dam–calf contact was permitted for 5 to 10 min to facilitate calf cleaning
and stimulation.

2.2. Definition of Parturition

In this study, the completion of parturition was the target variable for our predictive
machine learning (ML) model, with calf expulsion marking the definitive parturition
time [28]. Dry cows were moved to pre-calving pens three weeks before the expected
parturition date. However, our predictive model was evaluated starting at 14 days before
the onset of parturition. Throughout the study, dairy farm personnel manually recorded
the calving events.

2.3. Data Preparation
Processing Sensor Data

The AfiTag-II biosensor (Afikim Ltd., Kibbutz, Israel) is a 3D accelerometer sensor
designed for real-time monitoring of dairy cows’ postural behavior. This electronic de-
vice detects both dynamic (animal-induced) and static (gravity-induced) acceleration,
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translating physical animal movement into an output waveform [17]. Leveraging triaxial
accelerometer technology, AfiTag-II discerns and classifies postural behavior predicted by
animal activity. Therefore, to assess and monitor behavioral data, a triaxial accelerometer-
equipped sensor encased in plastic housing is secured to the rear leg of each animal. This
allows for the automatic acquisition of postural behavioral metrics such as activity, rest
time, rest per bout, and restlessness ratio. The description of these behavioral metrics
is given below in Table 2. The AfiTag-II sensor’s accuracy in monitoring these metrics
has been validated by previous research [29]. Sensor attachment occurred in the month
preceding each cow’s expected calving, approximately four weeks before expected calving,
to monitor prepartum and postpartum behavioral changes within the one-week adaptation
period preceding data collection. Raw behavioral metrics were transmitted via Wi-Fi to an
office computer, where they were gathered daily and subsequently retrieved manually in
a comma-separated value (CSV) format. These raw data were then subjected to cleaning,
sorting, and further analysis.

Table 2. Description of recorded behavioral metrics.

Behavioral Metrics Description

Activity The cumulative sum of the movement or physical activity displayed by
the dairy cow per day.

Rest time The cumulative duration the dairy cow spends lying down and resting
per day.

Rest per bout A measure of the average duration of continuous period during which
the dairy cow remains lying down.

Restlessness ratio A measure of how much the dairy cow is moving or shifting while it is
lying down.

2.4. Statistical Analysis

Descriptive statistics were performed using SPSS software (version 29.0.1, IBM Corp.,
Armonk, NY, USA). Outliers were identified and removed prior to analysis. Generalized
linear mixed models (GLMMs) were carried out to perform both univariable and multivari-
able analyses. The GLMM was structured to explore the impact of lactation numbers (1, 2,
and ≥3), days surrounding calving (−14 to 14), and the months of sensor measurement
(1–12) on activity patterns of dairy cows. The model accounts for the non-independence of
repeated measurements taken from the same animals by incorporating random effects. The
formulation of the model is given below.

Yijk = β0 + β1 × lactation number (i) + β2 × days surrounding calving (j)
+ β3 × months of sensor measurement (k) + µi + ϵijk

where:
Yijk: activity parameter for the i-th cow on the j-th day related to calving during the

k-th months of measurement;
β0: intercept, representing baseline activity level;
β1, β2, and β3: coefficient for the fixed effects of lactation number, days surrounding

calving, and months of sensor a measurement, respectively;
µi: random effect for the i-th cow, capturing individual variability among cows,

assumed to follow a normal distribution N (0, σ2
µ);

ϵijk: residual error term for the i-th cow on the j-th day during the k-th month, assumed
to follow a normal distribution N (0, σ2).

Separate GLMMs were developed for each dependent variable: activity, rest time, rest
per bout, and restlessness ratio. For univariable analyses, lactation numbers (1, 2, and ≥3),
months of sensor attachment (1–12, indicating month of recording), and days surrounding
calving (−14 to 14 days) were included as independent effects, while cow ID served as a
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random effect. Estimates of the least squares mean and their standard errors were derived
from the predicted values of the univariable model for each lactation number (1, 2, and
≥3), for each month of sensor attachment (1–12), and for days surrounding calving (from
−14 to 14 days). The multivariable analyses included only statistically significant findings
from the univariable analyses. The final multivariable model calculated predicted values
and their 95% confidence intervals, including both upper and lower limits. Model fit was
assessed using residual plots.

To explore significant variations in the predicted values of the final models within and
across lactation numbers, pairwise comparisons were conducted using one-way analysis of
variance (ANOVA) and Tukey’s Honestly Significant Difference (HSD) tests in R Studio
version 4.0.0 [30]. These analyses, tailored for each lactation number, evaluated predicted
values including activity levels, total rest time, duration of rest per bout, and restlessness
ratio. The evaluations took into account factors such as lactation numbers (1, 2, and ≥3),
the period surrounding calving (−14 to 14 days), and the month of sensor attachment
(1–12). For assessing variance among lactation numbers during the calving period (−14
to 14 days), 29 distinct analyses of the predicted values were conducted. Likewise, to
determine differences in lactation numbers across various sensor attachment periods (1–12),
12 individual analyses were performed. The normality of the residual distribution and
the homogeneity of the variance were both evaluated and found to be satisfactory. A
significance threshold of p < 0.05 was set for all tests.

2.5. Development of Calving Prediction Model

To facilitate reproducibility, the machine learning (ML) sample code, cleaned data,
and other supplementary files for predicting calving days are available at the GitHub
repository: https://github.com/AqeelRaza51214 (accessed on 7 June 2024). The ML algo-
rithms, including random forest, decision tree, gradient boosting, Naïve Bayes, and neural
network (multilayer perceptron), were developed to accurately predict the calving day.
Random forest, an ensemble-supervised ML algorithm that is deeply rooted in decision tree
classification (DTC), trains the predictor tree using m bootstrap samples from the training
dataset [31,32]. To generate each predictor, the algorithm employs a random selection of
subset features, thereby breaking down the correlation between features. The decision tree
relies on a collection of decision rules, represented by branches, to classify the terminal
nodes into specific events (calving and non-calving events) [16,33]. Gradient boosting
sequentially integrates with the boosting decision tree to reduce the overfitting error and
enhance the model’s predictive capability [34,35]. In contrast, the Naïve Bayes model works
on Bayesian rules, where each feature holds an independent value, offering a unique and
robust approach for a particular use [23,32,36]. On the other hand, the neural network (mul-
tilayer perceptron) uses a vector of real value as an input value, an output layer, multiple
hidden layers, and an activation function to understand the complex nonlinear relationship
from the training dataset [16,32].

An 80% subset of the observations, designated as the training dataset, was utilized
to develop predictive models. The remaining 20% of the data was used to evaluate the
performance of these models. Evaluation metrics such as sensitivity, specificity, positive
predictive values (PPVs), negative predictive values (NPVs), accuracy score, and F2 score
were used to evaluate model performance. Additionally, the area under the receiver
operating characteristic (ROC) curve, which represents the probability of a model ranking
a randomly chosen true positive event higher than a randomly chosen negative event, was
used to assess each model’s performance. The ROC curve graphically depicts the true
positive rate (TPR) against the false positive rate (FPR) at varying threshold levels.

To predict the calving day (day 0), six features were extracted from postural behavioral
data: activity, rest time, rest per bout, restlessness ratio, month of sensor attachment (1–12,
record month), and lactation No. (1, 2, and ≥3). A Shapley Additive Explanations (SHAP)
model was used to identify the most important features for predicting calving events.

https://github.com/AqeelRaza51214
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2.6. Programming Packages

Data cleaning and imputation of missing values were performed using Python 3.12.2
(http://www.python.org accessed on 7 June 2024) with NumPy [37], Pandas [38], and Scikit-
learn [37] add-on packages to develop and evaluate the aforementioned ML algorithms.
Jupyter notebook was used as the code editor for all analyses, and the Matplotlib and
Seaborn libraries of Python v3.12.2 and Microsoft Excel (version 2023) [39] were used for
data visualization [40,41].

3. Results
3.1. Effect of Lactation Number on Behavior around Calving

Prepartum data were available for 298 dairy cows, of which 63.2% (n = 189) were in
lactation No. 1, 23.2% (n = 69) were in lactation No. 2, and 13.4% (n = 40) were in lactation
No. ≥3. Postpartum data were available for 347 lactations, of which 71.8% (n = 249) were in
lactation No. 1, 16.4% (n = 57) were in lactation No. 2, and 11.8% (n = 41) were in lactation
No. ≥3.

