Exploration of Microencapsulation of Arginine in Carnauba Wax (Copernicia prunifera) and Its Dietary Effect on the Quality of Beef
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Characteristics and Origin of the Animals and Samples
2.2. Evaluated Treatments
2.3. Microcapsules Production
2.4. Morphological Characterization
2.5. Physicochemical Evaluation
2.6. Statistical Analysis
3. Results
3.1. Morphological Characterization
3.2. Weights and Gains
3.3. pH
3.4. Water Holding Capacity (WHC)
3.5. Intramuscular Fat (IMF)
3.6. Shear Force
3.7. Color
4. Discussion
4.1. Morphology of Microcapsules
4.2. Weights and Gains
4.3. pH
4.4. WHC
4.5. IMF
4.6. Shear Force
4.7. Colour
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- OECD-FAO Agricultural Outlook 2021–2030. Outlook 2021, 2030, 163–177. [CrossRef]
- Xue, F.; Zhou, Z.; Ren, L.; Meng, Q. Influence of Rumen-Protected Lysine Supplementation on Growth Performance and Plasma Amino Acid Concentrations in Growing Cattle Offered the Maize Stalk Silage/Maize Grain-Based Diet. Anim. Feed Sci. Technol. 2011, 169, 61–67. [Google Scholar] [CrossRef]
- Mazinani, M.; Naserian, A.A.; Rude, B.J.; Tahmasbi, A.M.; Valizadeh, R. Effects of Feeding Rumen–Protected Amino Acids on the Performance of Feedlot Calves. J. Adv. Vet. Anim. Res. 2020, 7, 229. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, P.D.; Tekippe, J.A.; Rodrigues, L.M.; Ladeira, M.M.H.; Pukrop, J.R.; Brad Kim, Y.H.; Schoonmaker, J.P. Effect of Ruminally Protected Arginine and Lysine Supplementation on Serum Amino Acids, Performance, and Carcass Traits of Feedlot Steers. J. Anim. Sci. 2019, 97, 3511. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Zheng, C.; Hu, Y.; Wang, L.; Yang, X.; Jiang, Z. Dietary L-Arginine Supplementation Affects the Skeletal Longissimus Muscle Proteome in Finishing Pigs. PLoS ONE 2015, 10, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Kong, X.; Hu, C.; Zhou, B.; Wang, C.; Shen, Q.W. Fatty Acid Content, Flavor Compounds, and Sensory Quality of Pork Loin as Affected by Dietary Supplementation with l-Arginine and Glutamic Acid. J. Food Sci. 2019, 84, 3445–3453. [Google Scholar] [CrossRef] [PubMed]
- Seok, W.J.; min Ahn, J.; Kim, Y.M.; Kibria, S.; Shi, H.; Kim, I.H. Effects of Dietary L-Arginine on Growth Performance, Nutrient Digestibility, and Meat Quality in Finishing Pigs. In Proceedings of the MidWestern Section 2020; American Society of Animal Science. J. Anim. Sci. 2020, 98 (Suppl. S3), 201–202. [Google Scholar] [CrossRef]
- Choi, S.H.; Wickersham, T.A.; Wu, G.; Gilmore, L.A.; Edwards, H.D.; Park, S.K.; Kim, K.H.; Smith, S.B. Abomasal Infusion of Arginine Stimulates SCD and C/EBPß Gene Expression, and Decreases CPT1ß Gene Expression in Bovine Adipose Tissue Independent of Conjugated Linoleic Acid. Amino Acids 2014, 46, 353–366. [Google Scholar] [CrossRef] [PubMed]
