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Simple Summary: African swine fever is an acute pig disease caused by a highly contagious virus,
and so far no cure has been found. Killing live pigs in affected areas is still the most effective way
to prevent the spread of the disease. However, this approach can have a devastating impact on a
country’s pig industry. Thus, it is necessary to implement strict biosafety prevention and control
before the disease begins to spread. In order to further understand the transmission characteristics
of the disease and develop effective prevention and control measures, a fractional-order African
Swine Fever model with saturation incidence is constructed in this paper. This model, as an effective
method to describe the laws of the objective world, is suitable for analyzing the problem of the
continued spread or regression of diseases in areas where there are African Swine Fever outbreaks in
the real world. Both theoretical analysis and numerical simulations show that timely and effective
disinfection measures on pig farms are important to prevent the spread of the disease.

Abstract: This article proposes and analyzes a fractional-order African Swine Fever model with
saturation incidence. Firstly, the existence and uniqueness of a positive solution is proven. Secondly,
the basic reproduction number and the sufficient conditions for the existence of two equilibriums are
obtained. Thirdly, the local and global stability of disease-free equilibrium is studied using the LaSalle
invariance principle. Next, some numerical simulations are conducted based on the Adams-type
predictor–corrector method to verify the theoretical results, and sensitivity analysis is performed on
some parameters. Finally, discussions and conclusions are presented. The theoretical results show
that the value of the fractional derivative α will affect both the coordinates of the equilibriums and
the speed at which the equilibriums move towards stabilization. When the value of α becomes larger
or smaller, the stability of the equilibriums will be changed, which shows the difference between the
fractional-order systems and the classical integer-order system.

Keywords: African Swine Fever; fractional order; saturation incidence; basic reproduction
number; stability

1. Introduction.

African Swine Fever (ASF) is an acute and highly contagious viral disease caused
by a viral strain of swine fever [1]. The disease has a short onset process and is usually
transmitted in domestic and wild pigs. Clinical manifestations include fever, skin cyanosis,
significant bleeding in lymph nodes and kidneys, and gastrointestinal mucosa [2]. ASF
strains with different virulence have different effects on diseased pigs [3]. Some strains
of ASF can lead to almost 100% mortality [4]. Since the first report of ASF in Kenya in
1921, the disease has been widely spread around the world, causing huge losses to pig
farming in different countries [5]. The most typical example is Denmark, which is known
as the world’s largest exporter of pork. After ASF spread to Denmark, it almost caused a
devastating blow to Denmark’s pig farming industry, resulting in serious economic losses
for the country [6]. Due to its serious consequences and economic losses, ASF has been

Animals 2024, 14, 1929. https://doi.org/10.3390/ani14131929 https://www.mdpi.com/journal/animals

https://doi.org/10.3390/ani14131929
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/animals
https://www.mdpi.com
https://orcid.org/0000-0002-7012-7651
https://doi.org/10.3390/ani14131929
https://www.mdpi.com/journal/animals
https://www.mdpi.com/article/10.3390/ani14131929?type=check_update&version=2


Animals 2024, 14, 1929 2 of 20

included in the Land Animal Health Code by the World Health Organization [7], and many
experts have also studied the disease.

Due to the diverse genetic types, large numbers, and complex immune escape mecha-
nisms of ASFV, the development of vaccines targeting ASF is facing difficulties. So far, no
effective drugs have been found to prevent and treat this disease. At present, improving
comprehensive prevention and control measures for ASF remains the main direction for
controlling the spread of the disease. Research has shown that ASF can be transmitted
through other organisms, such as infected ticks and mice [8]. It can also be transmitted
through direct and indirect contact with infected pigs and contaminated environments [2].
Usually, vehicles and personnel in pig farms carry the virus when passing through epi-
demic areas. When disinfection is not thorough, this can become a source of transmission.
Therefore, strict disinfection and isolation measures for staff and the environment of pig
houses are necessary for disease prevention and control. In addition, attention should be
paid to the source of pigs and the safety of feed in pig farms to avoid swill feeding.