In the univariable analysis presented in Table 1, a significant association was observed
between lactation groups and the behavioral patterns of dairy cows. This relationship was
evident through marked differences in activity levels, total rest time, duration of rest per
bout, and the restlessness ratio among various lactation groups. The differences reached
statistical significance, with a threshold set at p ≤ 0.05. Animals in lactation No. 1 exhibited
the highest mean activity levels (227.2 ± 2.8 min/day), which were significantly greater than
that of lactation No. 2 (207.4 ± 5.0 min/day) and lactation No. ≥3 (206.8 ± 6.6 min/day,
Table 1). Rest time followed a similar pattern, with animals in lactation No. 2 dedicating
most of their time to resting (681.6 ± 9.4 min/day), followed by animals in lactation No.
≥3 (660.7 ± 12.6 min/day), and lactation No. 1 dairy cows (568.8 ± 54.4 min/day). These
differences in rest time between lactation groups were also highly significant (p ≤ 0.05).

The mean rest per bout demonstrates a clear trend across lactation groups, increas-
ing progressively with lactation numbers. Animals in lactation No. ≥3 had the longest
average rest per bout (79.3 ± 2.4 min/day), followed by animals in lactation No. 2
(74.0 ± 1.8 min/day) and lactation No. 1 cows (65.7 ± 1.0 min/day, Table 1). Finally,
the restlessness ratio mirrored activity patterns, with animals in lactation No. 1 exhibiting
the highest restlessness ratio (4.1 ± 0.1), indicating greater discomfort than lactation No.
2 (2.8 ± 0.2) and lactation No. ≥3 dairy cows (2.9 ± 0.2). These findings reveal a strong
association between lactation groups and postural behavior in dairy cows.

Animals in lactation No. 1 displayed increased activity and discomfort, along with a
lowered rest duration and shorter resting bouts. Conversely, animals in lactation No. 2 and
lactation No. ≥3 exhibited a shift toward reduced activity patterns and restlessness ratios
while dedicating more time to resting and engaging in longer resting bouts.

3.2. Periparturient Activity Changes across Lactation Groups in Dairy Cows

Figures 1–4 show significant variations in activity levels, rest time, rest per bout, and
restlessness ratio during the days surrounding calving, encompassing a 14-day period
before and after the parturition event. On the actual day of calving, all measured activity
parameters underwent marked changes. This pattern indicates that the labor stage leading
up to calving has a strong behavioral impact.

Activity levels around calving exhibited dynamic changes, as shown in Figure 1. In the
fortnight leading up to parturition (−14 to −1 days), the activity level remained relatively
stable across all lactation groups. All groups experienced a significant increase in activity
levels on the day before calving, reaching a peak on the day following parturition (day 1).
First-lactation dairy cows (lactation No. 1) displayed the highest peak in activity levels
(340.7 ± 7.8 min/day), significantly surpassing those of lactation No. 2 (329.4 ± 18.6)
and lactation No. ≥3 (322.9 ± 18.1 min/day). This suggests a higher level of agitation in
first-lactation dairy cows compared to those with more maternal experience. All lactation
groups experienced a gradual decline in activity postpartum, returning to their pre-calving

http://www.python.org
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state within two weeks. This return to baseline (195.9 ± 3.8 min/day for lactation No. 1,
184.31 ± 8.0 min/day for lactation No. 2, and 179.5 ± 10.0 min/day for lactation No. ≥3)
illustrates the dairy cow’s adaptation to the physical and behavioral shifts following calving.
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Figure 1. This figure depicts the estimated mean values with the standard error (SE) for prepartum
and postpartum activity (minutes/day) for three lactation groups (1, 2, and ≥3). The estimated means
were derived from predicted values obtained through a multivariable generalized linear mixed model
for 14 days pre- and postpartum. Capital letters indicate significant differences between groups, while
lowercase letters denote significant differences within groups, as determined by separate Tukey’s
Honestly Significant Difference (HSD) tests. Activity (minutes/day) for each lactation group is
color-coordinated (blue: lactation No. 1, green: lactation No. 2, and red: lactation No. ≥3). Data were
collected from dairy cows equipped with an AfiTag-II biosensor (Afikim Ltd., Kibbtuz, Afikim, Israel).

Figure 2 shows a gradual decline in rest time for all dairy cows as parturition ap-
proached, starting from two weeks before calving (−14 to −1 days). On the day of calving,
there was a significant difference between the groups. Animals in their first lactation had
much shorter rest times (621.8 ± 17.0 min/day) than those in their second (709.5 ± 38.8
min/day) and third or greater (705.9 ± 43.0 min/day) lactation, with significance levels of
p ≤ 0.05. This suggests a link between the lactation number and pre-parturition behavioral
patterns.

Following parturition, all lactation groups showed an increase in rest time, yet these
values remained slightly lower than those observed before calving, potentially indicative
of postpartum adjustments and the initiation of milking routines. The rest times two weeks
(14 days) after calving were 526.9 ± 9.1 min/day for dairy cows in their first lactation,
618.0 ± 19.0 min/day in their second lactation, and 619.0 ± 25.6 min/day for dairy cows
in their third or subsequent lactation. This was in contrast to their longer rest times of two
weeks (day −14) before calving, which were 688.9 ± 12.0 min/day, 781.4 ± 16.2 min/day,
and 779.6 ± 23.2 min/day, respectively, as shown in Figure 2. This decrease in rest time after
calving, despite a general trend towards recovery, may reflect the demands of the milking
process and the associated physiological and behavioral changes in the postpartum period.
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Figure 2. This figure demonstrates the estimated mean values with the standard error (SE) for prepar-
tum and postpartum rest time (minutes/day) for three lactation groups (1, 2, and ≥3). The estimated
means were derived from predicted values obtained through a multivariable generalized linear
mixed model for 14 days prepartum and postpartum. Capital letters show significant differences
between groups, while lowercase letters denote significant differences within groups, as determined
by a separate Tukey’s Honestly Significant Difference (HSD) tests. Rest time (minutes/day) for each
lactation group is color-coordinated (blue: lactation No. 1, green: lactation No. 2, and red: lactation
No. ≥3). Data were collected from cows equipped with an AfiTag-II biosensor (Afikim Ltd., Kibbtuz,
Afikim, Israel).

Rest per bout patterns around calving, as illustrated in Figure 3, revealed a significant
decline leading up to the calving event, reaching the lowest values on the day of calving.
Specifically, animals in lactation No. 1 had a rest per bout of 58.7 ± 0.9 min/day, while
those in lactation No. 2 had 66.3 ± 2.1 min/day, and lactation No. ≥3 had the longest bouts
at 74.6 ± 2.7 min/day. Notably, in all days surrounding calving, both pre- and postpartum,
dairy cows in lactation No. ≥3 consistently exhibited the longest rest bouts than those in
lactation No. 2, which in turn were longer than those in lactation No. 1.
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Figure 3. This figure shows the estimated mean values with the standard error (SE) for prepartum
and postpartum rest per bout (minutes/day) for three lactation groups (1, 2, and ≥3). The estimated
means were extracted from predicted values obtained through a multivariable generalized linear
mixed model for 14 days prepartum and postpartum. Capital letters indicate significant differences
between groups, while lowercase letters denote significant differences within groups, as determined
by separate Tukey’s Honestly Significant Difference (HSD) tests. Rest per bout (minutes/day) for
each lactation group is color-coordinated (blue: lactation No. 1, green: lactation No. 2, and red:
lactation No. ≥3). Data were collected from dairy cows equipped with an AfiTag-II biosensor (Afikim
Ltd., Kibbtuz, Afikim, Israel).

Post-calving, all groups saw an increase in rest per bout, with lactation No. ≥3
exceeding pre-calving levels within a week and lactation No. 1 and 2 approaching their
respective pre-calving levels. Importantly, after calving and the onset of milking, rest time
did not revert to exact pre-calving figures, indicating a possible prolonged adjustment phase
associated with the commencement of lactation and acclimation to the new milking regime.
This observation highlights the lasting impact of calving on cow behavior and the recovery
from associated stress, providing valuable insight into their postpartum adaptation.

The restlessness ratio, which measures dairy cows’ restlessness and discomfort, dis-
played noteworthy changes surrounding parturition, as detailed in Figure 4. The restless-
ness ratio of all lactation groups remained stable until two days before calving, when it
started to increase. On the calving day, the first-lactation dairy cows exhibited a significant
increase in their restlessness ratio, reaching 5.6 ± 0.2, markedly higher than lactation No. 2
and lactation No. ≥3, which show ratios of 4.7 ± 0.4 and 4.6 ± 0.4, respectively (p ≤ 0.05).
This suggests that first-lactation dairy cows exhibit more pre-calving restlessness than more
experienced cows.
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Figure 4. This figure illustrates the estimated mean values with the standard error (SE) for prepartum
and postpartum restlessness ratios for three lactation groups (1, 2, and ≥3). The estimated means
were generated from predicted values obtained through a multivariable generalized linear mixed
model for 14 days, pre- and postpartum. Capital letters show significant differences between groups,
while lowercase letters denote significant differences within groups, as determined by separate
Tukey’s Honestly Significant Difference (HSD) tests. The restlessness ratio for each lactation group is
color-coordinated (blue: lactation No. 1, green: lactation No. 2, and red: lactation No. ≥3). Data were
collected from dairy cows equipped with an AfiTag-II biosensor (Afikim Ltd., Kibbtuz, Afikim, Israel).

