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Simple Summary: Efficient breeding of meat ducks using three-dimensional and multi-layer cages is
a novel approach being actively explored in China. In this process, timely and accurate detection
of abnormal situations among ducks is crucial for optimizing and refining the cage-rearing system,
and ensuring animal health and welfare. This study focused on the overturned and dead status of
cage-reared ducks using YOLOv8 as the basic network. By introducing GAM and Wise-IoU loss
functions, we proposed an abnormal-situation recognition method for cage-reared ducks based on
YOLOv8-ACRD. Building on this, we refined the identification of key body parts of cage-reared
ducks, focusing on six key points: head, beak, chest, tail, left foot, and right foot. This resulted
in the development of an abnormal posture estimation model for cage-reared ducks, based on
HRNet-48. Furthermore, through multiple tests and comparative verification experiments, it was
confirmed that the proposed method exhibited high detection accuracy, generalization ability, and
robust comprehensive performance. The method proposed in this study for perceiving abnormal
situations in cage-reared ducks not only provides foundational information for the progress and
improvement of the meat duck cage-reared system but also offers technological references for the
intelligent breeding of other cage-reared poultry.

Abstract: Overturning and death are common abnormalities in cage-reared ducks. To achieve timely
and accurate detection, this study focused on 10-day-old cage-reared ducks, which are prone to
these conditions, and established prior data on such situations. Using the original YOLOv8 as the
base network, multiple GAM attention mechanisms were embedded into the feature fusion part
(neck) to enhance the network’s focus on the abnormal regions in images of cage-reared ducks.
Additionally, the Wise-IoU loss function replaced the CIoU loss function by employing a dynamic
non-monotonic focusing mechanism to balance the data samples and mitigate excessive penalties
from geometric parameters in the model. The image brightness was adjusted by factors of 0.85
and 1.25, and mainstream object-detection algorithms were adopted to test and compare the gen-
eralization and performance of the proposed method. Based on six key points around the head,
beak, chest, tail, left foot, and right foot of cage-reared ducks, the body structure of the abnormal
ducks was refined. Accurate estimation of the overturning and dead postures was achieved using
the HRNet-48. The results demonstrated that the proposed method accurately recognized these
states, achieving a mean Average Precision (mAP) value of 0.924, which was 1.65% higher than that
of the original YOLOv8. The method effectively addressed the recognition interference caused by
lighting differences, and exhibited an excellent generalization ability and comprehensive detection
performance. Furthermore, the proposed abnormal cage-reared duck pose-estimation model achieved
an Object Key point Similarity (OKS) value of 0.921, with a single-frame processing time of 0.528 s,
accurately detecting multiple key points of the abnormal cage-reared duck bodies and generating
correct posture expressions.
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1. Introduction

China is the largest global producer of duck meat. In recent years, the demand for
duck meat and advancements in efficient breeding techniques have increased the annual
number of slaughtered ducks. By 2023, China had 4.218 billion ducks, a 5.40% increase
from 2022, with a total output value of 126.369 billion yuan, reaching a 5.04% increase
from the previous year [1]. Traditionally, the duck meat industry in China has relied on
extensive breeding methods such as free-range and open-field grazing, which are inefficient
and cause severe environmental pollution. In response to governmental demands for
sustainable livestock practices, intensive, efficient, and environment-friendly cage rearing
has become the primary modern poultry breeding model [2]. During cage rearing, increased
stocking density and reduced activity space, combined with the inherently sensitive and
stress-prone nature of ducks, can often lead to abnormal behaviors, resulting in significant
economic losses [3]. These behaviors include overturning and mortality. Overturning, often
stress-induced, tends to occur around 10 days of age when the ducks’ skeletal development
is insufficient to support their bodies, leaving them unable to right themselves without
assistance. Without manual intervention, their physiological health is at risk. Moreover,
deceased ducks, as carriers of infectious diseases, can cause large-scale breeding accidents
if not promptly addressed. Therefore, efficient, accurate, and timely detection of abnormal
situations in cage-reared ducks is crucial for ensuring healthy breeding practices and
improving the cage-rearing mode.

Traditional screening for abnormal poultry primarily relies on manual inspection,
which is time-consuming, labor-intensive, and highly subjective [4]. Additionally, this
method can facilitate the cross-species transmission of pathogens. Although attaching
acceleration sensors [5–8] and RFID [9–11] tags to poultry can automatically obtain motion
information, this approach has drawbacks including high cost, cumbersome operation,
and rejection by animals. Recently, with the continuous advancement of AI technology,
many scholars have explored deep learning-based detection methods for poultry, utilizing
various physiological features, such as appearance, behavior, sound, body temperature,
and feces to address these issues.

Cui et al. [12] proposed a method for recognizing the health status of broiler chickens
based on an improved YOLOv5 model, achieving an average accuracy of 97.80%. Zhuang
et al. [13] leveraged differences in feather coverage and posture between healthy and
diseased chickens, and optimized the Single Shot Multibox Detector (SSD) to enhance the
accuracy and achieve precise classification of diseased and healthy chickens within a flock.
Yang et al. [14] developed a method for calculating feather coverage on the backs of laying
hens using thermal infrared images and the Otsu algorithm, elucidating the correlation
between feather coverage and body temperature. Aydin [15] used depth cameras to collect
3D data on broilers, number of lying events (NOL), and latency to lie down (LTL) of
lying behaviors. By comparing these data with previous records, a method was proposed
for detecting limping in broiler chickens. Xiao et al. [16] achieved the precise semantic
segmentation of caged chickens’ heads and body parts using binocular vision, conducting
3D reconstruction for the feeding movement analysis in three dimensions. Chai et al. [17]
effectively monitored the floor egg-laying behavior in free-range laying hens using deep
learning techniques. Cuan et al. [18] proposed an early detection method for Newcastle
disease (ND) in poultry by analyzing the poultry’s sounds with deep learning networks,
achieving a 98.50% accuracy rate. Shen et al. [19] adopted convolutional neural networks
with infrared thermal imaging to extract the highest temperatures of broiler chickens’
heads and legs, creating an automatic temperature-detection model for white-feathered
broilers. This model, incorporating environmental temperatures, relative humidity, and
light intensity had an average relative error of only 0.29%. Degu et al. [20] developed a
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poultry disease discrimination method based on the images of diseased chicken feces, using
the YOLOv3 and ResNet-50 target detection algorithms with smartphones, achieving a
98.70% classification accuracy for identifying health, coccidiosis, salmonella, and Newcastle
disease. Gu et al. [21] proposed a method for real-time behavior recognition of cage-reared
laying ducks by enhancing YOLOv4, offering a valuable technical reference for anomaly
detection in cage-reared ducks.