A series of mathematical models have been established to simulate and study how
to better control the spread of ASF. Barongo et al. designed a mathematical model of ASF
in 2016 to explore the impact of implementing different strategies over time on disease-
related mortality rates [9]. In 2018, Iglesis et al. studied the important role of wild pigs
in the spread of ASF [10]. In 2020, Zhang et al. proposed a toy model to explore the
transmission mechanism and control strategies of ASF in large-scale pig farms, emphasizing
the necessity of disinfection and isolation measures [11]. Shi et al. proposed a fractional-
order optimization control model for ASF, using the Hamiltonian function and Pontryagin’s
Maximum Principle to find the best strategy to reduce the spread of ASF [12]. In 2021,
Kouidere et al. established an ASF model with tick transmission [13], indicating that vector
transmission is an important factor concerning ASF infection, and the impact of three
biosecurity measures on disease control was explored using optimal control theory. In 2023,
Song et al. established an ASF model with asymptomatic infections and infections from
other sources of pollution and considered the importance of culling measures for effectively
controlling disease spread [14]. These works indicate that strict biosecurity measures are
essential for the control of ASF.

Differential equations are a commonly used tool in the field of mathematical model-
ing, but for some analyses with time memory [15–17], integer-order differential equations
often cannot be well interpreted. As is well known, the immune system has a memory
function. When a specific pathogen invades the body, it will produce memory lymphocytes
or antibodies, which are equivalent to the same pathogen invading the body again. Ac-
quired immunity will quickly play a role in preventing infection. Combining the unique
memory advantage of fractional-order systems, the modeling method of this equation
has been increasingly favored by scholars in recent years [18–20]. Due to the fact that
the initial values of fractional differential equations defined by Caputo have the same
meaning as integer orders, it can solve the problem of it being difficult to find the initial
values of traditional fractional-order systems. This advantage has led to the increasing
application of fractional-order systems defined by Caputo in fields such as optics and
epidemiology [21–24]. Considering that when the number of susceptible pigs is large and
the contact ability between a diseased pig and other healthy pigs is always limited, it
is unreasonable to assume that the infectivity is directly proportional to the susceptible
pigs. Due to the limitation of contact ability, the infectivity always reaches a saturation
state. Therefore, studying infectious disease models with saturation incidence rates has
certain practical significance. In summary, this article will use a fractional order system
with saturation incidence to analyze the propagation dynamics of ASF. Compared with
previous work, this model takes into account the memory function of the immune system
and is more consistent with the actual situation.



Animals 2024, 14, 1929 3 of 20

2. Model Formulation

Motivated by [12,14], we will establish a fractional-order ASF model with saturation
incidence as below,

DαS(t) = Λ − β1S(t)I(t)
1 + b1 I(t)

− β2S(t)M(t)− µS(t) + δR(t),

DαE(t) =
β1S(t)I(t)
1 + b1 I(t)

+ β2S(t)M(t)− (ω + µ)E(t),

Dα I(t) = ωE(t)− εI(t)− (µ + d)I(t),

Dα M(t) = hdI(t)− φM(t),

DαR(t) = εI(t)− (µ + δ)R(t),

(1)

with initial conditions
S(0), E(0), I(0), M(0), R(0) ≥ 0.

Here, α ∈ (0, 1] and Dα is the Caputo fractional-order derivative. The total pig
population is given by N(t) = S(t) + E(t) + I(t) + R(t). The biological meanings of state
variables and parameters are shown in Table 1.

System (1) is obtained by directly replacing integer orders with fractional derivatives,
so there may be an asymmetry in the left and right dimensions of the system. For example,
the left side of System (1) has dimension (time)−α, while the right side has dimension
(time)−1. We will use the method in [25,26] to modify this issue. The correct form of the
modified System (1) will be changed to the following System (2).

DαS(t) = Λα −
βα

1S(t)I(t)
1 + b1 I(t)

− βα
2S(t)M(t)− µαS(t) + δαR(t),

DαE(t) =
βα

1S(t)I(t)
1 + b1 I(t)

+ βα
2S(t)M(t)− (ωα + µα)E(t),

Dα I(t) = ωαE(t)− εα I(t)− (µα + dα)I(t),

Dα M(t) = hαdα I(t)− φα M(t),

DαR(t) = εα I(t)− (µα + δα)R(t).

(2)

Next, we will analyze System (2).

Table 1. The biologica meanings of the variables and parameters for System (1).

