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Simple Summary: In dairy cows, metabolic stress at the start of lactation can lead to excessive fat
mobilization from the body’s fat deposits. This increase in circulating fats is often accompanied by
an increase in ketones and is associated with reduced performance and a dysfunctional immune
response. However, the relationship between the fat cells responsible for mobilizing fats and the
circulating immune cells has yet to be fully understood in these early lactation dairy cattle. To
this aim, we isolated and characterized the circulating immune cells from the blood of healthy and
hyperketonemic dairy cattle at the beginning of lactation and assessed the effect of the secretions of
these immune cells on fat cells from healthy dairy cows. Overall, the immune cells from healthy and
metabolically stressed dairy cattle had similar inflammatory profiles at the gene and cytokine level;
however, the secretions from these immune cells had distinct effects on the expression of certain genes
and on the ability of fat cells to accumulate fats. Together, these results emphasize the importance
of additional factors produced by immune cells in metabolically stressed dairy cattle in regulating
fat cell function and provide insight into potential mechanisms underlying the development of
metabolic stress.

Abstract: During the periparturient period, cows undergo heightened energy demands at lactation
onset, paired with reduced dry matter intake, leading to negative energy balance (NEB). Excessive
lipolysis-driven adipose tissue remodeling, triggered by NEB, significantly contributes to ketosis
in periparturient dairy cows. However, the role of peripheral blood mononuclear cells (PBMCs) in
the pathogenesis of ketosis and in modulating adipose tissue function remains poorly understood.
Here, we investigated how ketosis affects the transcriptional profile and secretome of PBMCs and its
influence on preadipocyte function in visceral adipose tissue (VAT) and subcutaneous adipose tissue
(SAT). Twenty-one postpartum Holstein dairy cows were categorized as either subclinical ketosis
(SCK; BHB ≥ 1.0 mM) or control (CON; BHB < 0.8 mM) based on blood beta-hydroxybutyrate (BHB)
concentration screening. Blood samples were collected intravenously for the isolation of PBMCs
and serum metabolic profiling. Ketosis elevated circulating NEFA and BHB levels but reduced
total WBC and neutrophil counts. Isolated PBMCs were evaluated for gene expression and used
to produce conditioned media (PBMC-CM), during which PBMCs were stimulated with 10 ng/mL
LPS. The overall phenotype of PBMCs was largely consistent between SCK and CON cows, with
minimal differences detected in immunomodulatory cytokine expression and PBMC-CM composition
following stimulation. Preadipocytes isolated from non-ketotic cows were treated with PBMC-CM
to assess the effect of PBMC secretomes on adipose cell function. Preadipocytes treated with SCK
PBMC-CM showed reduced lipid accumulation compared to those treated with CON PBMC-CM
regardless of the depot. SAT preadipocytes had heightened expression of lipid metabolism-related
genes, including DGAT1, LIPE, and FASN, compared to VAT when treated with SCK PBMC-CM.
Preadipocytes treated with CM from PBMC stimulated by LPS exhibited upregulation in IL1B and
IL6 regardless of the depot or source of PBMCs. Together, these results indicate that although PBMC
profiles showed minimal differences, preadipocytes treated with PBMC-CM may be influenced by
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additional factors, leading to altered preadipocyte function and gene expression that may contribute
to adipose cellular dysfunction.

Keywords: dairy; PBMC; adipose; inflammation; ketosis

1. Introduction

Periparturient cows undergo a sudden surge in energy demands triggered by the
initiation of lactation and a concurrent decrease in voluntary dry matter intake, leading
to a negative energy balance (NEB) [1]. Control of metabolism during the transition from
pregnancy to lactation in dairy cows involves numerous homeostatic and homeorhetic reg-
ulatory mechanisms. The most significant homeorhetic adaptation to NEB is the increased
mobilization of fat from adipose tissue and the release of non-esterified fatty acids (NEFAs)
into the bloodstream [2]. Hormonal and endocrine shifts, including increased growth
hormone and catecholamines and decreased insulin, heighten the metabolic state during
the periparturient period, favoring lipolysis over lipogenesis, regardless of the energy
balance status [3]. Lipolysis significantly reduces adipose tissue mass, often exceeding
30% of its volume or weight, initiating a remodeling process characterized by inflammatory
responses with immune cell infiltration in transition cows [4]. Continuous and exacerbated
lipolysis also increases the partial oxidation of NEFA to ketone bodies by the liver, thus
increasing the risk of ketosis [5]. While the maladaptation of adipose tissue to NEB plays a
key role in the development of ketosis, how distinct adipose tissue depots influence these
responses and its cellular interplay with immune cells in periparturient dairy cows remains
little understood.

The adipose tissue surrounding abdominal viscera, known as visceral adipose tissue
(VAT), differs from subcutaneous adipose tissue (SAT) in structure, cellularity, and function.
Compared to SAT, VAT is composed of smaller adipocytes and has a reduced adipogenic ca-
pacity, accompanied by an enhanced pro-inflammatory response to metabolic diseases [6,7].
Underlying these depot-specific differences in dairy cattle are a higher abundance of pro-
inflammatory immune cells in VAT and mature adipocytes with pro-inflammatory and
suppressed lipogenic transcriptional profiles [8]. While cellular composition and the tran-
scriptomic profile of SAT of ketotic and non-ketotic cows seem to differ minimally, VAT
from cows with subclinical ketosis contains a more pro-inflammatory profile, indicating
a potential link between VAT dysfunction and the pathogenesis of metabolic disease in
periparturient dairy cattle [9]. Although significant research has targeted characterizing
the functional differences between VAT and SAT, we lack a comprehensive understanding
of how these differences extend to their interactions with immune cells.