Although these achievements have facilitated multi-target monitoring and disease
diagnosis in broiler and layer chickens, there is a lack of research on methods for identifying
abnormal situations in cage-reared ducks, necessitating innovative approaches. Given the
strong learning and reasoning capabilities of computer vision technology in healthy poultry
breeding, exploring its use in detecting and addressing abnormal situations in cage-reared
ducks is both feasible and promising.

In current cage-rearing practices for meat ducks, a single cage typically holds 10–20 ducks
(depending on cage size), each exhibiting varied physiological states and behavioral pat-
terns. To ensure experimental consistency, this study specifically focused on ducks that
were overturned or deceased, while disregarding others. In summary, this study addressed
the demand for detecting abnormal conditions in cage-reared ducks, with a focus on 10-day-
old ducks prone to such issues. This study consisted of four parts based on computer vision
technology: (1) proposing an object detection model for over-turned and dead ducks in
cages using an improved YOLOv8, (2) evaluating the impact of embedding global attention
mechanism (GAM) into the original YOLOv8 network structure and replacing the CIoU
loss function with Wise-IoU on the detection accuracy, (3) testing the generalization ability
of the optimized model by adjusting image brightness levels (‘bright’ and ‘dark’) and
comparing its performance with other mainstream methods, (4) introducing six key points,
including head, beak, chest, tail, and left and right feet to refine the detection of abnormal
situations in cage-reared ducks, and (5) proposing a method for abnormal cage-reared
duck pose-estimation based on HRNet-48, and conducting performance comparison tests.
The proposed method not only provides fundamental data for advancing cage-reared
duck technology but also offers technical references for the intelligent breeding of other
poultry species.

2. Materials and Methods
2.1. Image Acquisition and Experimental Material

In this study, 10-day-old Cherry Valley meat ducks raised at the Jiangsu Academy
of Agricultural Sciences Animal Experiment Base in Liuhe District, Nanjing City, Jiangsu
Province (32◦ N, 118◦ E) were used as experimental animals. The breeding cages used were
3-layer H-shaped structures with LED light strips at the top. Unlike laying ducks, meat
ducks did not have a peak egg-laying period from 0:00 to 4:00. Their feeding, drinking, and
other activities primarily occurred on well-lit days. After the lights were turned off at night,
most ducks remained in the resting state.

To adequately collect samples of abnormal situations in cage-reared meat ducks,
we used a duck house inspection robot equipped with a RealSense D435i depth camera
(produced by Intel corporation in the United States), developed earlier, as the image-
acquisition platform. The robot operated on a fixed trajectory at a constant speed from
7:00 a.m. to 8:00 p.m. on the 10th day, capturing the imagery data of cage-reared ducks
at a resolution of 1280 × 720 and a frame rate of 30 fps. Subsequently, frame processing
was performed manually. The camera parameters are listed in Table 1. Additionally, the
layout and process of abnormal data collection for cage-reared ducks are illustrated in
Figure 1, and examples of anomalies are shown in Figure 2. Moreover, to prevent the
environmental stress caused by the inspection robot from affecting the ducks’ behavior, the
ducks underwent adaptive training before the experiment.
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Table 1. Partial parameters of RealSense D435i.

Attribute Parameter

Resolution and FPS 1280 × 720 30 fps
Dimensions (mm) 90 × 25 × 25
RGB FOV (H × V) 69◦ × 42◦

Depth FOV 87◦ × 58◦

Ideal range (m) <3
Interface type USB 3

Animals 2024, 14, x FOR PEER REVIEW 4 of 26 
 

stress caused by the inspection robot from affecting the ducks’ behavior, the ducks under-
went adaptive training before the experiment. 

Table 1. Partial parameters of RealSense D435i. 

Attribute Parameter 
Resolution and FPS 1280 × 720 30 fps 
Dimensions (mm) 90 × 25 × 25 
RGB FOV (H × V) 69° × 42° 

Depth FOV 87° × 58° 
Ideal range (m) <3 
Interface type USB 3 

 
Figure 1. Example of the process and layout for collecting abnormal situations in cage-reared ducks. 

 

 

 

Dead situation 1 

 
Dead situation 2 Dead situation 3 

(A). Overturned (B). Dead 

Figure 2. Example of abnormal cage-reared ducks. 

Figure 2 illustrates a significant difference in the body posture of cage-reared ducks 
between overturned and deceased ducks. Overturned ducks typically have their backs on 
the ground, head and neck lifted upward near the chest, with both feet facing upward. In 
contrast, the deceased ducks exhibited abnormal postures, including bending of the body, 
leg extension, head on the ground, and closed eyes. These characteristics can be used to 
accurately identify and classify abnormal cage-reared ducks. 

2.2. Preprocessing of Abnormal Cage-Reared Duck Images and Dataset Construction 

Figure 1. Example of the process and layout for collecting abnormal situations in cage-reared ducks.

Animals 2024, 14, x FOR PEER REVIEW 4 of 25 
 

stress caused by the inspection robot from affecting the ducks’ behavior, the ducks under-
went adaptive training before the experiment. 

Table 1. Partial parameters of RealSense D435i. 

Attribute Parameter 
Resolution and FPS 1280 × 720 30 fps 
Dimensions (mm) 90 × 25 × 25 
RGB FOV (H × V) 69° × 42° 

Depth FOV 87° × 58° 
Ideal range (m) <3 
Interface type USB 3 

 Inspection robot Breeding cageBreeding cage
0.40m

: LED 
: Camera 
 : Magnetic stripe

1.
57

m

0.
85

m

45°
1

2

1
270°

2

 
Figure 1. Example of the process and layout for collecting abnormal situations in cage-reared ducks. 

 

 

 

Dead situation 1 

 
Dead situation 2 Dead situation 3 

(A). Overturned (B). Dead 

Figure 2. Example of abnormal cage-reared ducks. 

Figure 2 illustrates a significant difference in the body posture of cage-reared ducks 
between overturned and deceased ducks. Overturned ducks typically have their backs on 
the ground, head and neck lifted upward near the chest, with both feet facing upward. In 
contrast, the deceased ducks exhibited abnormal postures, including bending of the body, 
leg extension, head on the ground, and closed eyes. These characteristics can be used to 
accurately identify and classify abnormal cage-reared ducks. 