- Dou, L.; Sun, L.; Liu, C.; Su, L.; Chen, X.; Yang, Z.; Hu, G.; Zhang, M.; Zhao, L.; Jin, Y. Effect of Dietary Arginine Supplementation on Protein Synthesis, Meat Quality and Flavor in Growing Lambs. Meat Sci. 2023, 204, 109291. [Google Scholar] [CrossRef]
- Meyer, A.M.; Klein, S.I.; Kapphahn, M.; Dhuyvetter, D.V.; Musser, R.E.; Caton, J.S. Effects of Rumen-Protected Arginine Supplementation and Arginine-HCl Injection on Site and Extent of Digestion and Small Intestinal Amino Acid Disappearance in Forage-Fed Steers. Transl. Anim. Sci. 2018, 2, 205–215. [Google Scholar] [CrossRef]
- Yang, M.; Liang, Z.; Wang, L.; Qi, M.; Luo, Z.; Li, L. Microencapsulation Delivery System in Food Industry—Challenge and the Way Forward. Adv. Polym. Technol. 2020, 2020. [Google Scholar] [CrossRef]
- Frakolaki, G.; Giannou, V.; Kekos, D.; Tzia, C. A Review of the Microencapsulation Techniques for the Incorporation of Probiotic Bacteria in Functional Foods. Crit. Rev. Food Sci. Nutr. 2021, 61, 1515–1536. [Google Scholar] [CrossRef] [PubMed]
- Werner, S.R.L.; Jones, J.R.; Paterson, A.H.J.; Archer, R.H.; Pearce, D.L. Air-Suspension Particle Coating in the Food Industry: Part I—State of the Art. Powder Technol. 2007, 171, 25–33. [Google Scholar] [CrossRef]
- Tolve, R.; Tchuenbou-Magaia, F.; Di Cairano, M.; Caruso, M.C.; Scarpa, T.; Galgano, F. Encapsulation of Bioactive Compounds for the Formulation of Functional Animal Feeds: The Biofortification of Derivate Foods. Anim. Feed Sci. Technol. 2021, 279, 115036. [Google Scholar] [CrossRef]
- de Vos, P.; Faas, M.M.; Spasojevic, M.; Sikkema, J. Encapsulation for Preservation of Functionality and Targeted Delivery of Bioactive Food Components. Int. Dairy J. 2010, 20, 292–302. [Google Scholar] [CrossRef]
- de Carvalho Neto, J.P.; Bezerra, L.R.; da Silva, A.L.; de Moura, J.F.P.; Pereira Filho, J.M.; da Silva Filho, E.C.; Guedes, A.F.; Araújo, M.J.; Edvan, R.L.; Oliveira, R.L. Methionine Microencapsulated with a Carnauba (Copernicia Prunifera) Wax Matrix for Protection from Degradation in the Rumen. Livest. Sci. 2019, 228, 53–60. [Google Scholar] [CrossRef]
- de Medeiros, T.T.B.; de Azevedo Silva, A.M.; da Silva, A.L.; Bezerra, L.R.; da Silva Agostini, D.L.; de Oliveira, D.L.V.; Mazzetto, S.E.; Kotzebue, L.R.V.; Oliveira, J.R.; Souto, G.S.B.; et al. Carnauba Wax as a Wall Material for Urea Microencapsulation. J. Sci. Food Agric. 2019, 99, 1078–1087. [Google Scholar] [CrossRef]
- Council, N.R. (Ed.) Nutrient Requirements of Beef Cattle, 7th ed.; National Academy Press: Washington, DC, USA, 2000. [Google Scholar]
- Secretaría de Agricultura Ganadería Desarrollo Rural Pesca y Alimentación NORMA Oficial Mexicana NOM-033-SAG/ZOO-2014, Métodos Para Dar Muerte a Los Animales Domésticos y Silvestres. Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=5405210&fecha=26/08/2015#gsc.tab=0 (accessed on 4 February 2024).