The relationship between nutrient availability and immune cell function has spurred
research into bovine immune cell functional and transcriptional profiles during the tran-
sition period. Circulating peripheral blood mononuclear cells (PBMCs) are exposed to
variations in fluid composition, including fluctuations in circulating nutrients, substrates,
and hormones [10] and are reflective of the host immune system. Thus, characterizing PBMC
profiles offers valuable insight into immune functionality and potential disease biomark-
ers [11]. Previous investigations have revealed suppressed immune responses in the PBMCs
of dairy cattle with subclinical ketosis [12,13], and high circulating NEFA [13,14]; however,
none of these prior studies have evaluated the relationships between PBMC profiles and
adipose tissue function in the context of ketosis. Although PBMCs function as a valuable
reservoir of immune cells that can infiltrate and modulate adipose tissue [15], the crosstalk
between these cells and adipose tissue in dairy cows remains a gap in our knowledge.

Our objective was to define changes in PBMC immunomodulatory cytokine gene ex-
pression profiles and secretomes in cows with and without ketosis and how these changes
affect VAT and SAT preadipocyte function. Using a combination of experimental ap-
proaches, we hypothesized that PBMCs from dairy cattle with subclinical ketosis exhibit
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dysregulated gene expression profiles with increased pro-inflammatory cytokine produc-
tion. In addition, we expected PBMC-conditioned media to inhibit proliferation and lipid
accumulation in preadipocytes, driven by the suppression of key lipogenic genes.

2. Materials and Methods
2.1. Animals and Experimental Design

The Institutional Animal Care and Use Committee (IACUC) of Texas Tech University
approved all the procedures for this study (protocol no. 21024-04). An overview of the
experimental design is provided in Figure 1. A total of 21 multiparous postpartum Holstein
dairy cows (3–16 days in milk-DIM) were sourced from two commercial dairy farms and
screened for ketosis based on blood beta-hydroxybutyrate (BHB) concentrations using
a Precision Xtra (Abbott Laboratories, Green Oaks, IL, USA). Cows were allocated into
two groups based on blood BHB: subclinical ketosis (SCK; BHB ≥ 1.0 mM; n = 11) or
non-ketotic/control cows (BHB ≤ 0.8 mM; n = 10). Cows were blocked using DIM, number
of lactations, and body condition score (BCS), as shown in Table 1. The body condition score
was assessed by two experienced people using a 1–5 scale with 0.25 variations [16]. All of
the samples were collected and processed on the same day on each farm. The commercial
dairy source of cows did not have a significant effect on any of the serum metabolic
parameters, white blood cell counts, or genes assessed via RTqPCR in the isolated PBMCs.
Cows were housed in free stalls and received a standard transition diet.

Animals 2024, 14, x FOR PEER REVIEW 3 of 18 
 

affect VAT and SAT preadipocyte function. Using a combination of experimental ap-
proaches, we hypothesized that PBMCs from dairy cattle with subclinical ketosis exhibit 
dysregulated gene expression profiles with increased pro-inflammatory cytokine produc-
tion. In addition, we expected PBMC-conditioned media to inhibit proliferation and lipid 
accumulation in preadipocytes, driven by the suppression of key lipogenic genes. 

2. Materials and Methods 
2.1. Animals and Experimental Design 

The Institutional Animal Care and Use Committee (IACUC) of Texas Tech University 
approved all the procedures for this study (protocol no. 21024-04). An overview of the 
experimental design is provided in Figure 1. A total of 21 multiparous postpartum Hol-
stein dairy cows (3–16 days in milk-DIM) were sourced from two commercial dairy farms 
and screened for ketosis based on blood beta-hydroxybutyrate (BHB) concentrations us-
ing a Precision Xtra (Abbott Laboratories, Green Oaks, IL, USA). Cows were allocated into 
two groups based on blood BHB: subclinical ketosis (SCK; BHB ≥ 1.0 mM; n = 11) or non-
ketotic/control cows (BHB ≤ 0.8 mM; n = 10). Cows were blocked using DIM, number of 
lactations, and body condition score (BCS), as shown in Table 1. The body condition score 
was assessed by two experienced people using a 1–5 scale with 0.25 variations [16]. All of 
the samples were collected and processed on the same day on each farm. The commercial 
dairy source of cows did not have a significant effect on any of the serum metabolic pa-
rameters, white blood cell counts, or genes assessed via RTqPCR in the isolated PBMCs. 
Cows were housed in free stalls and received a standard transition diet. 

Table 1. Comparison (mean ± SEM) of SCK and Control cows. 

 SCK Control p-Value ** 
DIM 6.7 ± 3.8 8.1 ± 3.0 0.37 

Lactations 3.2 ± 1.2 2.9 ± 1.4 0.62 
BCS (1–5) 3.7 ± 0.4 3.8 ± 0.4 0.66 

BHB (mM) * 1.5 ± 0.5 0.7 ± 0.1 <0.01 
* Assessed using a Precision Xtra ketometer. ** Assessed using Student’s t-test in GraphPad Prism 
10 (v.2.2). 

 
Figure 1. Experimental design describing PBMC collection and analysis, conditioned media and 
preadipocyte crosstalk experiments. Preadipocytes utilized in the crosstalk experiments were iso-
lated from non-ketotic cows during early lactation (described in Section 2.7). SAT = subcutaneous 
adipose tissue preadipocytes; VAT = visceral adipose tissue preadipocytes; CN = conditioned media 
from Control PBMCs without LPS stimulation; CS = conditioned media from Control PBMCs with 

Figure 1. Experimental design describing PBMC collection and analysis, conditioned media and
preadipocyte crosstalk experiments. Preadipocytes utilized in the crosstalk experiments were isolated
from non-ketotic cows during early lactation (described in Section 2.7). SAT = subcutaneous adipose
tissue preadipocytes; VAT = visceral adipose tissue preadipocytes; CN = conditioned media from
Control PBMCs without LPS stimulation; CS = conditioned media from Control PBMCs with LPS
stimulation; KN = conditioned media from SCK PBMCs without LPS stimulation; KS = conditioned
media from SCK PBMCs with LPS stimulation. Created with BioRender.com.