Figure 2. Example of abnormal cage-reared ducks.

Figure 2 illustrates a significant difference in the body posture of cage-reared ducks
between overturned and deceased ducks. Overturned ducks typically have their backs on
the ground, head and neck lifted upward near the chest, with both feet facing upward. In
contrast, the deceased ducks exhibited abnormal postures, including bending of the body,
leg extension, head on the ground, and closed eyes. These characteristics can be used to
accurately identify and classify abnormal cage-reared ducks.

2.2. Preprocessing of Abnormal Cage-Reared Duck Images and Dataset Construction

The images of abnormal cage-reared ducks were obtained through frame extraction
by experienced breeders. Data augmentation techniques were employed to expand the
dataset, which was ultimately normalized to 640 × 640 pixels to prevent overfitting in
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later stages of the model due to the limited number of image samples. Two experiments
were designed: one for the identification of abnormal cage-reared ducks and another for
pose estimation. Each experiment used a corresponding dataset created using SAM and
Labelme image-annotation tools, following annotation rules. The definitions of abnormal
situations and key parts of cage-reared ducks, as well as the composition of the abnormal
cage-reared ducks dataset, are presented in Table 2 and Figure 3, respectively.

Table 2. Definition of abnormal situations and key body parts of cage-reared ducks.

Dataset Labels Abnormal Situations and Key Points Definitions

Abnormal cage-reared
ducks dataset

Overturned
Cage-reared ducks exhibit a supine posture with both feet pointing upwards,
their backs pressed against the ground, heads and necks inclined away from

the ground, with a tendency to sway from side to side.

Dead Cage-reared ducks adhere to the ground in a deformed posture, remain
stationary, with stains covering their feathers.

Abnormal cage-reared ducks
pose-estimation dataset

Head Cage-reared ducks crown feather region
Beak Cage-reared ducks upper beak region

Breast Cage-reared ducks breast feather region
Tail Cage-reared ducks tail feather region

Left foot Facing the cage-reared ducks, the left palm area of the cage-reared ducks
Right foot Facing the cage-reared ducks, the right palm area of the cage-reared ducks
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The abnormal cage-reared ducks dataset was annotated based on two typical situations:
overturned and dead, with a proportion approaching 7:3 based on statistical analysis. The
abnormal cage-reared ducks pose-estimation dataset defined six key points: the head, beak,
chest, left foot, right foot, and tail. Following the connection rules between the head and
chest, chest and left foot, chest and right foot, and chest and tail, these points characterize
the posture of cage-reared ducks in abnormal situations. The distribution of the number
of images in each category within the abnormal cage-reared ducks dataset is presented in
Table 3.
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Table 3. The distribution of the abnormal cage-reared ducks dataset.

Abnormal Cage-Reared Ducks Dataset

Train Test

Overturned 3154 603
Dead 1297 237

2.3. Detection Method for Abnormal Situations in Cage-Reared Ducks

In 2023, Ultralytics introduced YOLOv8 as an enhancement to YOLOv5, categorizing
it into five types, including n, s, l, m, and x, based on different depths and widths, with
depth increasing sequentially [22]. This study selected YOLOv8n, known for its balanced
detection accuracy and real-time performance, as the base network. Considering the
characteristics of a large number and scale of cage-reared ducks, significant multi-scale
features, and the difficulty in detecting abnormal targets due to their small size, this paper
proposes a YOLOv8-ACRD (abnormal cage-reared ducks) model for identifying abnormal
situations in cage-reared ducks, incorporating the GAM attention mechanism [23] and
Wise-IoU loss function [24].

2.3.1. YOLOv8-ACRD Network Structure

The structure of YOLOv8-ACRD was similar to that of the original YOLOv8, consisting
of four parts: the input, backbone, neck, and head. However, YOLOv8-ACRD distinguished
itself by densely embedding the GAM mechanism after each C2f module in its neck.
This enhancement improved the ability of the network to extract and fuse the features of
abnormal cage-reared ducks, allowing the model to focus better on small-area features, such
as overturned or deceased ducks in the image background, thereby enhancing recognition
accuracy. Furthermore, the Wise-IoU loss function was introduced to address the data
imbalance and reduce the impact of geometric factors, such as distance and aspect ratio,
on the bounding box regression accuracy for abnormal cage-reared ducks. The network
structure of YOLOv8-ACRD is illustrated in Figure 4.

The Input section applied mosaic data augmentation, adaptive anchor box calcula-
tion, and adaptive grayscale filling to 640 × 640 × 3 resolution cage-reared duck images
before passing them to the backbone section. The Backbone performed progressive feature-
extraction and generated feature maps of different scales using Convolution (Conv), Con-
textual Convolution (C2f), and Spatial Pyramid Pooling Fusion (SPPF) layers. The Conv
layer down-sampled the images using 3 × 3 convolutional kernels with a stride of 2 and
a padding of 1, followed by Batch Normalization (BN) and Sigmoid Linear Unit (SiLU)
activation functions. The C2f module enhanced the gradient flow through operations
such as slicing, convolution, bottleneck, and concatenation, enriching the model’s ability
to learn residual features with multi-branch cross-layer connections. Finally, the SPPF
layer performed predefined size transformations on the feature tensors of Conv and C2f
operations. Moreover, the Backbone section output feature maps with sizes of 80 × 80,
40 × 40, and 20 × 20 to the neck section.

The Neck network in YOLOv8 incorporated the Path Aggregation Network (PANet)
structure for multi-scale feature fusion, comprising certain components such as a Feature
Pyramid Network (FPN) and Path Aggregation Network. The FPN constructed a feature
pyramid using a top-down strategy, merging fine-grained feature maps with up-sampled
coarse-grained ones to fuse feature tensors at different scales. The PANet preserved the
spatial information of feature maps through bottom-up convolutional operations. Ad-
ditionally, in the Neck section, multiple GAMs were densely embedded after each C2f
module to allocate spatial and channel attention to the feature maps. This enhanced
the network’s focus on small-scale abnormal cage-reared duck objects in the image back-
ground. After feature-fusion processing in the neck section, the feature maps of three
scales (80 × 80 × 256, 40 × 40 × 512, and 20 × 20 × 512) were put out to the head network
for loss calculation and detection-box filtering, thereby obtaining category and positional
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information of abnormal cage-reared ducks of various sizes. The YOLOv8 loss function
combined three loss functions: classification loss VFL (Varifocal Loss), regression loss
(CIoU), and deep feature loss (DFL). YOLOv8 ACRD introduced Wise-IoU to replace CIoU,
improving the regression performance of the model in predicting bounding boxes.
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2.3.2. Global Attention Mechanism