Following parturition, the restlessness ratio decreased, but it did not revert to the lower
pre-calving levels within the two-week post-calving period. Instead, the restlessness ratio
exhibited high values across all lactation groups (3.8 ± 0.2) for lactation No. 1, 2.8 ± 0.1 for
lactation No. 2, and 2.7 ± 0.2 for lactation No. ≥3. This suggests that dairy cows are still
very restless after calving, possibly because of the new demands of lactation and milking.

3.3. Lactation Groups and Temporal Dynamics Influence Activity Patterns

In the multivariable analysis, an effect showing significance at a level of p ≤ 0.05
was detected between lactation groups (1, 2, and ≥3) and measurement months (1–12),
influencing various activity parameters such as activity levels, rest duration, rest per bout,
and restlessness ratio (Table 3).
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Table 3. Multivariable analysis results of behavioral differences of activity, rest time, rest per bout, and restlessness ratio using generalized linear mixed models in
relation to lactation numbers (1, 2, and ≥3), months of sensor measurement (1–12), and days surrounding calving (−14 to 14) with cow ID as a random effect.

Independent
Variables Activity (Minutes/Day) Rest Time (Minutes/Day) Rest per Bout (Minutes/Day) Restlessness Ratio

β ± SE p-Value 95% CI β ± SE p-
Value 95% CI β ± SE p-

Value 95% CI β ± SE p-
Value 95% CI

Lower Upper Lower Upper Lower Upper Lower Upper

Intercept 2017 ± 8.2 <0.0 185.7 217.7 641.5 ± 16.0 <0.0 610.2 672.8 77.7 ± 2.8 <0.0 72.1 83.3 2.9 ± 0.3 <0.0 2.3 3.5
Lact. 1 12.1± 7.2 <0.0 −2.0 26.2 −71.7 ± 13.7 <0.0 −98.5 −45.0 −9.1 ± 2.5 <0.0 −14.0 −4.2 0.9 ± 0.2 <0.0 0.5 1.3
Lact. 2 2.7 ± 7.7 0.7 −124 17.7 4.4 ± 14.7 0.8 −24.5 33.2 −5.4 ± 2.7 <0.0 −10.6 −0.2 0.1 ± 0.2 0.8 −0.4 0.5

Lact. ≥ 3 0 b - - - 0 b - - - 0 b - - - 0 b - - -
January −6.5 ± 5.0 0.2 −16.4 3.4 −30.2 ± 10.2 <0.0 −50.1 −10.2 −5.2 ± 1.8 <0.0 −8.7 −1.7 0.1 ± 0.2 0.6 −0.3 0.5

February −29.6 ± 5.7 <0.0 −40.8 −18.5 −18.1 ± 11.4 0.1 −40.4 4.2 −10.6 ± 2.0 <0.0 −14.5 −6.7 −0.5 ± 0.2 <0.0 −1.0 −0.1
March −15.5 ± 6.3 <0.0 −27.9 −3.1 −45.8 ± 12.6 <0.0 −70.6 −21.1 −14.1 ± 2.2 <0.0 −18.4 −9.7 −0.0 ± 0.2 1.0 −0.5 0.5
April −16.3 ± 6.6 <0.0 −29.3 −3.2 −33.6 ± 13.1 <0.0 −59.4 −7.9 −11.3 ± 2.3 <0.0 −15.8 −6.7 −0.1 ± 0.2 0.6 −0.6 0.4
May −6.4 ± 6.8 0.4 −19.8 7.0 −58.3 ± 13.4 <0.0 −84.7 −32.0 −15.2 ± 2.4 <0.0 −19.9 −10.5 0.2 ± 0.3 0.4 −0.3 0.7
June −9.6 ± 7.8 0.2 −24.8 5.6 −52.3 ± 15.3 <0.0 −82.3 −22.3 −23.4 ± 2.7 <0.0 −28.7 −18.1 0.6 ± 0.3 0.1 −0.1 1.0
July −51.7 ± 8.8 <0.0 −69.0 −34.5 −57.2 ± 17.5 <0.0 −91.5 −23.0 −18.7 ± 3.1 <0.0 −24.7 −12.6 −0.6 ± 0.3 0.1 −1.2 0.1

August −39.6 ± 7.5 <0.0 −54.3 −24.9 −46.2 ± 14.9 <0.0 −75.4 −17.1 −13.8 ± 2.6 <0.0 −19.0 −8.7 −0.3 ± 0.3 0.3 −0.8 0.3
September −28.4 ± 6.8 <0.0 −41.9 −15.2 −48.1 ± 13.5 <0.0 −74.5 −21.8 −1.9 ± 2.4 0.4 −6.6 2.7 0.0 ± 0.3 1.0 −0.5 0.5

October −29.3 ± 5.7 <0.0 −40.5 −18.1 −61.1 ± 11.5 <0.0 −83.7 −38.6 4.0 ± 2.1 <0.0 0.1 8.0 −0.1 ± 0.23 0.7 −0.6 0.4
November −23.1 ± 4.5 <0.0 −32.0 −14.2 −19.8 ± 9.2 <0.0 −37.9 −1.7 −5.8 ± 1.6 <0.0 −8.9 −2.6 −0.3 ± 0.2 0.2 −0.7 0.1
December 0 b - - - 0 b - - - 0 b - - - 0 b - - -
Day −14 24.3 ± 5.5 <0.0 13.8 34.7 164.6 ± 11.0 <0.0 142.9 186.3 13.2 ± 1.9 <0.0 9.5 16.9 −1.0 ± 0.3 <0.0 −1.5 −0.5
Day −13 −4.8 ± 5.3 0.4 −15.2 5.7 128.7 ± 11.0 <0.0 107.1 150.2 11.3 ± 1.9 <0.0 7.6 15.0 −1.1 ± 0.3 <0.0 −1.6 −0.6
Day −12 −5.7 ± 5.3 0.3 −16.1 4.7 121.3 ± 11.0 <0.0 99.8 142.8 12.0 ± 1.9 <0.0 8.4 15.7 −1.0 ± 0.3 <0.0 −1.5 −0.6
Day −11 −4.5 ± 5.3 0.4 −14.9 5.9 116.4 ± 11.0 <0.0 94.9 137.9 9.8 ± 1.9 <0.0 6.1 13.5 −1.0 ± 0.3 <0.0 −1.5 −0.6
Day −10 −3.6 ± 5.3 0.5 −14.0 6.8 121.9 ± 11.0. <0.0 100.4 143.4 9.7 ± 1.9 <0.0 6.0 13.4 −1.1 ± 0.3 <0.0 −1.6 −0.6
Day −9 −8.4 ± 5.3 0.1 −18.8 2.0 124.1 ± 11.0 <0.0 102.6 145.6 8.7 ± 1.9 <0.0 5.0 12.4 −1.1 ± 0.3 <0.0 −1.6 −0.6
Day −8 −7.0 ± 5.3 0.2 −17.4 3.4 123.2 ± 11.0 <0.0 101.7 144.7 10.2 ± 1.9 <0.0 6.5 13.9 −1.1 ± 0.3 <0.0 −1.6 −0.6
Day −7 −9.6 ± 5.3 0.1 −19.9 0.8 120.1 ± 11.0 <0.0 98.6 141.6 8.9 ± 1.9 <0.0 5.2 12.6 −1.1 ± 0.3 <0.0 −1.6 −0.6
Day −6 −1.7 ± 5.3 0.8 −12.0 8.7 107.6 ± 11.0 <0.0 86.2 129.1 7.9 ± 1.9 <0.0 4.2 11.6 −0.9 ± 0.3 <0.0 −1.4 −0.4
Day −5 −4.2 ± 5.3 0.4 −14.5 6.2 119.2 ± 11.0 <0.0 97.7 140.6 7.7 ± 1.9 <0.0 4.0 11.4 −0.9 ± 0.3 <0.0 −1.4 −0.5
Day −4 1.3 ± 5.3 0.8 −9.0 11.7 96.8 ± 10.9 <0.0 75.4 118.3 4.6 ± 1.9 <0.0 0.9 8.3 −0.8 ± 0.3 <0.0 −1.3 −0.3
Day −3 2.0 ± 5.3 0.7 −8.4 12.3 88.3 ± 11.0 <0.0 66.8 109.8 4.8 ± 1.9 <0.0 1.2 8.5 −0.6 ± 0.3 <0.0 −1.1 −0.1
Day −2 7.6 ± 5.3 0.2 −2.8 17.9 86.7 ± 11.0 <0.0 65.2 108.2 5.7 ± 1.9 <0.0 2.0 9.4 −0.5 ± 0.3 <0.0 −1.0 −0.0
Day −1 25.1 ± 5.3 <0.0 14.7 35.5 104.1 ± 11.0 <0.0 82.5 125.6 2.3 ± 1.9 0.2 −1.4 6.0 −0.2 ± 0.3 0.4 −0.7 0.3
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Table 3. Cont.