Variables Description

S The density of susceptible pigs
E The density of exposed pigs
I The density of infected pigs
M The density of virus in contaminated items
R The density of recovered pigs

Parameters Description Value Refs

Λ The recruitment rate of pigs [1.12, 1.35] [12,27]
β1 ASFV transmission rate with direct contact of infectious pigs [0.0017, 0.017] [27]
β2 Virus transmission rate in contaminated items [0.0003, 0.0017] Assumed
b1 The saturation constant [0.003, 0.5] Assumed
µ The natural death rate of pigs [0.0025, 0.0045] [11,12,14]
δ The rate of the recovered pigs who become susceptible [0.02, 0.4243] [12,27]
ω The average rate at which an individual passes through

the incubation period [0.12, 0.667] [12,27]
ε The rate of the infected pigs who recover [0.018, 0.418] Assumed
d The death rate due to the disease 0.27 [11,12]
h The release rate of virus from symptomatic infectious pigs [0.18, 0.38] Assumed
φ The clearance rate of virus [0.026, 0.126] [14]
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3. Qualitatively Analysis of System (2)
3.1. The Existence and Uniqueness of Positive Solution for System (2)

It is necessary to prove that the solution of System (2) is positive and bounded in
order to make the model biologically meaningful.

Denote

Γ =
{
(S, E, I, M, R) ∈ R5

+ : 0 ≤ S + E + I + R ≤ Λα

µα
, 0 ≤ M ≤ hαdαΛα

µα φα

}
.

Theorem 1. System (2) with any positive initial value has a unique solution and Γ is positively
invariant for System (2).

Proof of Theorem 1. Firstly, we will prove that the solution of System (2) with any positive
initial value is always non-negative and bounded. Based on System (2), we have

DαS|S=0 = Λα + δαR > 0,

DαE|E=0 =
βα

1SI
1 + b1 I

+ βα
2SM ≥ 0,

Dα I|I=0 = ωαE ≥ 0,

Dα M|M=0 = hαdα I ≥ 0,

DαR|R=0 = εα I ≥ 0.

Observe the second equation above and combine it with Theorem 2.1 in [28]; we have
S(t), E(t), I(t), M(t), R(t) ≥ 0 for any t ≥ 0.

Adding the first three equations of System (2) to the last equation, we obtain

DαN(t) = Dα(S(t) + E(t) + I(t) + R(t))
= Λα − µαS(t)− µαE(t)− µα I(t)− dα I(t)− µαR(t)
≤ Λα − µαN(t),

which implies that

N(t) ≤
[
−Λα

µα
+ N(0)

]
Eα(−µαtα) +

Λα

µα
.

Since Eα(−µαtα) ≥ 0 for t ≥ 0, thus

N(t) ≤ Λα

µα
, ∀t ≥ 0,

provided that N(0) ≤ Λα

µα
.

From the above equation, it is easy to know that I(t) ≤ Λα

µα
, combined with the fourth

equation of System (2), we will obtain

Dα M(t) = hαdα I(t)− φα M(t)

≤ hαdαΛα

µα
− φα M(t),

which implies that

M(t) ≤
[
−hαdαΛα

µα φα
+ M(0)

]
Eα(−φαtα) +

hαdαΛα

µα φα
.
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Since Eα(−φαtα) ≥ 0 for t ≥ 0, thus

M(t) ≤ hαdαΛα

µα φα
, ∀t ≥ 0,

provided that M(0) ≤ hαdαΛα

µα φα
.

Therefore, S(t), E(t), I(t), M(t), R(t) ≥ 0, and N(t) ≤ Λα

µα
, M(t) ≤ hαdαΛα

µα φα
, ∀t ≥ 0,

which means that Γ is positively invariant for System (2).
Secondly, we will prove that System (2) with any positive initial value has a

unique solution.
Denote the right side of System (2) as vector function f (t, x⃗(t)), and

x⃗(t) =


x1(t)
x2(t)
x3(t)
x4(t)
x5(t)

, A1 =


−µα 0 0 0 δα

0 −(ωα + µα) 0 0 0
0 ωα −(εα + µα + dα) 0 0
0 0 hαdα −φα 0
0 0 εα 0 −(µα + δα)