- Honikel, K.O. Reference Methods for the Assessment of Physical Characteristics of Meat. Meat Sci. 1998, 49, 447–457. [Google Scholar] [CrossRef]
- Tsai, T.C.; Ockerman, H.W. Water Binding Measurement of Meat. J. Food Sci. 1981, 46, 697–701. [Google Scholar] [CrossRef]
- AMSA. Research Guidelines for Cookery, Sensory Evaluation, and Instrumental Tenderness Measurements of Meat; AMSA: Champaign, IL, USA, 2016. [Google Scholar]
- CIELab. Colorimetry, 3rd ed.; CIELab: Vienna, Austria, 2004. [Google Scholar]
- Hunt, M.C.; King, A.; Barbut, S.; Clause, J.; Cornforth, D.; Hanson, D.; Lindahl, G.; Mancini, R.; Milkowski, A.; Mohan, A. AMSA Meat Color Measurement Guidelines; American Meat Science Association: Kearney, MO, USA, 2012; Volume 61820, ISBN 8005172672. [Google Scholar]
- AOAC. Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2006. [Google Scholar]
- Ghamari Monavvar, H.; Moghaddam, G.; Ebrahimi, M. A Review on the Effect of Arginine on Growth Performance, Meat Quality, Intestine Morphology, and Immune System of Broiler Chickens. Iran. J. Appl. Anim. Sci. 2020, 10, 587–594. [Google Scholar]
- Fouad, A.M.; El-Senousey, H.K.; Yang, X.J.; Yao, J.H. Dietary L-Arginine Supplementation Reduces Abdominal Fat Content by Modulating Lipid Metabolism in Broiler Chickens. Animal 2013, 7, 1239–1245. [Google Scholar] [CrossRef]
- Wu, G.; Bazer, F.W.; Satterfield, M.C.; Gilbreath, K.R.; Posey, E.A.; Sun, Y. L-Arginine Nutrition and Metabolism in Ruminants. In Advances in Experimental Medicine and Biology; Springer: Berlin/Heidelberg, Germany, 2022; Volume 1354, pp. 177–206. [Google Scholar]
- Tuell, J.R.; Kim, H.-W.; Zhang, J.; Guedes, J.; Seo, J.-K.; Schoonmaker, J.P.; Kim, Y.H.B. Arginine Supplementation May Improve Color and Redox Stability of Beef Loins through Delayed Onset of Mitochondrial-Mediated Apoptotic Processes. Food Chem. 2021, 343, 128552. [Google Scholar] [CrossRef] [PubMed]
- Cottrell, J.J.; Ponnampalam, E.N.; Dunshea, F.R.; Warner, R.D. Effects of Infusing Nitric Oxide Donors and Inhibitors on Plasma Metabolites, Muscle Lactate Production and Meat Quality in Lambs Fed a High Quality Roughage-Based Diet. Meat Sci. 2015, 105, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Mitacek, R.M.; Ke, Y.; Prenni, J.E.; Jadeja, R.; VanOverbeke, D.L.; Mafi, G.G.; Ramanathan, R. Mitochondrial Degeneration, Depletion of NADH, and Oxidative Stress Decrease Color Stability of Wet-Aged Beef Longissimus Steaks. J. Food Sci. 2019, 84, 38–50. [Google Scholar] [CrossRef]
- Picard, B.; Gagaoua, M. Muscle Fiber Properties in Cattle and Their Relationships with Meat Qualities: An Overview. J. Agric. Food Chem. 2020, 68, 6021–6039. [Google Scholar] [CrossRef]