Independent
Variables Activity (Minutes/Day) Rest Time (Minutes/Day) Rest per Bout (Minutes/Day) Restlessness Ratio

β ± SE p-Value 95% CI β ± SE p-
Value 95% CI β ± SE p-

Value 95% CI β ± SE p-
Value 95% CI

Lower Upper Lower Upper Lower Upper Lower Upper

Day 0 111.0 ± 5.0 <0.0 101.2 120.8 94.5 ± 10.4 <0.0 74.2 114.8 0.2 ± 1.8 0.9 −3.3 3.7 1.8 ± 0.2 <0.0 1.4 2.3
Day 1 146.3 ± 5.1 <0.0 136.4 156.3 −54.1 ± 10.5 <0.0 −74.6 −33.5 7.2 ± 1.8 <0.0 3.7 10.7 4.1 ± 0.2 <0.0 3.7 4.6
Day 2 130.1 ± 5.1 <0.0 120.2 140.0 −51.5 ± 10.5 <0.0 −72.0 −31.0 7.8 ± 1.8 <0.0 4.3 11.3 3.5 ± 0.2 <0.0 3.1 4.0
Day 3 96.7 ± 5.1 <0.0 86.8 106.6 −21.2 ± 10.4 <0.0 −41.7 −0.8 12.4 ± 1.8 <0.0 8.9 15.9 2.0 ± 0.2 <0.0 1.6 2.5
Day 4 66.0 ± 5.0 <0.0 56.1 75.9 −0.0 ± 10.4 1.0 −20.5 20.5 12.4 ± 1.8 <0.0 8.8 15.9 1.1 ± 0.2 <0.0 0.6 1.6
Day 5 39.6 ± 5.0 <0.0 29.7 49.5 3.7 ± 10.4 0.7 −16.8 24.1 13.3 ± 1.8 <0.0 9.7 16.8 0.6 ± 0.2 <0.0 0.1 1.0
Day 6 24.3 ± 5.0 <0.0 14.4 34.2 −11.3 ± 10.4 0.3 −31.7 9.2 11.1 ± 1.8 <0.0 7.6 14.6 0.5 ± 0.2 <0.0 0.0 1.0
Day 7 24.1 ± 5.0 <0.0 14.2 34.0 −15.1 ± 10.4 0.1 −35.6 5.3 8.4 ± 1.8 <0.0 4.9 12.0 0.5 ± 0.2 <0.0 0.1 1.0
Day 8 23.7 ± 5.0 <0.0 13.8 33.5 −11.3 ± 10.4 0.3 −31.8 9.1 7.6 ± 1.8 <0.0 4.1 11.1 0.5 ± 0.2 <0.0 0.0 1.0
Day 9 28.0 ± 5.0 <0.0 18.1 37.9 −14.5 ± 10.4 0.2 −34.9 6.0 7.2 ± 1.8 <0.0 3.7 10.8 0.6 ± 0.2 <0.0 0.1 1.0

Day 10 21.6 ± 5.0 <0.0 11.8 31.5 −5.3 ± 10.4 0.6 −25.8 15.1 5.7 ± 1.8 <0.0 2.2 9.2 0.3 ± 0.2 0.3 −0.2 0.7
Day 11 20.7 ± 5.0 <0.0 10.8 30.6 −4.7 ± 10.4 0.6 −25.2 15.7 1.8 ± 1.8 0.3 −1.7 5.3 0.5 ± 0.2 <0.0 0.0 1.0
Day 12 9.4 ± 5.0 0.1 −0.5 19.3 0.3 ± 10.4 1.0 −20.2 20.7 1.6 ± 1.8 0.4 −1.9 5.2 0.6 ± 0.2 <0.0 0.2 1.1
Day 13 10.1 ± 5.0 <0.0 0.2 20.0 3.0 ± 10.4 0.8 −17.4 23.5 2.5 ± 1.8 0.2 −1.0 6.0 0.1 ± 0.2 0.6 −0.4 0.6
Day 14 0 b - - - 0 b - - - 0 b - - - 0 b - - -

b: This coefficient is set to zero and used as a reference for comparison with other groups, as it is redundant in the analysis.
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The present study recorded these data daily and combined pre- and postpartum data
to analyze these data monthly for a year. Figures 5–8 illustrate the seasonal behavioral
changes in dairy cows across different lactation groups. The data for animals in lactation
No. ≥3 in the month of April are missing. Lowercase letters on activity bars indicate
significant monthly variations within lactation groups, while capital letters mark significant
differences between lactation groups within the same month.

Throughout the year, dairy cows demonstrated marked variations in their activity
levels. There was a significant increase in activity observed in June, with average activities
recorded at 269 ± 5.9 min per day for first-lactation dairy cows, 325 ± 16.7 min per day
for second-lactation dairy cows, and 241 ± 14.9 min per day for those in their third or
subsequent lactations. These figures represent a substantial escalation compared to activity
levels documented in other months.

For dairy cows in their second lactation, a distinct reduction in activity was noted in
April, with an average activity of 165 ± 8.5 min per day. In contrast, dairy cows in their
third or subsequent lactations experienced their lowest activity in July, with an average of
156 ± 4.9 min per day. This was in stark contrast to the decline in activity observed in first-
lactation dairy cows during February, when activity fell to 199 ± 3.1 min per day. In June,
second-lactation dairy cows showed a significant increase in activity, surpassing both the
first-lactation and the third- and higher-lactation dairy cows. However, in not all months
did the activity levels reach statistical significance in comparison between lactation groups.
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Figure 5. This figure shows monthly variations in the estimated mean values with standard error
(SE) for prepartum and postpartum activity (minutes/day) across three lactation groups (1, 2, and
≥3) in dairy cows. The estimated means were derived from predicted values obtained through a
multivariable generalized linear mixed model for months of measurement (1–12). Capital letters
indicate significant differences between groups, while lowercase letters denote significant differences
within groups, as determined by separate Tukey’s Honestly Significant Difference (HSD) tests.
Data were collected from dairy cows equipped with an AfiTag-II biosensor (Afikim Ltd., Kibbutz,
Afikim, Israel).
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The present study meticulously recorded rest duration each month over a complete
annual cycle, stratified by lactation numbers and quantified in minutes per day, as shown
in Figure 6. The analysis revealed distinct fluctuations in rest duration throughout the year.
Specifically, the shortest rest duration for dairy cows in their first and second lactations
occurred in June, averaging 527 ± 8.7 and 534 ± 18.5 min per day, respectively. In stark
contrast, the longest rest durations were observed in January for first-lactation dairy cows,
with an average of 594 ± 7.5 min per day, and in April for second-lactation dairy cows, with
an average of 749 ± 20.5 min per day. Third-lactation dairy cows, or those in subsequent
lactations, displayed significantly longer rest durations over several months, with the
longest durations occurring in May, averaging 987 ± 12.5 min per day.

This pattern illustrates a synchronized behavioral trend among first- and second-
lactation dairy cows, with the shortest rest period consistently seen in June. However, this
trend was not as pronounced in third- or higher-lactation dairy cows, who did not show
the same extent of reduction in rest duration in June, implying potential behavioral or
physiological adaptations associated with more advanced lactation stages.
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Figure 6. This figure shows monthly variations in the estimated mean values, along with the standard
error (SE) for prepartum and postpartum rest time (minutes/day) in dairy cows with different
lactation numbers (1, 2, and ≥3). The estimated means were derived from predicted values obtained
through a multivariable generalized linear mixed model for months of measurement (1–12). Capital
letters indicate significant differences between groups, while lowercase letters denote significant
differences within groups, as determined by separate Tukey’s Honestly Significant Difference (HSD)
tests. Data were collected from dairy cows equipped with an AfiTag-II biosensor (Afikim Ltd.,
Kibbutz, Afikim, Israel).

Figure 7 details the monitoring of rest per bout, a measure of the average duration
dairy cows spend resting during each lying event, across the lactation groups throughout
the year. Over the year, first-lactation animals experienced a decrease in rest per bout
heading into June, bottoming out at 54 ± 1.0 min per day. Animals in lactation No. 2
displayed a similar pattern, with the shortest average rest per bout occurring in July, at
49 ± 2.6 min per day. Both groups saw an increase as the year progressed, with rest per
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bout duration peaking in October at 85 ± 1.8 min per day for first-lactation dairy cows and
88 ± 2.1 min per day for second-lactation dairy cows.