Table 1. Comparison (mean ± SEM) of SCK and Control cows.

SCK Control p-Value **

DIM 6.7 ± 3.8 8.1 ± 3.0 0.37
Lactations 3.2 ± 1.2 2.9 ± 1.4 0.62
BCS (1–5) 3.7 ± 0.4 3.8 ± 0.4 0.66

BHB (mM) * 1.5 ± 0.5 0.7 ± 0.1 <0.01
* Assessed using a Precision Xtra ketometer. ** Assessed using Student’s t-test in GraphPad Prism 10 (v.2.2).
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2.2. Blood Collection and Serum Metabolic Analysis

Intravenous blood was obtained via coccygeal venipuncture from the selected dairy
cows. Blood samples were collected into two 10 mL tubes containing EDTA (Becton
Dickinson and Company, Franklin Lakes, NJ, USA, Cat# 366643) and kept on ice and one
10 mL tube (Becton Dickinson and Company, Cat# 368045) for obtaining serum samples.
One EDTA tube was utilized for the white blood cell count and differential, and the other
tube was used for PBMC isolation. Serum fractions were collected after centrifugation for
10 min at 900× g, aliquoted, and stored in a −80 ◦C freezer for metabolic profiling at the
Texas A&M Veterinary Medical Diagnostic Laboratory (College Station, TX, USA).

2.3. White Blood Cell Count

White blood cell counts and differentials were performed using a IDEXX Procyte DX
hematology analyzer (IDEXX Laboratories, Inc., Westbrook, ME, USA) for absolute counts
of total white blood cells, monocytes, neutrophils, lymphocytes, as well as the relative
percentages of neutrophils, lymphocytes, and monocytes.

2.4. PBMC Isolation

Peripheral blood mononuclear cells were isolated using a modified protocol based
on previous methods [17,18]. Briefly, whole blood samples collected in EDTA tubes were
centrifuged for 10 min at 900× g. Following centrifugation, the buffy coat was pipetted
off into a new 15 mL conical tube and diluted 1:1 with 1X phosphate-buffered saline (PBS)
(ThermoScientific, Waltham, MA, USA, Cat# BP3994) containing 2% fetal bovine serum
(FBS) (Corning, Corning, NY, USA, Cat# 35-016-CV). The buffy coat/PBS mixture was
then slowly pipetted into a new 15 mL conical tube containing 5 mL of Ficoll reagent
(Cytiva, Marlborough, MA, USA Cat# 17144002). The tube was then centrifuged for 22 min
at 900× g, after which the newly separated PBMC layer was pipetted into a new 15 mL
conical tube with 10 mL of PBS + 2% FBS and centrifuged for 5 min at 250× g. This step was
repeated an additional 1–2 times until the supernatant was no longer cloudy. Finally, the
supernatant was discarded and the PBMC pellet was resuspended in preadipocyte media.
A small subsample (20 µL) from each PBMC isolate was stained with 0.4% trypan blue
(Gibco, Waltham, MA, USA, Cat# 15250-061) and counted using an automated cell counter
(Countess 3, Life Technologies Inc., Carlsbad, CA, USA) to determine cell concentration.
All PBMC samples had viability >85%.

2.5. Preparation of Conditioned Media

Peripheral blood mononuclear cells isolated from Control and SCK cows were trans-
ferred to 24-well plates at a density of 1 × 106 cells/well in preadipocyte media containing
Dulbecco’s modified Eagle’s medium F12 50:50 (Corning, Cat# 10-090-CV) supplemented
with 10% FBS (Corning, Cat# 35-016-CV), 1% (v/v) antibiotic–antimycotic (Gibco, Cat#
15240-062), 100 µM ascorbic acid (Sigma-Aldrich, Cat# A4544-25G), 33 µM biotin (Sigma-
Aldrich, Burlington, MA, USA, Cat# B4639-500mg), 17 µM D-Pantothenate (ThermoScien-
tific, Cat# 243305000), and 20 mM HEPES (ThermoScientific, Cat# J16924.K2). Half of the
wells containing PBMCs isolated from each animal were stimulated with 10 ng/mL LPS
(Invitrogen, Waltham, MA, USA, Cat# 00-4976-93) and cultured for 24 h at 37C/5% CO2.
After 24 h, the media was removed from each well and saved for use as “conditioned
media” in other experiments. Conditioned media collected from PBMCs isolated from
the Control cows and treated with LPS was denoted as Control Stimulated (CS), while
that not treated with LPS was denoted as Control Non-Stimulated (CN). Conditioned
media collected from PBMCs that were isolated from ketotic cows and treated with LPS
was denoted as Ketosis Stimulated (KS), while that collected from wells not treated with
LPS was denoted as Ketosis Non-Stimulated (KN). To assess the effects of ketosis on the
crosstalk between PBMC and preadipocyte function, we utilized pooled PBMC-conditioned
media from SCK vs. control animals.
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2.6. PBMC Cytokine Assessment

Subsamples from conditioned media from each cow, as well as pooled conditioned
media samples, were assayed for IL-6, TNFα, and IFNγ concentrations via bovine DuoSet®

ELISA kits (R&D Systems Inc., Minneapolis, MN, USA; IL-6: Cat# DY8190; TNF-α: Cat#
DY2279, and IFN-γ: Cat# DY2300) following the manufacturer’s protocol.