,

ξ =


Λα

0
0
0
0

, A2 =


0 0 0 −β2 0
0 0 0 β2 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

, A3 =


−β1 0 0 0 0
β1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

,

where x1(t) = S(t), x2(t) = E(t), x3(t) = I(t), x4(t) = M(t), x5(t) = R(t), x1(0) = S(0),
x2(0) = E(0), x3(0) = I(0), x4(0) = M(0), x5(0) = R(0). Then, System (2) can be written as

Dα x⃗(t) = A1 x⃗(t) + x1(t)A2 x⃗(t) +
x3(t)

1 + b1x3(t)
A3 x⃗(t) + ξ

≤
(
∥A1∥+ ∥x1(t)A2∥+

∥∥∥ x3(t)
1 + b1x3(t)

∥∥∥ · ∥A3∥
)

x⃗(t) + ∥ξ∥

≤
(
∥A1∥+

Λα

µα
∥A2∥+

1
b1
∥A3∥

)
x⃗(t) + ∥ξ∥

.
= θ1 x⃗(t) + θ2.

Thus, the fourth condition of Theorem 3.1 in [28] is also satisfied for System (2).
According to that theorem, we know that System (2) has a unique positive solution for any
positive initial value. This completes the proof.

3.2. Basic Reproduction Number and the Existence of Equilibriums

For all infectious disease models, the basic reproductive number R0 is an important
indicator for predicting disease development trends [29]. By using the method of the next
generation matrix [30], the basic reproduction number of System (2) is derived as follows:

R0 = ρ(FV−1)

=
βα

1Λαωα

2µα(ωα + µα)(εα + µα + dα)

+
1
2

√(
βα

1Λαωα

µα(ωα + µα)(εα + µα + dα)

)2

+ 4
βα

2Λαhαdαωα

φαµα(ωα + µα)(εα + µα + dα)
,

where ρ(FV−1) represents the spectral radius of matrix FV−1, and
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F =


0

β1Λα

µα

β2Λα

µα

0 0 0

0 hαdα 0

, V =


ωα + µα 0 0
−ωα εα + µα + dα 0

0 0 φα

.

Define

Rc =
βα

1Λαωα

µα(ωα + µα)(εα + µα + dα)
+

βα
2Λαhαdαωα

φαµα(ωα + µα)(εα + µα + dα)
.

Remark 1. It is easy to verify that

(i) If Rc < 1, then R0 < 1; if Rc > 1, then R0 > 1;
(ii) If R0 < 1, then Rc < 1; if R0 > 1, then Rc > 1.

In order to obtain the equilibriums of System (2), let the right side of Equation (2)
equal zero; we can get the following algebraic equations:

Λα −
βα

1SI
1 + b1 I

− βα
2SM − µαS + δαR = 0,

βα
1SI

1 + b1 I
+ βα

2SM − (ωα + µα)E = 0,

ωαE − εα I − (µα + dα)I = 0,

hαdα I − φα M = 0,

εα I − (µα + δα)R = 0.

(3)

After a simple calculation, we can show that System (2) always exists a disease-

free equilibrium E0 =

(
Λα

µα
, 0, 0, 0, 0

)
. Denote the positive solution of Equation (3) as

E1 = (S∗, E∗, I∗, M∗, R∗); then, we have

R∗ =
εα

µα + δα
I∗, M∗ =

hαdα

φα
I∗, E∗ =

εα + µα + dα

ωα
I∗,

S∗ =
Λα(µα + δα)ωα + δαεαωα I∗ − (ωα + µα)(εα + µα + dα)(µα + δα)I∗

µα(µα + δα)ωα
,

and I∗ is the positive root of the following equation

a1 I2 + a2 I + a3 = 0, (4)

where

a1 = − b1dαhα

φα
{βα

2δαεαµα + β2(µ
α + ωα)[(dα + µα)(δα + µα) + µαεα]},

a2 = −(δα + µα)(µα + ωα)(εα + µα + dα)

(
dαhα

φα
β2 + β1 + b1µα

)
+δαεαωα

(
β1 +

dαhαβ2

φα

)
+

dαhαb1βα
2Λαωα(δα + µα)

φα
,

a3 = µα(δα + µα)(µα + ωα)(εα + µα + dα)(Rc − 1).