Animals in their third or subsequent lactations also showed this seasonal trend, with
the least amount of rest per bout observed in June. As with the first two lactation groups,
these cows exhibited an increase in rest per bout as the year advanced, culminating in the
highest average in October, similar to their counterparts in earlier lactations.
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Figure 7. This figure illustrates monthly variations in the estimated mean values along with the
standard error (SE) for prepartum and postpartum rest per bout (minutes/day) in dairy cows with
different lactation numbers (1, 2, and ≥3). The estimated means were generated from predicted
values obtained through a multivariable generalized linear mixed model for months of measurements
(1–12). Capital letters denote significant differences between groups, while lowercase letters indicate
significant differences within groups, as determined by separate Tukey’s Honestly Significant Differ-
ence (HSD) tests. Data were collected from dairy cows equipped with an AfiTag-II biosensor (Afikim
Ltd., Kibbutz, Afikim, Israel).

The current study closely monitored the restlessness ratio, a measure of rest-related
discomfort or stress, for dairy cows across three lactation groups throughout the year, as
shown in Figure 8. First-lactation dairy cows consistently demonstrated a higher restless-
ness ratio each month when compared to dairy cows in the second and third, or higher,
lactation groups. This persistent elevation peaked, notably in June, with younger cows
exhibiting a restlessness ratio of 5.2 ± 0.2. In June, second-lactation cows experienced a
similar peak, albeit slightly higher, with a restlessness ratio of 5.2 ± 0.3.

In stark contrast, cows in their third or subsequent lactations experienced their lowest
level of restlessness in May, with a ratio of 0.9 ± 0.2. This lower restlessness ratio sug-
gests that more mature cows may exhibit less rest-related stress or discomfort during this
time, which may imply greater adaptability or a different set of needs that influence their
behavior.
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Figure 8. This figure depicts monthly variations in the estimated mean values along with the
standard error (SE) for the pre- and postpartum restlessness ratio in dairy cows with different
lactation numbers (1, 2, and ≥3). The estimated means were derived from predicted values generated
through a multivariable generalized linear mixed model for months of measurements (1–12). Capital
letters represent significant differences between groups, while lowercase letters indicate significant
differences within groups, as determined by separate Tukey’s Honestly Significant Difference (HSD)
tests. Data were collected from dairy cows equipped with an AfiTag-II biosensor (Afikim Ltd.,
Kibbutz, Afikim, Israel).

The analysis of dairy cows’ behavior across different lactation groups revealed that
activity levels peak in June for all groups. Rest duration fluctuates seasonally, with all
groups showing reduced rest per bout around mid-year and increased duration in rest per
bout in October. First-lactation dairy cows displayed a consistently higher restlessness ratio
throughout the year, suggesting higher stress sensitivity.

3.4. Machine Learning Model Evaluation

Table 4 presents the performance of five developed machine learning (ML) models
for calving day prediction. The neural network (multilayer perceptron) had the highest
specificity (98.9%), showing that it has a lot of potential for accurately detecting non-calving
events. However, its sensitivity (40.0%) and F2 score (43.8%) suggest a potential risk of
missing true calving events, as well as a less-balanced performance compared to other
models. Random forest demonstrated a higher specificity (98.8%), effectively identifying
false positive non-calving events. However, this comes at the cost of lowered sensitivity
(40.0%) in capturing true calving events. The F2 score (43.7%) and accuracy score (95.2%)
mark this trade-off balance. The decision tree and Naïve Bayes had the highest sensitivity
(49.1% and 49.1%, respectively), which indicates these models were best at predicting
calving days. However, their specificity was slightly lower (94.1% and 95.6%, respectively),
and their F2 scores were slightly higher (45.6% and 47.5%). Meanwhile, gradient boosting
had comparable specificity (98.8%) with random forest and neural network (multilayer
perceptron), but they yielded the lowest sensitivity (34.6%) and F2 score (37.4%).
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Table 4. Classification machine learning models’ predictions of calving day using daily behavioral data for 14 days prepartum in dairy cows 1.

Machine Learning Models Sensitivity (%) Specificity (%) Positive Predictive Values (%) Negative Predictive Value (%) Accuracy Score (%) F2 Score (%)

Random forest 40.0 98.8 68.8 96.2 95.2 43.7
Decision tree 49.1 94.1 35.5 96.6 91.4 45.6

Gradient boosting 34.6 98.8 55.9 95.8 94.3 37.4
Naïve Bayes 49.1 95.6 42.1 96.6 92.7 47.5

Neural network (multilayer perceptron) 40.0 98.9 71.0 96.2 95.3 43.8
1 Machine learning models were developed randomly, allocating 80% of the data, and tested on the remaining 20% of the data (n = 298 calving). Sensitivity = TP/TP +
FN; specificity = TN/TN + FN; positive predictive value = TP/TP + FP; negative predictive value = TN/TN + FN; accuracy score = TP + TN/Total predictions; F2 score =
(1+ 22) × Precision × Sensitivity/(22 × Precision + Sensitivity); and precision = TP/(TP + FP). Here, TP = true positive, TN = true negative, FP = false positive, and FN = false negative.
The AfiTag-II biosensor (Afikim Ltd., Kibbutz, Afikim, Israel) was used to capture and classify postural behavioral metrics such as activity (minutes/day), rest time (minutes/day), rest
per bout (minutes/day), and restlessness ratio. These variables were used to develop machine learning models.
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The receiver operating characteristics (ROCs) curve (Figure 9) showed that random
forest and gradient boosting were the best at predicting calving day, with AUC values of
85% and 83%, respectively. Naïve Bayes and neural networks (multilayer perceptron) also
demonstrated good predictive power, with AUC values of 82% and 81%, respectively. The
decision tree model exhibited the lowest predictive capability, with an AUC value of 71%.
Interestingly, models with higher F2 scores generally exhibited higher AUCs, suggesting
their effectiveness in both identifying true calving events and minimizing false-positive
events.
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Figure 9. Receiver operating characteristic (ROC) curve for calving days prediction using classification
machine learning algorithms in the test data set (80% of observations).

Using a Shapley Additive Explanation (SHAP) model, the present study evaluated the
importance of features for calving day predictions in ML models. This model leverages
concepts from game theory [42] and integrates seamlessly with the random forest regressor
model in the present study [43] to illustrate the contribution of each input variable to the
prediction of calving day models. Figure 10 presents the mean absolute SHAP values
for each feature. Red dots on the higher end of the axis indicate a higher contribution
toward the model’s predictions, while blue dots present on the lower end of the axis
illustrate features with lower values that tend to decrease model performance. Positive
SHAP values indicate a positive effect on the model’s ability to predict the calving day
or specific instance [43]. On the other hand, negative SHAP values indicate that features
may contribute to lower performance. The SHAP summary plot in the present study
identified activity, rest time, and rest per bout as the most crucial features for developing
an effective calving day prediction model. The SHAP summary plot illustrates each dot
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as a single SHAP value for a specific feature within a single data instance [42]. Notably,
the clustering of dots reflects the strength of a feature’s interaction with the model’s out-
comes [43]. It is important to concede that some classification ML models demonstrated
lowered performances. The data file and code files are available at the GitHub repository:
https://github.com/AqeelRaza51214 (accessed on 7 June 2024), which is available for fur-
ther investigation. Future research should centralize feature engineering, hyperparameter
tuning, and optimization, which have the potential to further refine and optimize these ML
models and improve their effectiveness in generating accurate calving day alerts.
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Figure 10. The SHAP summary plot indicates the features’ importance for predictions of calving
days.

4. Discussion
4.1. Effect of Lactation Number on Behavior around Calving

This study analyzed prepartum and postpartum behaviors in 298 and 347 lactations,
respectively, highlighting the substantial influence of lactation number on dairy cows’
behavior during calving. The distribution of lactation numbers indicates a majority in their
first lactation, both prepartum and postpartum, followed by those in their second, third, or
subsequent lactations. This demographic setup provides a solid foundation for assessing
the influence of lactation experience on behavioral patterns.

The univariable analysis reveals a significant association between lactation num-
ber and various behavioral metrics, including activity levels, total rest time, rest per
bout duration, and restlessness ratio. This association is statistically significant, illus-
trating distinct behavioral patterns across the lactation groups (Table 1). Notably, first-
lactation dairy cows exhibited the highest mean activity levels (Table 1), possibly due
to the combined stress of calving and adapting to a new lactating environment [12,44],
which is further compounded by a lack of maternal experience [26,45]. Previous stud-
ies have shown that lactation affects dairy cows’ behavioral activity patterns as calving
approaches [16,46,47]. The present study’s findings are consistent with previous stud-
ies [12,48], which reported elevated activity as calving approaches in first-lactation dairy
cows. Additionally, dairy cows in their second lactation and subsequent lactations (lac-
tation No. ≥3) displayed reduced activity compared to dairy cows in their first lactation,
which is consistent with previous studies [16,26] that observed comparable results.