2.7. Adipose Tissue Collection and Digestion

Preadipocytes used for the proliferation, lipid accumulation, and RTqPCR experiments
were isolated from the adipose tissue of four clinically healthy (non-ketotic) postpartum
Holstein dairy cows (7.0 ± 1.4 DIM; 3.0 ± 0.8 lactations; 3.7 ± 0.2 BCS) with a similar
metabolic profile to the Control cows used for PBMC isolation (Supplementary Table S2).
Abdominal subcutaneous adipose tissue (SAT) and retroperitoneal visceral adipose tis-
sue (VAT) were collected from each animal via laparotomy. Briefly, the right flank fossa
was clipped and scrubbed using chlorhexidine and 70% alcohol thrice. Then, 20 mL of
2% lidocaine hydrochloride (VetOne, Boise, ID, USA, Cat# 510213) was applied in an in-
verted L block, and a 10 cm skin incision was made 10 cm caudally and parallel to the
last rib, and 7–10 cm below the costal junction. Then, 5 to 10 g of SAT was obtained
from the flank incision. Next, muscles of the abdominal wall were incised and dissected
until reaching the peritoneum. A 20 g sample was obtained from the retroperitoneum
fat. Muscle layers were closed with a simple continuous suture pattern using synthetic
absorbable violet-coated braided polyglactin 910—USP 3 + 4 (Riverpoint Medical), while
the skin incision was closed with a Ford interlocking suture pattern using non-absorbable
polyamide thread, pseudo-monofilament suture USP 3 (Braunamid, Loveland, CO, USA,
Cat# J009103). Adipose tissue samples used for digestion were kept in modified Krebs–
Ringer buffer [8] at 37C during transport and prior to digestion. The digestion of adipose
tissue samples for isolation of the stromal vascular fraction (SVF) and expansion and adi-
pogenic induction of preadipocytes in vitro were performed as previously described by our
laboratory [8].

2.8. Cell Culture

Preadipocytes were grown and cultured in preadipocyte media with media replace-
ment every 48 h. To differentiate confluent preadipocytes, induction media, composed
of preadipocyte media supplemented with 0.5 µg/mL of insulin (Sigma-Aldrich, Cat#
10516-5ML), 10 mM of acetate (Sigma-Aldrich, Cat# 3863-50ML), 1 mM octanoate (ACROS
Organics, Waltham, MA, USA, Cat# A0413228), 5 µM troglitazone (AdipoGen Life Sci-
ences, San Diego, CA, USA Cat#502053932), 10 µM ciglitazone (AdipoGen, Cat#502053787),
5 µg/mL transferrin (Sigma-Aldrich, Cat# T1283), 0.5 mM 3-isobutyl 1-methyxanthine
(IBMX; AdipoGen Life Sciences, Cat# AG-CR1-3512-G001), and 1 µM dexamethasone
(Sigma-Aldrich, Cat# D2915-100MG), was used for 48 h. After 48 h, maintenance media,
composed of induction media without IBMX and dexamethasone, was used for 12 days
with media replacement every 48 h. All of the cells were cultured in an incubator at
37C/5% CO2.

2.9. Preadipocyte Proliferation and Lipid Accumulation

Preadipocytes were plated in preadipocyte media in 96-well plates at a density of
2000 cells/well. After 48 h, the media was removed and replaced with either CS, CN,
KN or KS-conditioned media. The treatment media was replaced every 48 h for the
duration of the proliferation assay. Preadipocyte proliferation was assessed via con-
fluency measurements using Gen5 Image Prime software (version 3.14) in a Cytation
5 multi-mode plate reader (Biotek, Santa Clara, CA, USA). The imaging of all wells was
performed at the same well location once a day every 48 h for 7 days. Utilizing a 4X
objective, one brightfield image per quadrant of the well was captured. To enhance data
accuracy, the images underwent processing to diminish background noise and enhance
contrast. Following the last measurement of proliferation on day 7, preadipocytes were
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induced to differentiate into adipocytes, as described above. After 14 days of differentiation,
adipocytes were assayed for lipid accumulation using the AdipoRed™ reagent (Lonza
Biosciences, Walkersville, MD, USA, Cat# T-7009) in accordance with the manufacturer’s
instructions using the Cytation 5 multi-mode plate reader. Fluorescence values were cor-
rected by the number of cells in each well that were counted using Cytation 5 prior to the
AdipoRed™ assay.

2.10. Preadipocyte-PBMC Crosstalk

We studied the effect of PBMC secretome on preadipocyte adipogenic, lipogenic,
and inflammatory gene expression by exposing cells to PBMC-conditioned media. Briefly,
paired VAT and SAT preadipocytes from the same postpartum non-ketotic cows were plated
in preadipocyte media in 6-well plates at a density of 100,000 cells/well. Preadipocyte
media was replaced every 48 h until cells reached 80% confluency. Next, preadipocyte
media was replaced with either CS, CN, KN, or KS PBMC-conditioned media. After 48 h
of treatment, the media was removed, preadipocytes were rinsed with cold 1X PBS, and
nucleic acids were collected using RLT buffer (Qiagen, Germantown, MD, USA, Cat#
1015762) for downstream RTqPCR analysis.