(5)

From the above argument, we obtain the following result.
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Theorem 2. (i) For System (2), there always exists a disease-free equilibrium, E0.
(ii) When Rc > 1, System (2) has a unique endemic equilibrium, E1 = (S∗, E∗, I∗, M∗, R∗).

3.3. Stability of the Disease-Free Equilibrium E0

The Jacobian matrix of System (2), evaluated at the disease-free equilibrium, E0, is
given by

J(E0) =



µα 0 −
βα

1Λα

µα
−

βα
2Λα

µα
δα

0 −(ωα + µα)
βα

1Λα

µα

βα
2Λα

µα
0

0 ωα −(εα + µα + dα) 0 0

0 0 hαdα −φα 0

0 0 εα 0 −(µα + δα)


.

It is easy to know that two eigenvalues of J(E0) is λ1 = −µα < 0, λ2 = −(µα + δα) < 0,
and the remaining eigenvalues are determined by the following equation:

y3 + b1y2 + b2y + b3 = 0, (6)

where

b1 = φα + dα + εα + ωα + 2µα,

b2 = (µα + ωα)(µα + dα + εα)(1 − Rc) +
βα

2dαhαΛαωα

φαµα
+ φα(2µα + dα + εα + ωα),

b3 = φα(µα + ωα)(µα + dα + εα)(1 − Rc).

If Rc < 1, then bi > 0, i = 1, 2, 3, and

b1b2 − b3 = (2µα + φα + dα + εα + ωα)
[
(µα + ωα)(µα + dα + εα)(1 − Rc)

+
βα

2dαhαΛαωα

φαµα
+ φα(2µα + dα + εα + ωα)

]
−φα(µα + ωα)(µα + dα + εα)(1 − Rc)

= (2µα + dα + εα + ωα)
[
(µα + ωα)(µα + dα + εα)(1 − Rc)

+
βα

2dαhαΛαωα

φαµα
+ φα(2µα + dα + εα + ωα)

]
+

βα
2dαhαΛαωα

µα
+ φ2α(2µα + dα + εα + ωα)

> 0.

According to the Routh–Hurwitz criteria [31], we can get the following result.

Theorem 3. If Rc < 1, then the disease-free equilibrium, E0, is locally asymptotically stable.

Next, we investigate the global dynamics of the disease-free equilibrium.

Theorem 4. If Rc ≤ 1, then the disease-free equilibrium, E0, is global asymptotically stable.

Proof of Theorem 4. Consider the following Lyapunov function:

V = ωαE + (ωα + µα)I.

Then, we get the derivative of V along the solution of System (2)
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DαV|(2) =
ωαβα

1SI
1 + b1 I

+ ωαβα
2SM − ωα(ωα + µα)E

+ωα(ωα + µα)E − (ωα + µα)(εα + µα + dα)I
≤ ωαβα

1SI + ωαβα
2SM − (ωα + µα)(εα + µα + dα)I

≤
ωαβα

1Λα I
µα

+
ωαβα

2Λα M
µα

− (ωα + µα)(εα + µα + dα)I

≤
ωαβα

1Λ2α

µ2α
+

ωαβα
2Λ2αhαdα

µ2α φα
− (ωα + µα)(εα + µα + dα)

Λα

µα

=
Λα

µα
(ωα + µα)(εα + µα + dα)(Rc − 1).

If Rc ≤ 1, then we obviously have DαL|(2) ≤ 0. The invariant set of System (2) on
the set {(S, E, I, M, R) ∈ Γ : DαL|(2) = 0} is the singleton {E0}. According to the LaSalle
invariance principle [32], we know that E0 is global asymptotically stable.

The proof of this theorem is complete.

3.4. Stability of the Endemic Equilibrium E1

The Jacobian matrix of System (2) evaluated at the endemic equilibrium, E1, is
given by

J(E1) =



κ1 0 κ2 −βα
2S∗ δα

κ3 κ4 κ5 βα
2S∗ 0

0 ωα κ6 0 0

0 0 hαdα −φα 0

0 0 εα 0 κ7


,

where

κ1 = −
βα

1 I∗

1 + b1 I∗
− βα

2 M∗ − µα, κ2 = −
βα

1S∗

(1 + b1 I∗)2 ,

κ3 =
βα

1 I∗

1 + b1 I∗
+ βα

2 M∗, κ4 = −(ωα + µα),

κ5 =
βα

1S∗

(1 + b1 I∗)2 , κ6 = −(εα + µα + dα), κ7 = −(µα + δα).