In contrast, dairy cows in their second lactation displayed the highest resting duration,
followed closely by those in their third or subsequent lactation, with first-lactation dairy
cows resting the least (Figure 2). This pattern suggests that higher-lactation dairy cows

https://github.com/AqeelRaza51214
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are more efficient at managing their energy management and rest prioritization, with
more maternal experience to support upcoming milk production [46,49,50] as compared to
first-lactation dairy cows. Additionally, resting duration decreased to the lowest levels as
calving approached in all lactation groups compared to two weeks before calving (Figure 2).
The resting duration of dairy cows in higher-lactation groups (lactation No. 2 and ≥3)
contradicts the findings of [16,51], which indicated that first-lactation dairy cows rested
more. This discrepancy might stem from age-related differences, variations in housing
management, and physiological adjustments to the milking regime [12]. Furthermore, rest
per bout durations increased with lactation numbers, with third or subsequent lactations
showing prolonged rest bouts (Figure 3), indicative of better physical comfort and adap-
tation to the lactation cycle [52–54]. These findings are corroborated by [55], who noted a
decrease in rest bout duration on the day of calving compared to the prepartum period.

The restlessness ratio further aligns these observations, with first-lactation dairy cows
exhibiting the highest levels (Figure 4), indicative of higher discomfort possibly due to
physical calving stress and psychological stress of transitioning to motherhood [6,12,45,54].
Interestingly, this elevated trend continues post-calving, while second- and subsequent-
lactation dairy cows show less restlessness, suggesting they are more comfortable and
better adapted. This study clearly delineates how lactation number impacts behavioral
patterns around calving, highlighting the necessity of tailored strategies to support dairy
cows, particularly first-lactation dairy cows, through this critical period. Understanding
these patterns can guide better management practices, enhancing welfare and productivity
across lactation stages.

4.2. Periparturient Activity Changes across Lactation Groups in Dairy Cows

The present study offers a comprehensive analysis of behavior in dairy cows surround-
ing calving day, examining activity patterns, resting times, rest per bout, and restlessness
ratios. Significant behavioral shifts were observed across all lactation groups around partu-
rition, particularly in first-lactation cows, who exhibited increased activity and restlessness,
along with reduced rest times and shorter rest bouts during the critical prepartum and
postpartum periods. The limited sample size for each day surrounding calving constrained
our analysis of interactions between days surrounding calving and lactation numbers,
which likely differ across lactations. For instance, cows in later lactations might return to
prepartum levels more quickly than those in their first lactation. Although we noted similar
response patterns across various lactation numbers, suggesting consistent time-course
shapes, these observations underscore the need for further studies with larger datasets to
fully explore these interactions. However, this investigation into the complex interplay
between physiological stress and adaptation across lactation stages provides key insights
into dairy cows’ welfare during these pivotal times.

The present study noted an increase in activity beginning a few days before calving,
which intensified after parturition, particularly among first-lactation dairy cows (Figure 1).
Contributing factors include calving stress-related agitation [6], the physical demands of
the initiation of milk production [51], and the challenges of integrating into an established
herd [11,54]. Additionally, this study observed a gradual return to pre-calving activity levels
within two weeks postpartum, indicating successful adaptation [11]. Interestingly, the
present study’s findings slightly differ from the findings of [56], which indicated a quicker
normalization of activity levels occurring nine days after calving, showing a recuperation
from calving stress. Furthermore, these collective findings emphasize the importance of
understanding and managing postpartum behavior to maximize cow comfort and welfare.

Changes in resting behavior, crucial for indicating post-calving comfort and stress,
were also significant. All lactation groups showed a decrease in resting time immediately
following calving (Figure 2), reflecting the universal impact of calving stress [11,26,51,57].
Notably, first-lactation dairy cows experienced a more substantial reduction in rest time,
potentially leading to higher agitation [52] and vigilance during this novel experience of
regrouping in the milking herd [57]. Despite the initial disruption, resting times did not
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return to prepartum levels within the two-week observation window (Figure 2), highlight-
ing the sustained effects of calving stress and the new milking routine. These findings
are consistent with previous studies [11,26,51,57], which reported similar observations of
reduced resting time soon after calving.

The persistence of elevated activity and restlessness for two weeks postpartum under-
lines the challenges dairy cows face in adapting to post-calving life. The stress of milking
initiation and integration into new or existing social groups [44,57] is significant. This
prolonged adjustment period, characterized by notable changes in dairy routines and social
hierarchies, particularly impacts first-lactation dairy cows [58]. Post-calving variations
in rest per bout provide insights into dairy cows’ recovery from parturition. A peak in
rest per bout durations 3–5 days post-calving indicates the effects required for the cow to
recuperate, influenced by factors such as udder distention [59] and adjustments to new
social and management regimes [54]. Additionally, higher-lactation dairy cows, facing
increased energy demands, spend more time eating, which may lead to longer rest per bout
durations [51,60]. However, animals in the first lactation had a smaller body size, which
suggests an ease of transitioning from standing to resting and a shorter rest per bout dura-
tion than their counterparts. Previous studies [51,60,61] also reported a higher frequency
and longer duration of rest per bout in higher-lactating animals, which is consistent with
the present study’s findings.

These findings highlight the complex nature of dairy cows’ postpartum adaptation,
influenced by factors such as calving experience [26], physiological stress [11], and the
challenges of integrating into the milking routine [51]. Recognizing behavioral variance
across lactation stages is essential for developing targeted management strategies that
support dairy cows through this challenging period, ultimately enhancing welfare and
optimizing productivity during the transition from pregnancy to lactation. Understand-
ing these behavioral patterns helps improve management practices, boost welfare and
production across the lactation phase, and benefit dairy operations’ overall health and
effectiveness.

4.3. Lactation Groups and Temporal Dynamics Influence Activity Patterns

Environmental and climatic conditions significantly impact the behavior and well-
being of dairy cows, serving as crucial indicators of their overall comfort and health [6,59].
This study explores the dynamic relationship between various lactation stages and the
monthly behavioral patterns of dairy cows in Thailand, providing valuable insights into
how these factors collectively affect dairy cows’ welfare. Notably, peaks in activity levels
and restlessness ratio were observed in June for dairy cows in their first and second
lactation groups (Figures 5 and 8), coinciding with Thailand’s hot season. During this
period, elevated temperature humidity index (THI) values, as a result of increased ambient
temperature and humidity, correlate with the observed trends [62], suggesting a direct
relationship between environmental stressors and the well-being of dairy cows.

Dairy cows in their third or subsequent lactation showed a lower level of restlessness
in May (Figure 8), indicating potential adaptation or resilience to the climatic stressors
experienced in earlier lactation stages. In contrast, first-lactation dairy cows exhibited a
consistently elevated restlessness ratio throughout the year. The higher ambient environ-
mental temperature and humidity during the summer likely contribute to this increased
restlessness in first-lactation cows, possibly as a strategy to dissipate heat stress [62] and
optimize thermoregulation [63] through increased body movement and blood flow. This
study also identified a data gap for dairy cows in their third or higher lactation during
April, potentially due to technical issues with monitoring equipment, external environ-
mental stressors, or changes in management practices. This gap highlights the challenges
of accurately capturing and interpreting dairy cows’ behavior, as well as the influence of
external factors on their welfare.

The convergence of increased activity and reduced rest duration in June, particularly
for dairy cows in the early stages of lactation (Figures 5 and 6), underlines the significant



Animals 2024, 14, 1834 22 of 29

impact of the hot and humid climate on dairy cows’ behavior. Conversely, as the year
progressed into a cooler, though still humid, rainy season, we observed an increase in rest
per bout duration (Figure 7), indicating a reduction in thermal stressors and allowing dairy
cows to rest for longer periods. Dairy cows in lactation No. ≥3 exhibited less frequent
but higher rest per bout patterns than those in their first and second lactations during
the cooler months. This behavior reflects an adaptation strategy to the cooler months,
characterized by lower ambient temperatures and humidity [63]. These environmental
factors support longer resting bouts in higher-lactating animals, who often have larger
body statures and heavier body weights, making frequent transitions from standing to
resting more challenging [52]. Elevated rest per bout during cooler months also indicates
higher levels of cow comfort [60], with previous studies [50] reporting similar seasonal
variations in rest per bout patterns.