2.11. RTqPCR

We performed RTqPCR in isolated PBMC samples from each cow, as well as in VAT
and SAT preadipocytes treated with pooled CS, CN, KN, or KS PBMC-conditioned media.
For the isolated PBMCs, 1 × 106 cells were suspended in RLT buffer directly after PBMC
isolation. For both preadipocytes and isolated PBMCs, RNA was extracted using the
RNeasy Mini Kit (Qiagen, Cat# 74104), following the manufacturer’s instructions. RNA
concentration and purity were assessed using a NanoDrop One© Microvolume UV-Vis
Spectrophotometer (ThermoScientific, Waltham, MA, USA). Following RNA isolation,
cDNA was prepared using the High-Capacity cDNA Reverse Transfection Kit (Applied
Biosystems, Cat# 4368814) in a MiniAmpPlus thermal cycler (Applied Biosystems, Waltham,
MA, USA). RTqPCR was performed using TaqMan® gene expression assays and reagents
(Life Technologies Inc., Carlsbad, CA, USA) in a QuantStudio 6 Pro (Applied Biosystems,
Waltham, MA, USA). Target genes for the preadipocyte samples were diacylglycerol o-
acyltransferase 1 (DGAT1; Bt03251717_g1), fatty acid synthase (FASN; Bt0310481_m1),
hormone-sensitive lipase (LIPE; Bt0323697_m1), perilipin 1 (PLIN1; Bt03257414_m1), per-
oxisome proliferator-activated receptor gamma (PPARG; Bt03217547_m1), transforming
growth factor beta 1 (TGFB1; Bt04259484_m1), interleukin-1 beta (IL1B; Bt03212741_m1),
and interleukin 6 (IL6; Bt03211905_m1). Target genes for the PBMC samples were colony-
stimulating factor 2 (CSF2; Bt03212483_m1), interleukin 8 (CXCL8; Bt03211906_m1), inter-
feron gamma (IFNG; Bt03212723_m1), interleukin 10 (IL10; Bt03212727_m1), interleukin
17A (IL17A; Bt03210251_m1), interleukin 18 (IL18; Bt03212732_m1), IL1B (Bt03212741_m1),
interleukin 4 (IL4; Bt03211897_m1), IL6 (Bt03211905_m1), TGFB1 (Bt04259484_m1), and
tumor necrosis factor alpha (TNF; Bt03259156). Beta-2 microglobulin (B2M; Bt03251628_m1)
and eukaryotic initiation factor 3 subunit K (EIF3K; Bt03226565) were used as housekeep-
ing genes [19,20] for the preadipocyte samples, while beta-actin (ACTB; Bt03279174_g1)
and 40S ribosomal protein S9 (RPS9; Bt03272016) were used as housekeeping genes
for the PBMC samples [21]. Prior to analysis, expression data were normalized to the
geometric mean of the expression of the housekeeping genes. For the PBMCs, data
are expressed as fold change relative to expression in PBMCs from Control cows for
each gene.

2.12. Statistical Analysis

All of the statistical analyses were performed using the PROC GLM method in SAS
(version 9.4; SAS Institute Inc., Cary, NC, USA). The normality of the residuals was assessed
using the PROC UNIVARIATE method in SAS (v9.4), and none of the data required
transformation prior to analysis. For metabolic profile markers, white blood cell counts,
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and PBMC RTqPCR data, group (Control, SCK) was used as the fixed effect, with cow as
the random effect. For ELISAs, LPS treatment (+LPS, −LPS), and the group that the PBMCs
used to make the conditioned media came from (Control, SCK), were used as the fixed
effects, with cow as the random effect. For preadipocyte proliferation, lipid accumulation,
and preadipocyte RTqPCR data, LPS treatment (+LPS, −LPS), the group that the PBMCs
used to make the conditioned media came from (Control, SCK), and adipose tissue depot
(SAT, VAT) were used as the fixed effects, with the cow that the preadipocytes were
derived from as the random effect. Outliers with Studentized t values ≥ 3.0 were removed
from the analysis. Significance was declared at p ≤ 0.05, with tendencies declared for
0.05 < p ≤ 0.1.

3. Results
3.1. Subclinical Ketosis Increased Circulating NEFA and BHB, but Decreased Total WBC
and Neutrophils

Serum metabolites were quantified to assess the metabolic profile associated with
postpartum and ketosis in the experimental cows. As anticipated, SCK cows exhibited
elevated concentrations of circulating BHB (p < 0.01; Figure 2A) and nonesterified fatty
acids (NEFA; p = 0.02; Figure 2B) compared to the Control. There were no differences
between SCK and Control groups in terms of glucose, insulin, cholesterol, blood urea
nitrogen (BUN), albumin, Ca, P, Mg, Na, K, or Cl serum concentrations (Supplementary
Table S1). Analysis of white blood cell (WBC) populations from whole blood samples
revealed that SCK cows had lower counts of both total WBC (p = 0.01; Figure 2C) and total
neutrophils (p = 0.02; Figure 2C) compared to the Control cows. However, the relative
abundance of different types of WBCs was not different between the two groups, with only
the percentage of monocytes tending to be higher in SCK cows (Figure 2D).
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Figure 2. Serum BHB (A), NEFA (B), and whole blood WBC counts (C) and differential (D) in
Control (n = 10) and SCK (n = 11) cows. BHB = β-hydroxybutyrate; NEFA = nonesterified fatty acids;
WBC = white blood cell; NEU = neutrophils; LYM = lymphocytes; MON = monocytes. Significant
differences between groups are denoted by *.
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3.2. Subclinical Ketosis Had a Minimal Effect on PBMC Expression of Target Genes

No significant differences were detected in the expression of the selected target genes
in the PBMCs from SCK and Control cows (Figure 3A). There were tendencies for higher
IL18 and IL6 expression in PBMCs from SCK cows.
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Figure 3. Expression of target genes in PBMCs isolated from Control and SCK cows assessed via
RTqPCR (A) and cytokine concentrations in PBMC-conditioned media after 24 h assessed via ELISA
(B). CN = conditioned media from Control PBMCs without LPS stimulation; CS = conditioned media
from Control PBMCs with LPS stimulation; KN = conditioned media from SCK PBMCs without LPS
stimulation; KS = conditioned media from SCK PBMCs with LPS stimulation. For LPS, (+) indicates
PBMCs stimulated with 10 ng/mL LPS during the 24 h culture period, while (−) indicates treatments
without LPS. For SCK, (+) indicates PBMCs from SCK were used to make the conditioned media,
while (−) indicates that PBMCs were derived from Control cows.