Abnormal cage-reared duck images present challenges for accurate recognition and
detection because of their small object size and large background ratio. The YOLOv8-ACRD
network proposed in this study aimed to enhance the focus on abnormal cage-reared duck
areas in the images. This was achieved by introducing a GAM attention mechanism, which
eliminated redundant information and improved the accuracy of abnormal cage-reared
duck recognition under unstructured and complex environmental conditions. The GAM
combined a channel attention mechanism and a spatial attention mechanism. It amplified
the interaction of global dimensional features while reducing diffuse information. The
structure of the GAM is illustrated in Figure 5.
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Figures 6 and 7 illustrate the channel attention submodule, which maintained the 
three-dimensional information through a three-dimensional arrangement. It then en-
hanced the cross-dimensional channel spatial dependencies using a multilayer perceptron 
(MLP). The spatial sub-attention module utilized two 7 × 7 convolutional layers for spatial 
information fusion. Equations (1) and (2) indicate the calculations for both the channel 
attention and spatial attention processes. 

( )2 c 1 1F M F F= ⊗  (1) 

( )3 s 2 2F M F F= ⊗  (2) 

represents the multiplication of ele-
ments.

In Figure 5, the GAM applies channel attention correction to the input feature F1 using
two independent attention submodules, obtaining the feature F2. Subsequently, the feature
F2 underwent the spatial attention correction to produce the output feature F3. The channel
attention and spatial attention submodules are shown in Figures 6 and 7, respectively.
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Figure 7. The spatial attention Ms structure.

Figures 6 and 7 illustrate the channel attention submodule, which maintained the three-
dimensional information through a three-dimensional arrangement. It then enhanced the
cross-dimensional channel spatial dependencies using a multilayer perceptron (MLP). The
spatial sub-attention module utilized two 7 × 7 convolutional layers for spatial information
fusion. Equations (1) and (2) indicate the calculations for both the channel attention and
spatial attention processes.

F2 = Mc(F1)⊗ F1 (1)

F3 = Ms(F2)⊗ F2 (2)

In the equations, Mc and Ms, respectively, represent the channel attention map and
the spatial attention map.

2.3.3. The Wise-IoU Loss Function

The abnormal cage-reared duck dataset used in this study demonstrated characteristics
such as sample imbalance and long-tail distribution. Despite the small proportion of dead
cage-reared ducks, death is a crucial aspect of abnormal situations in cage-reared models.
The impact of the network on feature learning and inference directly affected the recognition
accuracy of the model. The original YOLOv8 strategy designed a loss function based on
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the calculation of the intersection and union ratio between the predicted and real boxes.
However, this approach ignored the recognition impact caused by differences in the number
of samples in different categories. Additionally, low-quality samples in the dataset could
lead to geometric factors such as target distance and aspect ratio, thereby increasing the
network’s punishment for these samples and reducing the accuracy and generalization of
the model. To address these issues, the Wise-IoU was introduced to replace the CIoU loss
function. The Wise-IoU utilized a dynamic non-monotonic focusing mechanism to balance
the data samples and reduce the excessive punishment of geometric parameters in the
model. This optimization improved the training process of the abnormal cage-reared duck
recognition model. The calculation process for the Wise-IoU loss value LWIoU is illustrated
in Equations (3)–(6) below:

LWIoU = rRWIoUL∗IoU (3)

RWIoU = exp(
(x− xgt)

2 + (y− ygt)
2

(w2
g + h2

g)
) (4)

r =
β

δαβ−δ
(5)

β =
L∗IoU

LIoU
(6)

Here, α and δ are hyperparameters,RWIoU represents the geometric disparity between
the predicted box and the annotation, LIoU denotes the average dynamic Intersection
over Union (IoU) loss for the predicted box, L∗IoU stands for the current IoU loss value
for the predicted box, and the superscript ∗ indicates exclusion from backpropagation. β
represents the outlier value for the current predicted box, where a smaller value indicates
higher anchor box quality, requiring a smaller gradient gain to be allocated. Simultaneously,
smaller gradient gains can also be assigned to predicted boxes with larger outlier values,
facilitating the reduction of harmful gradients from low-quality samples during network
training. wg and hg, respectively, represent the width and height of the box, while r
represents the gain allocated to the box.

2.4. Method for Brightness Adjustment in Cage-Reared Duck Images

Some studies have shown that changes in light intensity directly affect duck develop-
ment [25,26]. Therefore, it is necessary to adjust the brightness of LED strips according to
their physiological habits to improve health and welfare. To test and analyze the general-
ization ability of the proposed methods for identifying abnormal situations and estimating
the posture of cage-reared ducks, this study considered image brightness as a single fac-
tor. Two brightness levels, 1.25 and 0.85 times the predetermined brightness, were set to
obtain images of cage-reared ducks under ‘bright’ and ‘dark’ conditions, constructing a
generalization ability test dataset. Brightness adjustment of the cage-reared duck images
was based on OpenCV, which converts the RGB color space to HSV. Subsequently, the
V channel value, representing image brightness, was assigned a multiplier to transition
between ‘bright’ and ‘dark’. Finally, the image was converted back to RGB. The process of
adjusting image brightness is shown in Equation (7).{

bright = V × 1.25
dark = V × 0.85

(7)

2.5. Estimation Method for Abnormal Cage-Reared Ducks Posture

Animal behavior consists of co-ordinated movements among various parts of the
body. Typically, in a single behavioral state, animals may exhibit multiple postures [27].
Conducting research on posture estimation in cage-reared ducks to identify abnormal
situations would be beneficial for refining their physiological status. Currently, the field of
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pose estimation for both humans [28–30] and animals [31–33] often employs two strategies:
regression and heatmaps. Among these, the heatmap method can fully utilize spatial
information from adjacent key points and joint locations, achieving high accuracy. Based
on this, we used HRNet-48 [34], which is based on a heatmap, as the foundational network,
and proposed an abnormal pose-estimation model for cage-reared ducks by leveraging
the significant difference in the distribution of body parts between overturned and dead
ducks. HRNet-48 consists of four stages with varying resolutions, parallel connections, and
multi-scale feature cascades for feature analysis and localization, as illustrated in Figure 8.
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2.6. Evaluation Criteria

To quantitatively analyze the performance of the proposed method for identifying
abnormal situations in cage-reared ducks and the abnormal cage-reared ducks posture esti-
mation model, four commonly used quantitative indicators in the field of object detection,
mAP, Recall, F1 score, and OKS [35,36] were selected as the evaluation criteria, represented
by Equations (8)–(11).

mAP =
1
N ∑N

i=1 APi (8)

In the equation, N represents the total number of target categories, and APi is the
average precision of the i-th category. The range of values for mAP is [0, 1], where a higher
value indicates a better detection performance of the model. Additionally, in this paper, an
IoU (Intersection over Union) threshold of 0.5 is set.