This comprehensive analysis signifies the importance of understanding the complex
nature of dairy cows’ behavior in response to environmental and climatic conditions [7].
It highlights the need for management strategies that are sensitive to the needs of dairy
cows across different lactation stages and seasons [64]. Such strategies could include
modifications to housing, feeding, and overall farm management to mitigate the effects of
heat stress and optimize dairy cows’ welfare and productivity throughout the year. Future
research should aim to elucidate the specific environmental, housing, and management
factors contributing to the observed behavioral patterns. Direct THI measurements and in-
depth analyses of housing and management practices will provide a better understanding
of why dairy cows’ activity levels, rest durations, and restlessness ratios vary at different
lactation stages and times of the year.

4.4. Calving Prediction

The exploration of machine learning (ML) models for predicting calving days in dairy
cows demonstrates a significant stride towards harnessing technology to enhance dairy
farm management and animal welfare [65]. Different ML models, such as neural networks,
random forests, decision trees, Naïve Bayes, and gradient boosting, have shown different
levels of effectiveness in predicting calving [16,21], which is an important event in dairy
farming.

The present study’s results showed that the neural network model had the best speci-
ficity (Table 4), indicating its effectiveness in identifying non-calving days and minimizing
false alarms. However, its relatively low sensitivity and F2 score indicate a potential short-
fall in accurately detecting all true calving events. This gap emphasizes the importance of a
balanced model that can both minimize false positives and ensure no calving event goes
unnoticed [16,21].

Random forest and gradient boosting models emerged as notably effective, striking a
meritorious balance between sensitivity and specificity. This balance is crucial, as it ensures
that farmers can rely on the model to accurately predict calving, allowing for timely and
necessary preparations and interventions without the burden of frequent false alarms [66].
The area under the curve (AUC) values from the receiver operating characteristics (ROCs)
curve show that these models have a strong predictive ability for determining calving days.
The decision tree and Naïve Bayes model prioritized sensitivity, reflecting a design choice to
capture as many true calving events as possible, even at the expense of a higher rate of false
positive alerts [16,67]. This approach is advantageous in scenarios where missing a calving
event could lead to significant animal welfare issues or financial losses, highlighting the
trade-off involved in model selection based on farm-specific properties [16]. On the other
hand, gradient boosting’s lowered sensitivity indicates a need for further refinement. The
model’s high specificity is valuable, but the ultimate goal is to develop a model that ensures
no calving event is missed, highlighting the ongoing challenge in ML model development
for calving prediction [21].

Our work demonstrated the potential for changes in activity patterns to predict calving
days only. However, integrating environmental factors (such as THI), eating (chewing time
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and chewing bouts), rumination duration, body condition score (BCS), tail movements,
and health records can optimize the ML algorithm’s sensitivity and accuracy. Technical
limitations impeded the collection of these additional behavioral metrics. The inclusion of
such data with activity patterns holds promise for generating effective and promising alerts
for the day of calving and the day before calving. For example, the authors of ref. [3] were
able to predict the day of calving with a higher sensitivity (77%), compared to this study’s
49.1% sensitivity, by using additional behavioral metrics such as the duration of rumination,
changes in vaginal temperature, and period of rest time. Despite this inherent limitation,
the current study’s features offer a valuable approach for calving day prediction in the
absence of extensive behavioral monitoring. The present study used the Shapley Additive
Explanation (SHAP) model to determine the most important features for predicting the
calving day (Figure 10). This model highlights important behavioral metrics like activity
levels, rest time, and rest per bout. These features are instrumental in predicting calving,
with their variations providing crucial signals of impending parturition. The SHAP analysis
underlines the significance of these variables, pointing to the need for models that can
accurately interpret and leverage these signals.

We focused solely on the prediction of the exact calving day; however, ML algorithms
can optimize calving prediction by generating alerts for both short and extended window
sizes [16]. Extended window timeframes can substantially impact evaluation metrics,
specifically the sensitivity and F2 score. Additionally, the extended window size (day
before calving) and accurate predictions can provide farmers with extra time to oversee
dairy cows and assist in calving complications, especially for large dairy herds [16,68],
which have become prevalent in recent times. Furthermore, the day before calving alerts
can assist farmers in strategically allocating their resources during the calving season and
making suitable preparations for transitional dairy cows that may have faced any calving
complications in the previous season [69].

Our work highlights the importance of understanding subtle changes in activity move-
ment patterns during the TP, especially around calving in tropical dairy farming. The
integration of the complexities of the ML model used for calving event identification in
agricultural seminars, training sessions, and education programs for young veterinarians
and farmers has immense potential. Understanding the complex relationship between ML
models and model selection [70], feature importance [65], and sensitivity and specificity se-
lection [16] is important for young veterinary generations and farmers. Therefore, seminars
and hands-on training programs for farmers can integrate the findings of the current study
to enhance their understanding of tropical dairy cows’ behavior. Future studies should
focus on establishing a suitable balance between sensitivity and specificity, [16] and refine
the features utilized in the present study. These tools can shape calving prediction alerts,
provide effective teaching methods, and equip future generations of farmers and veterinar-
ians with essential knowledge and skills to harness the power of artificial intelligence for
optimal animal welfare and enhanced calving management.

Our results demonstrated a potential way to optimize calving management in tropical
dairy farming systems. Using behavioral changes, the ability to predict the exact calving
day could enable dairy farmers to implement target strategies to maximize cows’ comfort
during this critical time. Timely alerts can provide farmers with an opportunity to prepare
equipment and get trained personnel, potentially reducing the complications observed
during this critical time window. Furthermore, timely intervention could reduce the chances
of stillbirth and birth canal injuries, consequently affecting the decision to cull animals
from the herd. This would improve both the welfare of the animals and the profitability of
the farm. However, we recommend further studies to elucidate the complex relationship
between the economic impact of timely calving alerts and tropical dairy farms.

5. Conclusions

This study aimed to identify distinct behavioral patterns in transitional dairy cows
in tropical climates that could be a valuable tool for predicting calving days. The present
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study’s findings revealed significant changes in activity, rest time, rest per bout, and
restlessness ratio across lactation groups and days relative to calving. First-lactation dairy
cows exhibited the most nuanced changes, demonstrating increased activity and decreased
rest time as calving approached. Machine learning models utilizing these behavioral
metrics revealed promising accuracy for predicting calving days, particularly Naïve Bayes
and decision tree algorithms. A potential limitation of our work is the absence of data
regarding maintenance behavior (eating duration, chewing bouts, and rumination time),
environmental factors (THI), and health records. The integration of these data points
can further optimize these models’ performance. However, current research suggests
that tropical dairy farming can use postural behavior as a valuable tool for calving day
prediction.
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Appendix A

Table 1. Univariable analysis of calving day impact on dairy cows using generalized linear mixed models evaluating activity levels, total rest time, rest duration per
bout, and restlessness ratio in relation to lactation numbers (1, 2, and ≥3), month of sensor attachment (1–12), and days surrounding calving (−14 to 14) with cow ID
as a random effect.

Independent
Variables

N
(9318) Activity (Minutes/Day) Rest Time (Minutes/Day) Rest per Bout (Minutes/Day) Restlessness Ratio

95% CI 95% CI 95% CI 95% CI

Mean ± SE Lower Upper Mean ± SE Lower Upper Mean ± SE Lower Upper Mean ± SE Lower Upper

Lact. 1 6314 (68.1%) 218.7 ± 2.8 213.2 224.3 583.4 ± 5.3 573.0 593.9 66.4 ± 1.0 64.5 68.3 3.9 ± 0.1 3.7 4.0
Lact. 2 1831 (19.7%) 209.3 ± 4.9 199.7 218.9 659.5 ± 9.4 641.1 678.0 70.1 ± 1.7 66.7 73.4 3.0 ± 0.2 2.7 3.3

Lact. ≥ 3 1146 (12.3%) 206.6 ± 6.6 193.7 219.5 655.2 ± 12.5 630.7 679.7 75.5 ± 2.3 71.0 79.9 3.0 ± 0.2 2.6 3.4
January 969 (10.4%) 226.3 ± 4.8 217.0 235.7 641.8 ± 9.3 623.6 660.0 75.1 ± 1.7 71.9 78.4 3.5 ± 0.2 3.2 3.8