3.3. LPS Stimulation, but Not SCK, Affects IL-6 and TNFα Concentrations in
PBMC-Conditioned Media

To investigate the inflammatory secretome of PBMCs under both basal and inflam-
matory conditions, enzyme-linked immunosorbent assays were conducted to quantify
the pro-inflammatory cytokines TNFα, IL-6, and IFNγ (Figure 3B). The source of PBMCs
(Control vs. SCK) had no effect on the amount of IL-6 or TNFα secreted into the media;
however, both cytokines were increased when PBMCs were stimulated with LPS. There
were no effects on IFNγ concentrations in the PBMC-conditioned media.
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3.4. Preadipocytes Exposed to SCK PBMC-Conditioned Media Accumulate Less Lipids

We assessed the effect of a 7-day exposure of VAT and SAT preadipocytes to PBMC-
conditioned media on adipogenesis by measuring preadipocyte proliferation and adipocyte
lipid accumulation. Preadipocyte proliferation increased throughout 7 days, with VAT
cells proliferating at a lower rate compared to SAT (Figure 4A). SCK tended to increase
preadipocyte proliferation in both depots, while LPS stimulation tended to decrease pro-
liferation (Figure 4A). As shown in Figure 4B, adipocyte lipid accumulation was affected
by the interaction between depot, LPS stimulation, and whether the PBMC-conditioned
media derived from SCK or Control cows. VAT cells treated with CN-conditioned media
had the highest lipid accumulation, and SAT cells treated with KS-conditioned media
had the lowest. Additionally, there was a higher lipid accumulation in cells treated with
conditioned media from Control PBMCs compared to conditioned media from SCK PBMCs
(p = 0.03; Figure 4B).

3.5. Conditioned Media from SCK PBMCs Increases Expression of Genes Associated with Lipid
Metabolism in Preadipocytes

The expressions of genes associated with lipid metabolism in preadipocytes treated
with PBMC-conditioned media for 48 h are shown in Figure 5. The expression of DGAT1
was higher in SAT preadipocytes compared to VAT preadipocytes (Figure 5A) and also
higher in preadipocytes treated with SCK PBMC-conditioned media (Figure 5A). There
was an interaction between the depot and source of conditioned media, with SCK PBMC-
conditioned media having a stronger stimulatory effect on DGAT1 expression in SAT
preadipocytes compared to VAT preadipocytes (Figure 5A). There was a tendency for an
interaction effect of depot × LPS, with higher DGAT1 expression in SAT preadipocytes
compared to VAT preadipocytes when the cells were treated with PBMC-conditioned media
stimulated with LPS. A tendency for an interaction effect of LPS*SCK was also observed,
with KS-conditioned media increasing DGAT1 expression more than CS-conditioned media.
Following the same trends as DGAT1, LIPE expression was also higher in SAT compared
to VAT, in preadipocytes treated with SCK PBMC-conditioned media, with a stronger
effect of SCK PBMC-conditioned media in SAT compared to VAT (Figure 5B). Both FASN
(Figure 5C) and PLIN1 (Figure 5D) expressions were higher in preadipocytes treated
with SCK PBMC-conditioned media, with a tendency for higher FASN expression in SAT
preadipocytes compared to VAT preadipocytes. The expression of PPARG was not affected
by the treatments (Figure 5E); however, there was a tendency for higher PPARG expression
in preadipocytes treated with SCK PBMC-conditioned media compared to Control PBMC-
conditioned media.