By simple calculation, we obtain the corresponding characteristic equation of J(E1) as

λ5 + ω1λ4 + ω2λ3 + ω3λ2 + ω4λ + ω5 = 0, (7)

where

ω1 = φα − κ1 − κ4 − κ6 − κ7,

ω2 = κ1κ4 − φα(κ4 + κ6 + κ7 + κ1) + (κ1 + κ4)(κ6 + κ7) + κ6κ7 − κ5ωα,

ω3 = φακ1(κ4 + κ6 + κ7) + (φακ4 − κ1κ4)(κ6 + κ7) + φακ6κ7 − κ6κ7(κ1 + κ4)

−φακ5ωα − κ2κ3ωα + κ5ωα(κ1 + κ7)− S∗β∗
2dαhαωα,

ω4 = κ4κ7(κ1κ6 − φακ1)− φακ6κ7(κ1 + κ4)− δαεακ3ωα − φακ1κ4κ6

+(κ7ωα − φαωα)(κ2κ3 − κ1κ5) + φαωακ5κ7 + S∗βα
2dαhαωα(κ1 + κ3 + κ7),

ω5 = −φαδαεακ3ωα + φακ1κ4κ6κ7 + φακ7ωα(κ2κ3 − κ1κ5)− κ7ωαδαβα
2dαhα(κ1 + κ3).

Denote

H1 = ω1, H2 =

∣∣∣∣∣ ω1 ω3

1 ω2

∣∣∣∣∣, H3 =

∣∣∣∣∣∣
ω1 ω3 ω5
1 ω2 ω4
0 ω1 ω3

∣∣∣∣∣∣,
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H4 =

∣∣∣∣∣∣∣∣
ω1 ω3 ω5 0
1 ω2 ω4 0
0 ω1 ω3 ω5
0 1 ω2 ω4

∣∣∣∣∣∣∣∣, H5 =

∣∣∣∣∣∣∣∣∣∣

ω1 ω3 ω5 0 0
1 ω2 ω4 0 0
0 ω1 ω3 ω5 0
0 1 ω2 ω4 0
0 0 ω1 ω3 ω5

∣∣∣∣∣∣∣∣∣∣
.

According to the Routh–Hurwitz criterion [31], we find that if, and only if, the co-
efficients ωi satisfy Hi > 0 ( i = 1, 2, 3, 4, 5), then all roots of Equation (7) have negative
real parts.

Theorem 5. (i) If Hi > 0, i = 1, · · · , 5 then the endemic equilibrium E1 is locally asymptoti-
cally stable.

(ii) When α ∈ (0, 1), according to Lemma 3 in [33], if all roots of Equation (7) satisfy
|arg(λi)| > απ

2 , i = 1, · · · , 5, then E1 is still locally stable.

4. Examples and Numerical Simulations

In this section, the so-called Adams-type predictor–corrector method and Matlab tool
will be used for numerical simulations. In addition, some parameter sensitivity analysis
will be conducted. Most of the data in this article are based on the parameter values in [9],
the collection of ASF related data from large pig farms in China [11], and the collection of
ASF-related data in the Chinese region [14]. As the model in this article has been modified
and improved, it is necessary to input the actual parameter values of the local area into the
model for debugging in practical application and predict the propagation of ASF in the
local area within an acceptable error range.

Examples and Numerical Simulations for System (2)

Example 1. Fix the following parameter values: Λ = 1.35, β1 = 0.0017, β2 = 0.0003, µ = 0.0045,
δ = 0.02, b1 = 0.007, ω = 0.25, ε = 0.3, d = 0.27.

(i) Figure 1 shows the variation between threshold Rc and parameter α, with different values of φ
and h (φ = 0.026, 0.057, 0.126, 0.226; h = 0.08, 0.18, 0.28, 0.38).