- Listrat, A.; Lebret, B.; Louveau, I.; Astruc, T.; Bonnet, M.; Lefaucheur, L.; Picard, B.; Bugeon, J. How Muscle Structure and Composition Influence Meat and Flesh Quality. Sci. World J. 2016, 2016. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, R.; Pateiro, M.; Munekata, P.E.S.; Zhang, W.; Garcia-Oliveira, P.; Carpena, M.; Prieto, M.A.; Bohrer, B.; Lorenzo, J.M. Protein Oxidation in Muscle Foods: A Comprehensive Review. Antioxidants 2022, 11, 60. [Google Scholar] [CrossRef]
- Wang, D.; Cheng, F.; Wang, Y.; Han, J.; Gao, F.; Tian, J.; Zhang, K.; Jin, Y. The Changes Occurring in Proteins during Processing and Storage of Fermented Meat Products and Their Regulation by Lactic Acid Bacteria. Foods 2022, 11, 2427. [Google Scholar] [CrossRef]
- Madeira, M.S.; Alfaia, C.M.; Costa, P.; Lopes, P.A.; Martins, S.V.; Lemos, J.P.C.; Moreira, O.; Santos-Silva, J.; Bessa, R.J.B.; Prates, J.A.M. Effect of Betaine and Arginine in Lysine-Deficient Diets on Growth, Carcass Traits, and Pork Quality. J. Anim. Sci. 2015, 93, 4721–4733. [Google Scholar] [CrossRef]
- Lebret, B.; Guillard, A.S. Outdoor Rearing of Cull Sows: Effects on Carcass, Tissue Composition and Meat Quality. Meat Sci. 2005, 70, 247–257. [Google Scholar] [CrossRef]
- Hu, C.J.; Jiang, Q.Y.; Zhang, T.; Yin, Y.L.; Li, F.N.; Deng, J.P.; Wu, G.Y.; Kong, X.F. Dietary Supplementation with Arginine and Glutamic Acid Modifies Growth Performance, Carcass Traits, and Meat Quality in Growing-Finishing Pigs. J. Anim. Sci. 2017, 95, 2680–2689. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.Y.; Fang, Y.J.; Guo, X.Y. Dietary L-Arginine Supplementation Beneficially Regulates Body Fat Deposition of Meat-Type Ducks. Br. Poult. Sci. 2011, 52, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Tous, N.; Lizardo, R.; Vilà, B.; Gispert, M.; Font-I-Furnols, M.; Esteve-Garcia, E. Addition of Arginine and Leucine to Low or Normal Protein Diets: Performance, Carcass Characteristics and Intramuscular Fat of Finishing Pigs. Span. J. Agric. Res. 2016, 14, e0605. [Google Scholar] [CrossRef]
- Madeira, M.S.; Costa, P.; Alfaia, C.M.; Lopes, P.A.; Bessa, R.J.B.; Lemos, J.P.C.; Prates, J.A.M. The Increased Intramuscular Fat Promoted by Dietary Lysine Restriction in Lean but Not in Fatty Pig Genotypes Improves Pork Sensory Attributes. J. Anim. Sci. 2013, 91, 3177–3187. [Google Scholar] [CrossRef] [PubMed]
- Jiao, P.; Guo, Y.; Yang, X.; Long, F. Effects of Dietary Arginine and Methionine Levels on Broiler Carcass Traits and Meat Quality. J. Anim. Vet. Adv. 2010, 9, 1546–1551. [Google Scholar] [CrossRef]
- Chriki, S.; Renand, G.; Picard, B.; Micol, D.; Journaux, L.; Hocquette, J.F. Meta-Analysis of the Relationships between Beef Tenderness and Muscle Characteristics. Livest. Sci. 2013, 155, 424–434. [Google Scholar] [CrossRef]