3.6. Preadipocyte Cytokine Gene Expression Is Affected by LPS and SCK
PBMC-Conditioned Media

The RTqPCR results for the expression of IL1B, IL6, and TGFB1 in preadipocytes
treated with PBMC-conditioned media are shown in Figure 6. The expression of TGFB1
followed a similar trend to the target genes associated with lipid metabolism, with an
increase in TGFB1 expression upon preadipocyte treatment with SCK PBMC-conditioned
media (Figure 6A). The expression of IL1B and IL6 was minimal in preadipocytes treated
with non-stimulated conditioned media independent of ketosis status (Figure 6B,C). As
expected, LPS exposure increased IL1B and IL6 expression. For IL6, expression tended to
be higher in SAT preadipocytes compared to VAT preadipocytes. There was a tendency for
the interaction effect between depot and LPS exposure on IL6 expression, with LPS tending
to stimulate a stronger stimulatory effect in SAT vs. VAT preadipocytes.
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Figure 4. Preadipocyte proliferation (A) and mature adipocyte lipid accumulation (B) in cells treated
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of the single effect (ex. Depot, LPS, SCK) or their interaction. SAT = subcutaneous adipose tissue
preadipocytes; VAT = visceral adipose tissue preadipocytes; CN = conditioned media from Control
PBMCs without LPS stimulation; CS = conditioned media from Control PBMCs with LPS stimulation;
KN = conditioned media from SCK PBMCs without LPS stimulation; KS = conditioned media from
SCK PBMCs with LPS stimulation. For LPS, (+) indicates PBMCs stimulated with 10 ng/mL LPS
during the 24 h culture period, while (−) indicates treatments without LPS. For SCK, (+) indicates
PBMCs from SCK were used to make the conditioned media, while (−) indicates that PBMCs
were derived from Control cows. Differences between groups are denoted by letters (a,b,c) when
interactions were identified as significant and by * for significant specific effects.
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Figure 5. Expression of DGAT1 (A), LIPE (B), FASN (C), PLIN1 (D), and PPARG (E) in preadipocytes
treated with PBMC-conditioned media for 48 h. Smaller graphs indicate the direction of the single
effect (ex. Depot, LPS, SCK) or their interaction. SAT = subcutaneous adipose tissue preadipocytes;
VAT = visceral adipose tissue preadipocytes. For LPS, (+) indicates PBMCs stimulated with 10 ng/mL
LPS during the 24 h culture period, while (−) indicates treatments without LPS. For SCK, (+) indicates
PBMCs from SCK were used to make the conditioned media, while (−) indicates that PBMCs were
derived from Control cows. Differences between groups are denoted by letters (a,b) when interactions
were identified as significant and by * for significant specific effects.
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Figure 6. Expression of TGFB1 (A), IL6 (B), and IL1B (C) in preadipocytes treated with PBMC-
conditioned media for 48 h. Smaller graphs indicate the direction of the single effect (ex. Depot, LPS,
and SCK) or their interaction. SAT = subcutaneous adipose tissue preadipocytes; VAT = visceral
adipose tissue preadipocytes. For LPS, (+) indicates PBMCs stimulated with 10 ng/mL LPS during
the 24 h culture period, while (−) indicates treatments without LPS. For SCK, (+) indicates PBMCs
from SCK were used to make the conditioned media, while (−) indicates that PBMCs were derived
from Control cows. *: significant specific effects.
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4. Discussion

Overall, our findings indicate that subclinical ketosis has a moderate effect on WBC
profiles, albeit with minor effects on cytokine gene expression and secretion in PBMCs.
Elevated levels of ketones, such as those detected in the subclinical ketotic cows in this study,
is relatively common in high-producing dairy cattle and may be more indicative of higher
energy demands rather than a pathological condition or metabolic dysfunction [22,23].
Our findings highlighted the effects of PBMC-conditioned media on preadipocyte gene
expression and function, suggesting that other factors coming from PBMCs can regulate
adipose cell function.

Prior studies on early postpartum dairy cattle describe varying differences in WBC
differentials between cows with subclinical ketosis and non-ketotic cows, with some studies
observing increases in total WBC [24], lymphocytes [24,25], and monocytes [26] in the blood
of dairy cows with subclinical ketosis and no effect on neutrophil populations [25]. Our
results, observing lower total WBC in the blood of SCK cows, somewhat contrast with
those previous findings, even though the levels of BHB and NEFA in the SCK cows used in
this study were similar to those studies. Given that subclinical ketosis has been associated
with an increased incidence of other postpartum diseases in dairy cattle [27,28], underlying
conditions such as endometritis [29] and subclinical mastitis [30] that have yet to be detected
can also influence WBC, contributing to variations between studies. In our study, at the
moment of animal selection and sampling, no other clinical diseases were reported or
detected, and WBC parameters fell within the reference ranges for early lactation dairy
cattle [31]. Also limiting the comparison between our study and previous studies is the
absence of inflammatory parameters (ex. haptoglobin, paraoxonase, myeloperoxidase, etc.)
in our dataset. Inflammatory conditions in postpartum dairy cows are known to influence
immune cell function [32–34]; however, the inflammatory status of cows used in our study
was not registered or noted. During in vitro studies, elevated concentrations of NEFA [35]
(≥0.5 mM) and BHB [36] (≥1.0 mM) suppress the proliferation of PBMCs from dairy cattle;
however, these in vitro settings often fail to replicate endogenous factors, such as albumin,
which can modulate the effects of serum components on white blood cell function in vivo.

Despite the lower total WBC and neutrophils in the blood of SCK cows, the relative
abundance of each WBC type was not different between groups, with only a tendency for
a greater % of monocytes in SCK cows. In line with the lack of differences, no significant
differences were observed in the expression of target genes in PBMCs, albeit with tendencies
for increased IL6 and IL18 expression in PBMCs from SCK cows. IL-6 is a multifaceted
cytokine involved in coordinating immune and inflammatory responses [37], and increased
PBMC expression of genes involved in IL-6 signaling has been identified in metabolically
stressed dairy cattle during the early postpartum period [13]. However, the increase in IL-6
signaling may be driven by factors other than NEFA or BHB, as neither of these compounds
increased IL6 expression in bovine PBMCs in vitro [38]. IL-18 is another important pro-
inflammatory cytokine involved in stimulating IFNγ production by immune cells [39];
however, we observed no differences in IFNG gene expression or IFNγ production between
PBMCs from SCK and Control cows. Additional investigations evaluating the relationship
between postpartum metabolic stress and IL18 in dairy cattle are limited. The absence
of differences in PBMC IL6, TNFA, and IFNG expression between SCK and Control was
also supported by similar concentrations of IL-6, TNFα, and IFNγ measured in the PBMC-
conditioned media. In addition, while both PBMC secreted IL-6 and TNFα concentrations
increased after LPS treatment, SCK and Control responded similarly to LPS. Together, these
data indicate that, among the genes and cytokines measured, the overall phenotype of
PBMCs is largely similar between SCK and Control cows. However, findings regarding the
effects of PBMC-conditioned media on preadipocyte function and gene expression suggest
that other PBMC factors secreted in ketotic conditions can modulate adipose cell function,
particularly adipogenesis.