Recall =
TP

TP + FN
(9)

In the equation, TP represents the number of samples correctly predicted as positive,
and FN represents the number of samples incorrectly predicted as negative. The Recall
value ranges from 0 to 1, with a higher Recall indicating a stronger ability of the model to
identify positive samples.

F1 =
2Precision + Recall
Precision + Recall

(10)

Here, Precision represents the proportion of true positive predictions among all posi-
tive predictions made by the model. A high F1 Score, close to 1, indicates a good balance
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between Precision and Recall, indicating that the model effectively identifies positives
while minimizing false positives.

OKS =

∑
i

exp(−
d2

i
2s2k2

i
)δ(vi > 0)

∑
i

δ(vi > 0)
(11)

In the formula, i is the key point number, di is the Euclidean distance between the
true value and predicted value of the key point with number i, vi is the visibility marker
of the key point with number i, invisible is 0, occluded is 1, visible is 2, δ is the Kronecker
delta function, ki is the constant of the key point with number i, s represents a scaling factor
typically defined as a percentage of the diagonal length of the bounding box.

2.7. Experimental Environment

The proposed methods in this paper were implemented for model training and perfor-
mance evaluation on a Dell T3060 tower workstation (made in China by Dell Inc) running
Windows 10 Professional. The system was equipped with an Intel i9-12900 CPU featur-
ing a base frequency of 3.20 GHz, 128 GB of RAM, and an NVIDIA RTX 4090 GPU with
24 GB of dedicated memory. The experiments were conducted using the Python pro-
gramming language within a virtual environment established based on the PyTorch deep
learning framework.

2.8. Experimental Steps

The experiment for identifying abnormal situations and estimating posture in cage-
reared ducks consisted of six steps:

1. Images of 10-day-old cage-reared ducks in the abnormal states of ‘overturned’ and
‘dead’ were collected and annotated to establish datasets for abnormal cage-reared
ducks and abnormal cage-reared duck pose-estimations.

2. Based on the characteristics and experimental environment of cage-reared ducks, mul-
tiple GAM modules were densely embedded into the neck of the original YOLOv8
network, and the Wise-IoU loss function was introduced to optimize the detection per-
formance. This led to the development of YOLOv8-ACRD, a network for recognizing
abnormal situations in cage-reared ducks.

3. The proposed method, based on YOLOv8-ACRD, was tested for accuracy compared
with the original YOLOv8 and evaluated against other mainstream methods to assess
its effectiveness.

4. Brightness was used as a factor, with two levels (‘bright’ and ‘dark’) set to test the
generalization ability of the proposed method for identifying abnormal situations in
cage-reared ducks.

5. An abnormal posture estimation model based on HRNet-48 was developed by re-
fining the identification of six key body parts in cage-reared ducks. This model was
compared with other commonly used pose-estimation algorithms, and its real-time
performance was evaluated.

6. The experimental results were discussed, and conclusions were drawn.

The experimental procedure is illustrated in Figure 9.
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3. Results
3.1. Abnormal Situation Recognition in Cage-Reared Ducks Based on YOLOv8-ACRD
3.1.1. Acquisition of Abnormal Situation Recognition Model for Cage-Reared Ducks and
Comparison of Feature Maps

The training process for the optimal abnormal situation recognition model for cage-
reared ducks was conducted separately on the abnormal cage-reared duck dataset based
on the original YOLOv8 network and improved YOLOv8-ACRD network. To analyze
and evaluate the effects of introducing GAM and Wise-IoU on model-detection accuracy,
the mAP values were compared. The pretrained weights for the COCO dataset were
loaded to prevent overfitting, and convergence difficulties during the COCO dataset were
loaded. A Stochastic Gradient Descent (SGD) optimizer was employed for gradient descent,
with the momentum set to 0.9, and the learning rate and batch size set to 0.001 and 16,
respectively. Furthermore, the strategy of saving the model once per cycle was adopted,
totaling 300 epochs of iterations. The trends of YOLOv8, YOLOv8-ACRD loss, and mAP
values with respect to the number of iterations and epochs during this period are illustrated
in Figures 10 and 11, respectively.
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Figure 10. The trend of loss values with iterations during the training process of YOLOv8 and
YOLOv8-ACRD.
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In Figure 10, the loss values of YOLOv8 and YOLOv8 ACRD remained stable with
the number of iterations, exhibiting a trend of rapid decrease at the beginning, gradual
flattening in the middle, and convergence towards the end. However, after a rapid decrease
in loss values for both models, YOLOv8-ACRD consistently exhibited lower loss than
YOLOv8, a trend that continued until both models converged. In Figure 11, the trend
of mAP values for YOLOv8 and YOLOv8-ACRD, with respect to epoch, mirrors that
of loss, with both indicating rapid changes early on and then leveling off. Between 0
and 55 epochs, the mAP values of both models increased significantly to approximately
0.737. Subsequently, from 56 to 300 epochs, YOLOv8-ACRD consistently maintained an
advantage over YOLOv8 in mAP values, consistent with the observations in Figure 10.
Finally, YOLOv8 and YOLOv8-ACRD converged to the mAP values of 0.909 and 0.924,
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respectively. The mAP of the cage-reared duck anomaly recognition model based on
YOLOv8-ACRD increased by 1.65% compared with the original YOLOv8. To further
evaluate the performance differences introduced by GAM and Wise-IoU, an additional
analysis was conducted based on Recall and F1 scores. The results are shown in Figure 12.
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Figure 12. Comparison of optimal models YOLOv8 and YOLOv8-ACRD based on recall and F1 score.

Figure 12 reveals that the Recall and F1 scores of the optimal model for detecting
abnormal cage-reared ducks based on YOLOv8-ACRD increased by 0.017 and 0.021, respec-
tively, compared with YOLOv8. This further demonstrates that YOLOv8-ACRD exhibits
enhanced precision and balance in detecting instances of dead and overturned cage-reared
ducks under the experimental conditions.