- Martins, T.S.; Sanglard, L.M.P.; Silva, W.; Chizzotti, M.L.; Rennó, L.N.; Serão, N.V.L.; Silva, F.F.; Guimarães, S.E.F.; Ladeira, M.M.; Dodson, M.V.; et al. Molecular Factors Underlying the Deposition of Intramuscular Fat and Collagen in Skeletal Muscle of Nellore and Angus Cattle. PLoS ONE 2015, 10, e0139943. [Google Scholar] [CrossRef] [PubMed]
- Christensen, M.; Ertbjerg, P.; Failla, S.; Sañudo, C.; Richardson, R.I.; Nute, G.R.; Olleta, J.L.; Panea, B.; Albertí, P.; Juárez, M.; et al. Relationship between Collagen Characteristics, Lipid Content and Raw and Cooked Texture of Meat from Young Bulls of Fifteen European Breeds. Meat Sci. 2011, 87, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Bureš, D.; Bartoň, L. Performance, Carcass Traits and Meat Quality of Aberdeen Angus, Gascon, Holstein and Fleckvieh Finishing Bulls. Livest. Sci. 2018, 214, 231–237. [Google Scholar] [CrossRef]
- Chen, X.; Guo, Y.; Jia, G.; Liu, G.; Zhao, H.; Huang, Z. Arginine Promotes Skeletal Muscle Fiber Type Transformation from Fast-Twitch to Slow-Twitch via Sirt1/AMPK Pathway. J. Nutr. Biochem. 2018, 61, 155–162. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Y.; Luo, X.; Zhang, Y.; Zhu, L.; Xu, B.; Hopkins, D.L.; Liang, R. Influence of Oxygen Concentration on the Fresh and Internal Cooked Color of Modified Atmosphere Packaged Dark-Cutting Beef Stored under Chilled and Superchilled Conditions. Meat Sci. 2022, 188, 108773. [Google Scholar] [CrossRef] [PubMed]
Ingredient | Control | Arginine Diet |
---|---|---|
Ground dry bread | 55.0 | 55.0 |
Distillery dry grain | 9.6 | 9.6 |
Ground Triticale Hay | 33.0 | 32.5 |
Calcium carbonate | 1.2 | 1.2 |
Urea | 1.0 | 1.0 |
Mineral mix | 0.2 | 0.2 |
Arginine microcapsules | 0.0 | 0.5 |
Nutrient level | Percentage | |
DM | 89.3 | |
Ashes | 4.66 | |
Protein | 11.69 | |
Total Fat | 1.71 | |
Carbohydrates | 71.21 | |
Kcal (100 g) | 347 |
Treatment | Breed | |||||||
---|---|---|---|---|---|---|---|---|
Control | 2:1 | 3:1 | p | An | He | A × H | p | |
FW | 377.8 ± 28.3 | 396.0 ± 46.1 | 395.6 ± 10.9 | 0.601 | 406.2 ± 36.0 | 370.0 ± 33.1 | 393.2 ± 9.2 | 0.353 |
TWG | 39.6 ± 16.8 | 32.8 ± 18.8 | 26.2 ± 8.1 | 0.410 | 38.4 ± 11.9 | 21.8 ± 10.4 | 37.24 ± 18.3 | 0.265 |
DWG | 1.88 ± 0.80 | 1.56 ± 0.90 | 1.25 ± 0.39 | 0.412 | 1.83 ± 0.57 | 1.04 ± 0.49 | 1.82 ± 0.87 | 0.266 |
Treatment | Breed | |||||||
---|---|---|---|---|---|---|---|---|
Control | 3:1 | 2:1 | p | An | He | A × H | p | |
SF | 30.3 a ± 9.12 | 24.32 b ± 6.66 | 25.3 b ± 5.29 | <0.001 | 24.02 b ± 5.78 | 25.59 b ± 6.57 | 30.4 a ± 8.92 | <0.001 |
pH | 5.32 ± 0.11 | 5.43 ± 0.1 | 5.38 ± 0.05 | 0.07 | 5.4 ± 0.06 | 5.38 ± 0.08 | 5.35 ± 0.13 | 0.57 |
WHC | 62.64 ± 4.65 | 62.05 ± 2.75 | 58.29 ± 4.34 | 0.07 | 60.91 ± 6.12 | 61.84 ± 4.3 | 60.23 ± 1.76 | 0.71 |
IMF | 0.72 b ± 0.44 | 2.12 a ± 0.99 | 1.16 b ± 0.71 | 0.002 | 1.59 ± 1.09 | 1.34 ± 0.64 | 1.07 ± 1.04 | 0.36 |
Treatment | Breed | |||||||
---|---|---|---|---|---|---|---|---|