We assessed how PBMC secretory factors associated with ketosis could affect adipoge-
nesis in vitro by evaluating preadipocyte proliferation, the gene expression of adipogenic
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and lipogenic markers, and adipocyte lipid accumulation. Independent of ketotic status
and LPS stimulation, PBMC-conditioned media had no effect during the proliferation assay,
with SAT cells having a greater proliferative capacity than VAT cells. Notable, however,
was the observation that even after conditioned media had been removed for 14 days, cells
that had been treated with the conditioned media from SCK PBMCs had overall reduced
lipid accumulation, independent of depot or LPS stimulation, suggesting a detrimental
effect of PBMC secretome from SCK on adipocyte function. One potential factor driving
this effect may be the higher expression of TGFB1 in preadipocytes treated with SCK
PBMC-conditioned media. TGFB1 is a member of the transforming growth factor beta
cytokine family and has been recognized as an important inhibitor of adipogenesis [40].
Prior studies have shown that TGFB1 signaling inhibits the differentiation of both 3T3-L1
cells [41] and porcine preadipocytes [42,43] into mature adipocytes. Furthermore, TGFB1
has been implicated in adipose dysfunction under conditions of obesity, evidenced by the
reduced expression of adipogenic marker genes (ADIPOQ) in mouse adipocytes treated
with TGFB1 [44] and increases in Tgfb expression in adipose tissue of obese mice [45].
Thus, the increased expression of TGFB1 when preadipocytes were treated with condi-
tioned media from PBMCs from SCK cows suggests that factors produced by PBMCs in
cows with subclinical ketosis function to inhibit adipogenesis and the differentiation of
preadipocytes into mature adipocytes. Although contrary to this is the increase in ex-
pression of key lipogenic genes, such as DGAT1, FASN, LIPE, and PLIN1, under the same
conditions, perhaps an indicator of a more dysregulated adipogenic signaling as opposed
to a coordinated decrease in adipogenesis. Previous investigations have identified minimal
differences, and even reductions in the expression of important lipogenic genes, such as
FASN, PPARG, and LIPE, in early postpartum dairy cows with ketosis [46–48], indicating
that the increases in the expression of these genes observed in our study may be attributed
to PBMC-derived factors. Both PLIN1 and LIPE participate in the regulation of lipogenesis
and lipolysis via phosphorylation events, with phosphorylation of both proteins promoting
lipolysis. Insulin functions as an inhibitor of these phosphorylation events, preventing
the phosphorylation of PLIN1 and LIPE and promoting lipid accumulation and inhibiting
lipolysis [49,50]. In contrast, catecholamines, including dopamine, norepinephrine, and
epinephrine, stimulate the phosphorylation of PLIN1 and LIPE, thereby promoting lipol-
ysis [51]. Interestingly, catecholamines can be produced not only by the central nervous
system but also by PBMCs [52–54], and increased phosphorylated LIPE has been observed
in the adipose tissue of dairy cattle with subclinical ketosis [55]. Within the context of this
investigation, we speculate that increased catecholamine production by PBMCs from SCK
cows, combined with the increase in TGFB1 expression, may be driving the reduction in
lipogenic activity we observed in our cultured cells. Notably, the stimulatory effect of SCK
PBMC-conditioned media on the expression of DGAT1, LIPE, and FASN was more pro-
nounced in SAT preadipocytes compared to VAT, an effect that may also be attributable to
differences in adrenergic sensitivity between the two depots [56]. Prior work by Queathem
et al. demonstrated that adrenergic stimulation increased FASN expression in SAT and de-
creased inhibition of AMPK in VAT in mice [57]. AMPK, which is activated upon adrenergic
signaling, functions as an important regulator of energy metabolism in adipose tissue, with
increased AMPK activity promoting lipolysis and suppressing lipogenesis [58]. Therefore,
continued investigations into the production of catecholamines by PBMCs in transition
dairy cattle are essential to understanding how these peripheral cells may contribute to
postpartum adipose tissue dysfunction.

Finally, we observed an increase in IL1B and IL6 expression in preadipocytes treated
with conditioned media stimulated by LPS. These findings are supported by prior research
where LPS stimulated an increase in IL1B expression in human visceral adipocytes [59], with
non-stimulated cells expressing very little IL1B. Similar results have been observed for IL6,
where LPS stimulation of porcine adipocytes triggered an increase in IL6 expression [60].
The lack of a difference in IL1B or IL6 expression between SAT and VAT preadipocytes
aligns with previous studies in dairy cattle as well. Michelotti et al. [8] found no difference
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in IL1B or IL6 expression between SAT and VAT from dairy cattle. Together, these results
indicate that factors derived from PBMCs from either non-ketotic or subclinically ketotic
cows have a minimal effect on IL1B or IL6 expression in bovine preadipocytes.

5. Conclusions

In conclusion, these results demonstrate that although differences in PBMC cytokine
gene expression and secretion are minimal between dairy cattle with and without sub-
clinical ketosis, additional factors secreted by PBMCs may contribute to adipose cellular
dysfunction. Notably, the effects of PBMC-conditioned media on adipose cell gene expres-
sion occur in a depot-specific manner, further emphasizing the importance of considering
depot-specific characteristics in metabolic dysfunction. Further investigations aimed at
characterizing the PBMC secretome in early postpartum dairy cattle will provide critical
insight into the pathogenesis of ketosis in dairy cattle and may lead to the identification of
predictive biomarkers and therapeutic targets.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ani14131995/s1, Table S1: Serum metabolic profile of Control and
SCK cows. Table S2. Comparison of Control cows utilized for PBMC isolation and non-ketotic cows
used as the preadipocyte source.
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