In summary, the results indicated that the YOLOv8-ACRD network demonstrated
superior learning and inference effectiveness for detecting the distribution patterns of
overturned and dead ducks compared with YOLOv8. This confirmed the positive impact of
employing dense GAM embedding and introducing the Wise-IoU loss function to enhance
detection accuracy. Consequently, YOLOv8-ACRD was selected as the optimal model
for subsequent experiments to test anomaly recognition and generalization abilities in
cage-reared ducks.

Figure 13 presents the visualization of the feature maps with the maximum activation
in the three output channels of the neck section for both the YOLOv8 and YOLOv8-
ACRD networks overlaid on the original images. YOLOv8-ACRD demonstrated more
precise localization in identifying the features of cage-reared ducks in the overturned
states, compared to YOLOv8. It can exclude interference from other similar features
and accurately focus on target ducks in the images. In contrast, YOLOv8 demonstrated
deviations in the attention area and actual position of features related to overturned cage-
reared ducks. Although it covered the duck’s body, some features extended beyond this
area. These observations further validated that the proposed YOLOv8-ACRD cage-reared
duck abnormal recognition model had an accuracy advantage over the original YOLOv8.
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3.1.2. Recognition of Abnormal Situations in Cage-Reared Ducks

Using the proposed YOLOv8-ACRD model to identify abnormal situations in cage-
reared ducks, the dataset was analyzed to identify overturned and dead situations. The
selected results are shown in Figure 14.
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Figure 14. Recognition results of abnormal situations in cage-reared ducks based on YOLOv8-ACRD.

In Figure 14, cage-reared duck samples 2–6 in the overturned or deceased states were
partially occluded to varying degrees by other ducks or cage meshes. For instance, in
sample 2, the head of the cage-reared ducks was partially obscured, whereas in samples 3
and 5, the bodies were covered with a cage mesh. However, the proposed model correctly
identified anomalous states with high confidence levels. The bounding box positioning was
accurate with no instances of false positives or false negatives. Furthermore, the different
sample images exhibited varying degrees of depth-of-field, and there were significant



Animals 2024, 14, 2192 16 of 25

differences in multi-scale features among the ducks. Despite this, the proposed model
maintained a high level of recognition accuracy, indicating its robust performance. Finally,
the recognition model based on YOLOv8-ACRD for anomalous situations in cage-reared
ducks achieved Average Precision (AP) values of 0.913 and 0.935, respectively, for recogniz-
ing overturned and dead situations in the validated subset of the abnormal cage-reared
duck dataset.

3.1.3. Comparison and Analysis

Object-detection algorithms based on deep learning are continuously advancing in
the field of computer visualization. However, these algorithms often vary in effectiveness
when applied to different objects and environments. This study evaluated the effective-
ness of the proposed anomalous situation-recognition method based on YOLOv8-ACRD,
compared with other mainstream object-detection algorithms. To satisfy the requirements
of detection accuracy and real-time performance for cage-reared duck inspection robots,
a comparative experiment was conducted, focusing on single-shot object-detection algo-
rithms capable of balancing recognition accuracy and speed. The experiments compared
YOLOv8, YOLOv7 [37], YOLOv5 [38], YOLOF [39], SSD [40], and RetinaNet [41]. To main-
tain environmental consistency, the same computer platform, compilation environment,
and training hyperparameters were used, which were consistent with YOLOv8-ACRD. The
comparison results, including mAP values for the abnormal cage-reared duck dataset and
AP values for the two abnormal situations, are illustrated in Figure 15.
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Figure 15. Comparative experimental results. (A). Distribution of mAP values for each model;
(B). Distribution of AP values for cage-reared duck overturned situation recognition; (C). Distribution
of AP values for cage-reared duck dead situation recognition.

The mAP values for abnormal situations in cage-reared ducks indicated that YOLOv8-
ACRD improved by 0.015, 0.046, 0.070, 0.071, 0.247, and 0.128, compared with YOLOv8,
YOLOv7, YOLOv5, YOLOF, SSD, and RetinaNet, respectively. The overall performance dif-
ference between YOLOv5 and YOLOv8 was not significant. However, RetinaNet and SSD
exhibited relatively low performances, with SSD achieving only 0.677 mAP. This indicated
that, in this experimental environment, the proposed model performed best, whereas SSD
was the least effective and not suitable for identifying abnormal situations in cage-reared
ducks. This disparity may be attributed to the structure of the SSD, which, despite utilizing
deep convolutional neural networks to extract features of abnormal cage-reared ducks,
lacked sufficient multi-scale feature fusion compared to other networks. Furthermore,
the absence of attention mechanisms in SSD resulted in insufficient focus on important
features, especially in cases where cage-reared duck images had complex backgrounds
and significant variations in duck phenotypes, making the accurate localization of object
duck features challenging. Analysis of the changes in AP values for the recognition of dead
and overturned cage-reared ducks in Figure 14B,C reveals a consistent pattern: YOLOv8,
YOLOv7, YOLOv5, YOLOF, SSD, and the proposed model were better at recognizing over-
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turned situations than dead situations. However, RetinaNet demonstrated the opposite
trend, with an AP value of 0.824 for dead ducks, which was 0.056 higher than that for
overturned ducks. Furthermore, compared to the aforementioned six models, the proposed
model enhanced the recognition AP values for overturned and dead ducks by 0.011, 0.019,
0.063, 0.029, 0.068, 0.072, 0.105, 0.037, 0.341, 0.153, 0.089, and 0.167, respectively. Overall, in
the experimental environment, the proposed model demonstrated a precision advantage
over other mainstream object-detection algorithms in recognizing both types of abnormal
situations in cage-reared ducks.