(ii) In Figure 2, the initial value is Y0 =[660, 100, 50, 10, 10], and h = 0.18, φ = 0.126, α have
different values (α = 0.8, 0.85, 0.90, 0.93, 1). In this case, we get Rc ∈ [0.8353, 0.9314] < 1.

(iii) In Figure 3, the value of α is fixed to 0.93, h = 0.18, φ = 0.126, and different initial values
are taken with Y0 = [450, 80, 30, 10, 10], [660, 100, 50, 10, 10], [800, 150, 70, 20, 10]. In this
case, we get Rc = 0.8943 < 1.

Example 2. Fix the following parameter values: Λ = 1.12, β1 = 0.017, β2 = 0.0017, µ = 0.0025,
δ = 0.2, b1 = 0.007, ω = 0.12, ε = 0.64, d = 0.27, h = 0.68, φ = 0.026.

In Figure 4, the initial value is Y0 = [660, 100, 50, 10, 10] and α have different values (α = 0.5,
0.6, 0.85, 0.96, 1). In this case, we get Rc ∈ [3.5421, 16.8141] > 1.

Example 3. Fix the following parameter values: Λ = 1.35, β1 = 0.0017, β2 = 0.0003, µ = 0.0045,
d = 0.27, h = 0.18, φ = 0.126, α = 0.93, the initial value is Y0 = [660, 100, 50, 10, 10].

(i) In Figure 5, ε = 0.3, δ = 0.02, ω = 0.25, and b1 have different values (b1 = 0.003, 0.01, 0.08,
0.2, 0.5).

(ii) In Figure 6, b1 = 0.007, δ = 0.02, ω = 0.25, and ε have different values (ε = 0.018, 0.118,
0.218, 0.318, 0.418).

(iii) In Figure 7, ε = 0.3, b1 = 0.007, δ = 0.02, and ω have different values (ω = 0.267, 0.367,
0.467, 0.567, 0.667).

(iv) In Figure 8, ε = 0.3, b1 = 0.007, ω = 0.25, δ = 0.02, and δ have different values (δ = 0.0243,
0.1243, 0.2243, 0.3243, 0.4243).
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Figure 1. The relationship between Rc and the parameter α, (a) for different values of φ , (b) for
different values of h.

Remark 2. (i) Figure 1 shows the relationship between Rc and the parameter α under different
values of φ and h. Through observation, it can be seen that when the value of φ is relatively
large, Rc < 1 always holds, which means that the disease-free equilibrium, E0, is stable. When
the value of φ is relatively small, both Rc > 1 or Rc < 1 exist, indicating that the stability of
System (2) depends on the value of α.

(ii) From Figure 1, we can also conclude that when the value of h is relatively small, Rc < 1
always holds, which means that the disease-free equilibrium, E0, is stable. When the value of
h is relatively large, both Rc > 1 or Rc < 1 exist, indicating that the stability of System (2)
depends on the value of α.

(iii) From a biological perspective, Figure 1 indicates that the virus release rate on diseased pigs and
the virus cleaning rate in the pig breeding environment will affect the final development trend
of the disease. As the cleaning rate increases, the disease will gradually move from persistence
to extinction.

Remark 3. (i) Figure 2 indicates that different values of α will affect the speed at which the equilib-
rium, E0, approaches stability and the coordinates of E0. When Rc ∈ [0.8353, 0.9314] < 1, the
disease-free equilibrium, E0, is always stable, which is in accordance with Theorems 3 and 4.

(ii) Figure 3 indicates that the initial values will not affect the stability, which is in accordance
with Theorem 1.

Remark 4. Figure 4 indicates that different values of α will affect the speed at which the equilibrium,
E1, approaches stability and the coordinates of E1. In this case, Rc ∈ [3.5421, 16.8141] > 1, but
when α < 0.6, the equilibrium E1 becomes unstable, while the corresponding integer-order system
remains stable, which shows the difference between fractional-order and integer-order systems.
Compared to integer-order systems, the stability of fractional-order systems is more sensitive.

Remark 5. (i) Figure 5 shows that the saturation constant b1 affects the rate at which the
equilibriums tend to stabilization, but does not affect the final stable state.

(ii) Figure 6 shows that the value of parameter ε will affect the peak value of each state variable and
the coordinates of the final stable state. Therefore, taking corresponding treatment measures for
sick pigs is very effective for disease control.