February 937 (10.1%) 203.2 ± 4.8 193.9 212.6 653.7 ± 9.3 635.6 672.1 69.7 ± 1.7 66.4 73.0 2.85 ± 0.2 2.5 3.2
March 862 (9.3%) 217.4 ± 5.2 207.1 227.6 626.1 ± 10.2 606.1 646.1 66.2 ± 1.8 62.7 69.8 3.4 ± 0.2 3.0 3.7
April 924 (9.9%) 216.6 ± 5.5 205.9 227.3 638.3 ± 10.7 617.4 659.2 69.0 ± 1.9 65.3 72.8 3.2 ± 0.2 2.9 3.6
May 943 (10.1%) 226.5 ± 5.7 215.4 237.6 613.7 ± 11.0 592.1 635.2 65.1 ± 2.0 61.3 69.0 3.6 ± 0.2 3.2 4.0
June 444 (4.8%) 223.26 ± 6.7 210.1 236.4 619.7 ± 13.2 593.8 645.5 56.9 ± 2.3 52.3 61.5 3.8 ± 0.2 3.3 4.3
July 304 (3.3%) 181.1 ± 7.8 165.8 196.5 614.7 ± 15.5 584.3 645.1 61.6 ± 2.7 56.3 67.0 2.8 ± 0.3 2.2 3.4

August 476 (5.1%) 193.3 ± 6.4 180.7 205.8 625.8 ± 12.6 601.1 65.4 66.5 ± 2.2 62.1 70.8 3.09 ± 0.2 2.6 3.6
September 663 (7.1%) 204.4 ± 5.6 193.4 215.5 623.8 ± 11.0 602.3 645.4 78.4 ± 2.0 74.5 82.2 3.4 ± 0.2 3.0 3.8

October 808 (8.7%) 203.58 ± 4.9 193.9 213.3 610.8 ± 9.7 591.9 629.8 84.3 ± 1.7 80.9 87.7 3.3 ± 0.2 2.9 3.6
November 1116 (12.0%) 209.8 ± 4.5 200.9 218.6 652.1 ± 8.8 634.9 669.4 74.5 ± 1.6 71.4 77.6 3.1 ± 0.2 2.8 3.4
December 872 (9.4%) 232.9 ± 4.8 223.5 242.3 671.97 ± 9.4 653.5 690.4 80.3 ± 1.7 77.0 83.6 3.37 ± 0.2 3.0 3.7
Day −14 287 (3.1%) 209.5 ± 5.0 199.8 219.2 744.4 ± 9.9 724.9 763.9 76.4 ± 1.7 73.0 79.8 2.1 ± 0.2 1.7 2.5
Day −13 292 (3.1%) 180.5 ± 4.9 170.8 190.1 708.45 ± 9.9 689.1 727.8 74.5 ± 1.7 71.1 77.9 2.0 ± 0.2 1.6 2.4
Day −12 295 (3.2%) 179.6 ± 4.9 169.9 189.2 701.1 ± 9.9 681.8 720.4 75.2 ± 1.7 71.8 78.6 2.1 ± 0.2 1.7 2.5
Day −11 295 (3.2%) 180.7 ± 4.9 171.1 190.4 696.2 ± 9.8 676.9 715.5 73.0 ± 1.7 69.6 76.4 2.1 ± 0.2 1.7 2.5
Day −10 295 (3.2%) 181.7 ± 4.9 172.0 191.3 701.7 ± 9.8 682.4 720.9 72.9 ± 1.7 69.5 76.2 2.0 ± 0.2 1.6 2.4
Day −9 295 (3.2%) 176.8 ± 4.9 167.2 186.5 703.9 ± 9.8 684.6 723.2 71.9 ± 1.7 68.5 75.3 2.0 ± 0.2 1.6 2.4
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Table 1. Cont.

Independent
Variables

N
(9318) Activity (Minutes/Day) Rest Time (Minutes/Day) Rest per Bout (Minutes/Day) Restlessness Ratio

95% CI 95% CI 95% CI 95% CI

Mean ± SE Lower Upper Mean ± SE Lower Upper Mean ± SE Lower Upper Mean ± SE Lower Upper

Day −8 295 (3.2%) 178.2 ± 4.9 168.6 187.9 703.0 ± 9.8 683.7 722.3 73.4 ± 1.7 70.0 76.8 2.0 ± 0.2 1.6 2.4
Day −7 295 (3.2%) 175.7 ± 4.9 166.1 185.3 699.9 ± 9.8 680.6 719.1 72.1 ± 1.7 68.7 75.4 2.0 ± 0.2 1.6 2.4
Day −6 295 (3.2%) 183.6 ± 4.9 174.0 193.2 687.4 ± 9.8 668.2 706.7 71.1 ± 1.7 67.7 74.5 2.2 ± 0.2 1.8 2.6
Day −5 295 (3.2%) 181.1 ± 4.9 171.5 190.7 698.9 ± 9.8 679.7 718.2 70.9 ± 1.7 67.5 74.3 2.2 ± 0.2 1.8 2.6
Day −4 295 (3.2%) 186.6 ± 4.9 177.0 196.2 676.64 ± 9.8 657.4 695.9 67.8 ± 1.7 64.2 71.1 2.4 ± 0.2 2.0 2.8
Day −3 294 (3.2%) 187.2 ± 4.9 177.6 196.8 668.1 ± 9.8 648.8 687.3 68.0 ± 1.7 64.6 71.4 2.5 ± 0.2 2.1 2.9
Day −2 294 (3.2%) 192.8 ± 4.9 183.2 202.4 666.5 ± 9.8 647.3 685.7 68.9 ± 1.7 65.5 72.3 2.6 ± 0.2 2.2 3.0
Day −1 292 (3.1%) 210.3 ± 4.9 200.7 220.0 683.8 ± 9.8 664.6 703.1 65.5 ± 1.7 62.1 68.9 2.9 ± 0.2 2.5 3.3
Day 0 363 (3.9%) 296.2 ± 4.6 287.2 305.2 674.3 ± 9.2 656.3 692.2 63.4 ± 1.6 60.2 66.6 5.0 ± 0.2 4.6 5.4
Day 1 341 (3.7%) 331.6 ± 4.7 322.4 340.8 525.7 ± 9.4 507.4 544.1 70.4 ± 1.7 67.2 73.6 7.26 ± 0.2 6.9 7.6
Day 2 344 (3.7%) 315.4 ± 4.7 306.2 324.6 528.3 ± 9.3 510.0 546.6 71.0 ± 1.6 67.8 74.2 6.7 ± 0.2 6.3 7.1
Day 3 346 (3.7%) 281.9 ± 4.7 272.7 291.1 558.5 ± 9.3 540.3 576.8 75.6 ± 1.6 72.4 78.8 5.2 ± 0.2 4.8 5.6
Day 4 346 (3.7%) 251.3 ± 4.7 242.1 260.4 579.8 ± 9.3 561.5 598.1 75.6 ± 1.6 72.3 78.6 4.2 ± 0.2 3.8 4.6
Day 5 347 (3.7%) 224.9 ± 4.7 215.7 234.0 583.4 ± 9.3 565.2 601.7 76.4 ± 1.6 73.2 79.7 3.7 ± 0.2 3.3 4.1
Day 6 347 (3.7%) 209.5 ± 4.7 200.3 218.7 568.5 ± 9.3 550.2 586.8 74.3 ± 1.6 71.1 77.5 3.6 ± 0.2 3.3 4.0
Day 7 345 (3.7%) 209.3 ± 4.7 200.1 218.5 564.6 ± 9.3 546.3 582.9 71.6 ± 1.6 68.4 74.8 3.7 ± 0.2 3.3 4.1
Day 8 347 (3.7%) 208.9 ± 4.7 199.7 218.1 568.5 ± 9.3 550.2 586.7 70.8 ± 1.6 67.4 74.0 3.6 ± 0.2 3.3 4.0
Day 9 346 (3.7%) 213.3 ± 4.7 204.1 222.4 565.3 ± 9.3 547.0 583.6 70.4 ± 1.6 67.2 73.6 3.68 ± 0.2 3.3 4.1

Day 10 347 (3.7%) 206.9 ± 4.7 197.7 216.1 574.5 ± 9.3 556.2 592.8 68.9 ± 1.6 65.7 72.1 3.4 ± 0.2 3.0 3.8
Day 11 346 (3.7%) 205.9 ± 4.7 196.8 215.1 575.0 ± 9.3 556.7 593.3 65.0 ± 1.6 61.8 68.2 3.7 ± 0.2 3.3 4.0
Day 12 346 (3.7%) 194.6 ± 4.7 185.5 203.8 580.1 ± 9.3 561.8 598.3 64.8 ± 1.6 61.6 68.0 3.8 ± 0.2 3.4 4.1
Day 13 346 (3.7%) 195.3 ± 4.7 186.2 204.5 582.8 ± 9.3 564.5 601.1 65.7 ± 1.6 62.3 68.9 3.2 ± 0.2 2.9 3.6
Day 14 347 (3.7%) 185.2 ± 4.7 176.1 194.4 579.8 ± 9.3 561.5 598.1 63.2 ± 1.6 60.0 66.4 3.1 ± 0.2 2.8 3.5
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