3.2. Perception of Abnormal Situations in Cage-Reared Ducks under Different Lighting Conditions

Image acquisition of cage-reared ducks was conducted under a predetermined light
intensity of LED light sources with no specific requirements for direct or back lighting.
Although the proposed model achieved high accuracy in recognizing abnormal situations
in this scenario, differences in lighting intensity existed across cage-reared-duck breeding
facilities at different rearing stages. The recognition performance of the proposed model
under varying lighting conditions was unclear, necessitating the testing of its generalization
ability. To assess this, 50 randomly selected original images containing overturned and dead
cage-reared ducks were used. The brightness adjustments were applied to these images
to create a total of 100 images categorized as ‘bright’ and ‘dark’, using the brightness
adjustment method described in Section 2.4. Subsequently, the generalization ability of the
model was tested based on these images. The selected recognition results are shown in
Figure 16.
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Figure 16. Generalization ability test results of cage-reared ducks abnormal situation recognition
model based on YOLOv8-ACRD. (A). Sample 1; (B). Result after brightening sample 1; (C). Result
after darkening sample 1; (D). Sample 2; (E). Result after brightening sample 2; (F). Result after
darkening sample 2.
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The results shown in Figure 15 reveal significant differences in the external appearance
of cage-reared ducks under varying lighting conditions. For instance, the high brightness of
head feathers caused feature loss in samples 1 and 2, and the dim lighting led to tail feathers
blending with the background, causing confusion. However, the proposed abnormal situa-
tion recognition model based on YOLOv8-ACRD effectively eliminated these interferences
and accurately detected the overturned and dead cage-reared ducks. These findings suggest
that changes in image lighting intensity did not significantly affect the performance of the
model, as presented in this paper. After adjusting the ambient brightness for recognition
of abnormal situations in caged-duck breeding, the model in this study achieved an mAP
value of 0.881. This indicated its applicability in recognizing abnormal cage-reared ducks
under different lighting intensities, showing its strong generalization ability.

3.3. Abnormal Cage-Reared Duck Pose Estimation
3.3.1. Results of Abnormal Cage-Reared Duck Pose Estimation

In the initial stage of the experiment, the focus was on recognizing two types of
abnormal situations in cage-reared ducks: overturned and dead. The approach centered
on six key points: the duck’s head, beak, chest, tail, left foot, and right foot, following
the preset connection rules. An abnormal cage-reared duck pose-estimation model was
developed based on an HRNet-48 network. During the model training process, the Adam
optimizer was used for gradient descent, with a learning rate of 0.0001. The model was
saved every 10 epochs for 100 iterations. Throughout this training period, the trend of the
OKS value with respect to the epochs was monitored, as shown in Figure 17.
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Figure 17. Trend of OKS values with epoch variation based on HRNet-48 abnormal cage-reared
ducks pose-estimation model.

Figure 16 shows that the OKS value of the abnormal cage-reared duck posture es-
timation model increased rapidly during the initial 0–20 epochs. Subsequently, the rate
of increase decelerated, reaching its peak at epoch 70, before decreasing and stabilizing
at approximately 0.921, indicating convergence. Therefore, this model was selected for
subsequent visualization of abnormal cage-reared duck pose estimations. The results are
shown in Figure 18.
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Figure 18. Recognition results of abnormal cage-reared ducks pose-estimation model based on
HRNet-48.

The visualization effect was poor because of the small pixel area occupied by the target
ducks in the abnormal states. Therefore, the region of interest was zoomed in proportion. In
Figure 18, significant differences in the postures of cage-reared ducks in the same abnormal
state were evident, despite interference from the cage mesh. Additionally, dead ducks are
often trampled by other ducks, resulting in varying degrees of surface contamination that
distinctly alters their color compared to overturned ducks. Meanwhile, the differences in
key features among the dead ducks were minimal. None of these conditions is conducive
to accurately estimating the posture of abnormal ducks. For example, in Figure 18, the limb
distributions of dead cage-reared ducks 1 and 2 differed, whereas the colors of cage-reared
ducks 1 and 3 closely matched the background. Furthermore, some of the features of
overturned cage-reared duck 3 were obscured by the cage mesh. However, the proposed
model accurately detected and classified six key points, such as the duck’s head and beak,
without any missed or false detection. The key points can be assembled into a duck trunk
in a predetermined association sequence without any errors. These findings indicate that
the proposed abnormal cage-reared duck pose-estimation model could accurately detect
overturned and dead cage-reared duck poses and key body parts, while also demonstrating
a certain degree of interference resistance.

3.3.2. Comparison and Analysis

Recent research has made significant progress in refining methodologies for detecting
key body parts and poses, building on advancements in animal and human behavior
detection. To compare the proposed abnormal cage-reared duck pose-estimation model
with other mainstream methods, this study introduced CPM [42], PVT [43], MSPN [44],
Openpose [45], Hourglass [46], and liteHRNet [47]. To evaluate the impact of cage-reared
duck overturned and dead postures on model accuracy, this study categorized the images
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containing overturned and dead cage-reared ducks from the abnormal cage-reared duck
pose-estimation dataset, and conducted targeted performance testing. The comparative
experiments maintained consistency in the compilation environment, hyperparameters,
deep-learning frameworks, and computer models used. The optimal models of the six
aforementioned methods and the model proposed in this study were compared based on the
OKS, as shown in Figure 19. The inspection of the physiological status of cage-reared ducks
by breeding robots requires a pose-estimation model that not only has high recognition
accuracy but also exhibits excellent real-time performance. Therefore, focusing on the
processing time of a single image, this study further compared the real-time performance
with the aforementioned methods for the abnormal cage-reared duck pose-estimation
dataset. The real-time performance comparison results are shown in Figure 20.
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Figure 20. Real-time performance comparison results.

Based on the comparison results in Figure 19, CPM, PVT, MSPN, Openpose, Hourglass,
liteHRNet, and the model proposed in this study consistently demonstrated a higher
accuracy in detecting the overturned poses of cage-reared ducks than in detecting the dead
poses. This difference may be attributed to the fact that, when a duck was overturned,
its key body parts were more fully presented in the image, and there was less mutual
occlusion compared with the dead situation. This facilitated the model’s extraction and
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learning of multi-dimensional features of abnormal cage-reared ducks, thereby aiding
key point classification and position inference. Additionally, the OKS values of the above
models for the overturned and dead postures were 0.852, 0.830, 0.943, 0.920, 0.918, 0.871,
0.893, 0.869, 0.909, 0.885, 0.865, 0.857, 0.934, and 0.915, respectively. PVT achieved the
highest accuracy, followed closely by the model in this study, with negligible differences
of only 0.009 and 0.005, respectively. This minor difference could be attributed to the
PVT’s application of a self-attention mechanism, which enhanced the model’s ability to
focus on key features based on the transformer architecture. This mechanism enables more
accurate feature localization compared to HRNet-48, which relies on a multi-resolution
channel-cascading strategy. In contrast, CPM exhibited the lowest accuracy. This suggests
that relying solely on convolutional forms for inferring key point categories and positions
of abnormal cage-reared ducks was not suitable for the experimental environment of
this study.