(iii) Figures 7 and 8 show that the stability of the model does not change when some parameters
fluctuate over a large range, indicating that the model is robust.
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Figure 2. Time series of System (2) for different values of α. Here, Rc ∈ [0.8353, 0.9314] < 1.
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Figure 4. Time series of System (2) for different values of α. Here, Rc ∈ [3.5421, 16.8141] > 1.
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Figure 5. Time series of System (2) for different values of b1.
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Figure 6. Time series of System (2) for different values of ε.
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Figure 7. Time series of System (2) for different values of ω.
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Figure 8. Time series of System (2) for different values of δ.

5. Discussion

This article proposes a fractional-order ASF model with saturation incidence and
analyzes the dynamics of the system.
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The main results are as follows:
Through qualitative analysis, we get the following results:

♢ The existence and uniqueness of the positive solutions are proven and the basic
reproduction numbers R0 is obtained.

♢ The sufficient conditions for the existence and stability of disease-free equilibrium, E0,
and endemic equilibrium, E1, are obtained.

♢ When Rc < 1, the disease-free equilibrium, E0, is globally asymptotically stable.

Through numerical simulation we get the following results.

♢ From Figure 1, we can see that the value of α has a significant impact on the threshold
Rc, which in turn affects the stability of the equilibriums.

♢ Figure 1 also shows that the system is very sensitive to the values of φ and h. It
can be seen that implementing strict cleaning measures for pig houses to reduce the
virus content in the environment is an effective means of controlling the spread of
the disease.

♢ Figures 2 and 4 indicate that the value of α can affect the stable state of the system.
For example, when Rc < 1 and α < 0.6, the equilibrium, E1, is unstable, while it is
stable for the corresponding integer-order system. This shows the differences between
fractional-order systems and the classical integer-order systems. This also indicates
that fractional-order systems have better non-locality and memory effects compared
to integer-order systems.

♢ Figure 6 shows that the recovery rate parameter ε has a significant impact on the peak
values of various state variables of the system. Therefore, timely treatment of sick
pigs can effectively prevent healthy pigs from being infected.

♢ Compared to existing conclusions, this article focuses on discussing the difference
between fractional-order systems and integer-order systems, indicating that fractional-
order systems with memory characteristics are more sensitive to the dynamic of the
system, and through sensitivity analysis of important parameters, effective cleaning
measures have been found to have a significant impact on disease control.

6. Conclusions

The effective measures identified in this article are as follows:

(i) Regular disinfection and cleaning of pigstys is essential for preventing further spread
of ASF.

(ii) The staff and external vehicles entering the pig farm should also be thoroughly
disinfected to prevent the virus from being carried into the farm.

(iii) Pigs suspected of being infected should be immediately isolated to prevent cross
infection of the virus.

(iv) The veterinarian states that pig farms should actively cooperate with local animal
disease prevention and control agencies to carry out disease monitoring and investiga-
tion. The symptoms of ASF are initially very similar to those of ordinary swine fever.
Therefore, when there is a failure in vaccination against swine fever or unexplained
death, it is necessary to assess whether or not it is ASFV infection. The local veterinary
department should be reported to in a timely manner. This is an effective means to
block the further spread of ASF and reduce economic losses.

Limitations of the current work:

(i) In this article, a deterministic model is considered. However, in the real world, the
environment may be affected by some stochastic factors, so the results obtained from
deterministic models may have some deviation between the model and reality. In
future research, we will consider using stochastic differential equations to address
current shortcomings.

(ii) This article discusses the impact of biosecurity measures on the spread of ASF. In
fact, geographical factors may have a significant impact on the spread of the disease,
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and professional geographic information system software is available to monitor the
spread of the disease [34]. This method should be applied in subsequent research.

There are still some meaningful topics to be discussed in the future:

(i) It is well known that time delay is common in epidemic models. Thus, in the future,
we can explore the cyclical impact of the incubation period of diseases on the process
of disease transmission.

(ii) This article mainly discussed the stability of the system. In fact, the exact solution to
the equilibrium of the system can be obtained through the Lie algebra method [35]. In
future, this method will be combined to conduct more detailed research regarding
the model.
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