Control | 3:1 | 2:1 | p | An | He | A × H | p | |
SF | 21.47 ± 4.6 | 20.49 ± 4.51 | 19.71 ± 3.33 | 0.12 | 19.12 b ± 3.82 | 19.71 b ± 3.43 | 22.94 a ± 4.41 | 0.0003 |
pH | 6.37 ± 0.53 | 6.25 ± 0.51 | 6.31 ± 0.22 | 0.58 | 6.54 a ± 0.3 | 5.81 b ± 0.24 | 6.57 a ± 0.16 | <0.001 |
WHC | 69.58 ± 4.83 | 70.62 ± 4.18 | 70.19 ± 3.57 | 0.81 | 69.73 ab ± 3.56 | 67.53 a ± 3.99 | 73.14 b ± 2.76 | 0.01 |
Treatments | Breed | |||||||
---|---|---|---|---|---|---|---|---|
Control | 3:1 | 2:1 | p | An | He | A × H | p | |
L* | 44.24 ± 2.1 | 43.02 ± 1.45 | 44.98 ± 4.69 | 0.37 | 42.49 ± 1.03 | 45.47 ± 4.69 | 44.27 ± 1.63 | 0.12 |
a* | 18.55 ± 2.91 | 19.66 ± 1.77 | 16.77 ± 1.95 | 0.13 | 16.86 ± 2.76 | 19.45 ± 2.23 | 18.67 ± 1.91 | 0.17 |
b* | 11.81 ± 2.47 | 11.07 ± 2.39 | 9.88 ± 1.08 | 0.4 | 9.87 ± 1.7 | 11.16 ± 2.89 | 11.73 ± 1.35 | 0.41 |
Treatments | Breed | |||||||
---|---|---|---|---|---|---|---|---|
Control | 3:1 | 2:1 | p | An | He | A × H | p | |
L* | 42.45 ± 1.85 | 43.69 ± 1 | 44.82 ± 1.85 | 0.3 | 43.73 ± 2.34 | 43.72 ± 0.84 | 43.51 ± 2.18 | 0.98 |
a* | 16.33 ± 2.29 | 16.85 ± 1.56 | 15.81 ± 1.77 | 0.75 | 16.24 ± 2.2 | 16.56 ± 1.89 | 16.19 ± 1.06 | 0.95 |
b* | 6.27 ± 0.94 | 7.2 ± 1.64 | 7.47 ± 1.58 | 0.11 | 7.06 ± 1.31 | 7.56 ± 1.8 | 6.32 ± 1.06 | 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Contreras-Lopez, G.; Garcia-Galicia, I.A.; Carrillo-Lopez, L.M.; Corral-Luna, A.; Buenabad-Carrasco, L.; Titulaer, M.; Villarreal-Balderrama, J.A.; Alarcon-Rojo, A.D. Exploration of Microencapsulation of Arginine in Carnauba Wax (Copernicia prunifera) and Its Dietary Effect on the Quality of Beef. Animals 2024, 14, 1857. https://doi.org/10.3390/ani14131857
Contreras-Lopez G, Garcia-Galicia IA, Carrillo-Lopez LM, Corral-Luna A, Buenabad-Carrasco L, Titulaer M, Villarreal-Balderrama JA, Alarcon-Rojo AD. Exploration of Microencapsulation of Arginine in Carnauba Wax (Copernicia prunifera) and Its Dietary Effect on the Quality of Beef. Animals. 2024; 14(13):1857. https://doi.org/10.3390/ani14131857
Chicago/Turabian StyleContreras-Lopez, German, Ivan A. Garcia-Galicia, Luis Manuel Carrillo-Lopez, Agustin Corral-Luna, Lorenzo Buenabad-Carrasco, Mieke Titulaer, José A. Villarreal-Balderrama, and Alma D. Alarcon-Rojo. 2024. "Exploration of Microencapsulation of Arginine in Carnauba Wax (Copernicia prunifera) and Its Dietary Effect on the Quality of Beef" Animals 14, no. 13: 1857. https://doi.org/10.3390/ani14131857
APA StyleContreras-Lopez, G., Garcia-Galicia, I. A., Carrillo-Lopez, L. M., Corral-Luna, A., Buenabad-Carrasco, L., Titulaer, M., Villarreal-Balderrama, J. A., & Alarcon-Rojo, A. D. (2024). Exploration of Microencapsulation of Arginine in Carnauba Wax (Copernicia prunifera) and Its Dietary Effect on the Quality of Beef. Animals, 14(13), 1857. https://doi.org/10.3390/ani14131857