In the real-time performance comparison results shown in Figure 20, the single image
processing times of the models were 0.482, 0.745, 0.431, 0.448, 0.577, 0.350, and 0.528 s,
respectively. Among these, Lite HRNet demonstrated the best real-time performance, being
0.178 s faster than the model in this study, albeit with slight decreases in accuracy of 0.069
and 0.058, respectively. This indicates that, although the lightweight HRNet network could
reduce the model inference time, it may compromise the accuracy improvement. Moreover,
compared with PVT, the model proposed in this study reduced the processing time by
0.217 s. Given the minimal difference in accuracy between the two models, this suggested
that, for estimating abnormal cage-reared duck poses, the model proposed in this study
achieved a balance between high accuracy and excellent real-time performance, indicating
the best comprehensive detection ability.

4. Discussion

During the exploration of the stereoscopic cage-reared mode for meat ducks, timely
detection and identification of abnormal ducks are crucial for reducing the risk of disease
transmission, ensuring group health and breeding welfare, and promoting the stable
development of the poultry industry. Utilizing artificial intelligence technology for accurate
and real-time perception of abnormal cage-reared ducks is a key trend in the industry’s
stable development. However, current research on poultry behavior detection has primarily
focused on meat/egg chickens, and there is a lack of technology and theoretical research
on detecting abnormal behavior in meat ducks. This study addressed this gap by focusing
on the abnormal states of overturning and death that often occur in 10-day-old cage-reared
ducks. Using computer vision technology, a method for identifying abnormal situations in
cage-reared ducks was proposed, and further research was conducted on the estimation
method of abnormal cage-reared duck posture, achieving accurate and real-time detection
of two typical abnormal states. The following three points of discussion are presented
based on the experimental process and results.

4.1. Influence of Different Abnormal States of Cage-Reared Ducks on Model Recognition and
Pose-Estimation Accuracy

In this experiment, we proposed a method for the recognition of abnormal cage-
reared ducks, focusing on the two typical abnormal states of overturned and dead, based
on YOLOv8-ACRD. We further refined this approach by exploring an abnormal cage-
reared duck posture estimation model based on HRNet-48, focusing on six key points,
including the head, beak, chest, tail, left foot, and right foot. Our research demonstrated the
effectiveness and accuracy of these models. We also discovered that both proposed models
exhibited a pattern of higher detection accuracy for overturned cage-reared ducks than for
dead ducks. This pattern was also observed in performance comparison experiments with
other mainstream methods. This phenomenon may be attributed to the fact that, when
a cage-reared duck is overturned, its head, legs, and other body parts are not obstructed.
In contrast, in the case of death, the duck’s body is covered to varying degrees by the
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trampling and attacks of other ducks, making feature extraction and localization more
challenging, and resulting in differences in detection accuracy. This finding could serve as
a reference for research focusing on the recognition of physiological states of livestock and
poultry based on specific body shapes and postures.

4.2. Impact of Introducing Attention Mechanism and Optimized Loss Function on
Model Performance

Numerous studies have shown that tailoring attention mechanisms, changing loss
functions, or deepening network architectures based on different experimental subjects
and environments can enhance model performance. In this study, we built upon YOLOv8
as the base network and embedded the GAM after each c2f module in its neck section to
enhance the focus on regions of abnormal cage-reared ducks in the images. Additionally,
we replaced the CIoU loss function with Wise-IoU to optimize the model-training process,
resulting in the proposed YOLOv8-ACRD for detecting abnormal situations in cage-reared
ducks. The experimental results demonstrated that the abnormal situation-recognition
model for cage-reared ducks based on YOLOv8-ACRD significantly improved detection
accuracy compared to the original YOLOv8. This finding suggests that, in specific object-
detection tasks, selective attention mechanisms or other optimization methods based on
the properties of the experimental object can improve model performance and enhance
detection effectiveness.

4.3. Limitations and Future Directions

Extensive experiments have demonstrated that the proposed method and pose-estimation
model for identifying and estimating the poses of cage-reared ducks in overturned and
dead situations achieve accurate detection. The proposed approach exhibited excellent
generalization ability and robustness, accurately detecting the key parts of the abnormal
cage-reared duck body and forming correct pose expressions. It also demonstrated superior
overall performance compared to other commonly used methods. However, this study had
certain limitations.

(1) Ducks are inherently sensitive and susceptible to stress, making them prone to a
range of bacterial and viral diseases. Although various types of abnormal situa-
tions can occur, this study specifically focused on detecting two common scenarios:
overturned and dead ducks. A gap exists between the diverse range of abnormal
conditions observed in real-world cage-reared ducks and those addressed in this study.
Future research could incorporate thermal infrared sensing, audio processing, and
hyperspectral/near-infrared technologies. A more comprehensive method for iden-
tifying various abnormalities in cage-reared ducks can be developed by integrating
temperature, sound, and fecal spectral information through multisource data fusion.

(2) The abnormal cage-reared duck dataset and abnormal cage-reared duck pose-estimation
dataset were labeled manually, a labor-intensive process. Future research should
concentrate on semi-supervised approaches to enhance the model’s performance,
with reduced manual effort and data requirements.

(3) As ducks aged, their appearance and shape changed significantly. The experimental
subjects in this study were limited to 10-day-old ducks. Future research should
incorporate age gradients to improve the robustness of this model.

(4) This study did not address the simultaneous detection and classification of multiple
abnormal ducks, nor did it effectively estimate the posture of heavily obscured ducks.
Given the high-density nature of poultry farming, future research will focus on the
multi-target detection of abnormal ducks in such scenarios, as well as on feature
generation and completion.

5. Conclusions

This study introduced a method for recognizing abnormal situations in cage-reared
ducks based on YOLOv8-ACRD. The method achieved accurate detection of overturned
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and dead situations, with an mAP of 0.924, surpassing the original YOLOv8 by 1.65%.
It also effectively handled the recognition interference caused by changes in lighting
conditions, demonstrating excellent generalization and robustness. Compared to other
methods, this approach demonstrated superior overall performance. Additionally, by
refining the structure of the abnormal cage-reared duck body and focusing on six key parts,
an abnormal caged-duck pose-estimation model based on HRNet-48 was proposed. The
model achieved an OKS value of 0.921, accurately detecting the key points of the cage-
reared ducks and generating correct posture expressions. Furthermore, it demonstrated
excellent real-time performance, surpassing other mainstream pose-estimation models
in terms of accuracy and efficiency. Moreover, both of the proposed models consistently
demonstrated lower perception accuracy for dead cage-reared ducks than for overturned
ducks. This method could offer technical support for enhancing the duck cage-reared mode,
ensuring animal welfare, and serving as a reference for the intelligent breeding of other
poultry animals.
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