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Simple Summary: Rumen microorganisms and their hosts have co-evolved over a long period of
time, adapting to their environment. This co-evolution not only impacts the host phenotype but
also establishes a sophisticated regulatory network with the host to uphold organismal homeostasis.
This study’s findings indicated that the process of three-way hybridization had a notable impact on
the taxonomic characteristics, functions, and metabolites of rumen microbes. Moreover, significant
interactions were observed between rumen microbes and metabolites in sheep, with biomarkers
playing a significant role in influencing the variation in rumen metabolites. Meanwhile, rumen
microbial markers in Hu sheep exhibited a predominantly positive correlation with down-regulated
metabolites and a negative correlation with up-regulated metabolites. In contrast, rumen microbial
markers in CAH lambs showed an overall negative correlation with down-regulated metabolites and
a positive correlation with up-regulated metabolites. The data obtained in this study provide a basis
for understanding hybridization advantages from microbial metabolic pathways.

Abstract: The objective of this experiment was to explore the effects of three-way hybridization on
rumen microbes and metabolites in sheep using rumen metagenomics and metabolomics. Healthy
Hu and CAH (Charolais × Australian White × Hu) male lambs of similar birth weight and age
were selected for short-term fattening after intensive weaning to collect rumen fluid for sequencing.
Rumen metagenomics diversity showed that Hu and CAH sheep were significantly segregated at
the species, KEGG-enzyme, and CAZy-family levels. Moreover, the CAH significantly increased
the ACE and Chao1 indices. Further, correlation analysis of the abundance of the top 80 revealed
that the microorganisms were interrelated at the species, KEGG-enzyme, and CAZy-family levels.
Overall, the microbiome significantly affected metabolites of the top five pathways, with the strongest
correlation found with succinic acid. Meanwhile, species-level microbial markers significantly
affected rumen differential metabolites. In addition, rumen microbial markers in Hu sheep were
overall positively correlated with down-regulated metabolites and negatively correlated with up-
regulated metabolites. In contrast, rumen microbial markers in CAH lambs were overall negatively
correlated with down-regulated metabolites and positively correlated with up-regulated metabolites.
These results suggest that three-way crossbreeding significantly affects rumen microbial community
and metabolite composition, and that significant interactions exist between rumen microbes and
metabolites.
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1. Introduction

Ruminants can utilize plant feeds (i.e., straw, hay, and grass) to provide high-quality
meat protein for human needs. Mutton is favored by consumers due to its unique fla-
vor, nutrient richness, and low cholesterol content [1–3]. Hu sheep, recognized for its
four-season estrus cycle, early onset of sexual maturity, and high litter productivity, is
classified as one of China’s indigenous first-class protected breeds. However, its primary
drawback lies in its low meat yield [4]. Meat yield represents a critical economic trait for
livestock, and enhancing growth performance is essential for improving farm economic
efficiency [5,6]. Crossbreeding offers more significant genetic gains compared to breed
selection for improving growth performance [6–8]. Therefore, in sheep production practice,
crossbreeding introduced breeds with local breeds is commonly used to enhance offspring
productivity or develop new breeds [6,9,10]. Furthermore, there is an intricate regulatory
network that interplays among body weight, host genetics, and rumen microbes in sheep.
Research results indicate that the heritability of body weight in Hu sheep at 180 days of age
is 39%, with rumen microorganisms contributing 20% of the phenotypic variance when
considering host genetics [11].

The rumen of ruminants has the capacity to ferment plant feeds into small molecular
compounds that function as an energy source for the animal. This capability is a result
of the synergistic evolution of the rumen microbes and the host, which develops over
a prolonged period of adaptation to the environment [12]. In this scenario, the host
creates a stable internal environment for the microorganisms, which results in microbial
metabolism producing small-molecule compounds that can regulate host physiological
functions and influence host traits [11,13–15], including involvement in fat deposition [16],
body weight [11], feed efficiency [17,18], and marbling grade [19]. The most extensive
interactions between rumen microbes and their hosts are realized through the consumption
and production of metabolites, especially small-molecule compounds such as short-chain
fatty acids [20,21]. Moreover, rumen metabolites have been shown to be influenced by
genetic, environmental microbiome, and dietary factors [22,23]. In addition, ruminant
rumen microbes are structurally similar [24], but they are involved in the regulation of host
physiological functions in which host genes and phenotypes form a complex regulatory
network [12,17,19,25], and host genetics play an important role in the formation of rumen
microbial communities, including heterozygosity arising from parental gene interactions,
which can influence rumen microbial composition [26,27].

It has been found that crossbreeding can significantly improve the productive perfor-
mance of offspring [6,8–10]. In practice, Hu sheep are usually used as the female parent
for breeding new strains and varieties [28,29]. A previous study discovered that three-
way-hybrid sheep can modulate rumen parameters by altering the microbiota structure,
which affects serum physiological indices and enhances animal performance [8]. This
hybrid also significantly improved lamb meat quality in terms of crude protein, essential
amino acids, and non-essential amino acids [30]. Metabolomics analysis revealed that
amino acid metabolism, particularly arginine and proline metabolism, plays a crucial role
in regulating the meat quality of hybrid progeny [6]. Therefore, it is hypothesized that
host genetics may enhance sheep growth and development by influencing rumen micro-
bial community structure and rumen metabolism. In this study, we investigated whether
three-way crossbreeding can alter rumen microbial communities and rumen metabolism
through metagenomics and metabolomics studies and whether there is a regulatory re-
lationship between them. To test this hypothesis, a specific Charolais ram was used as a
terminal ram to cross ewes with Australian White × Hu genetics to produce a Charolais
× Australian White × Hu (CAH), which was then compared with pure native Hu lambs.
Rumen macrogenomics and metabolomics were employed to study the effects of three-way
crossbreeding on the rumen community and metabolism in sheep while maintaining a
consistent feeding environment and excluding the influence of other factors.
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2. Materials and Methods

The experimental design and husbandry management adhered to the guidelines set
by the ethical committee of the Institute of Animal Husbandry and Veterinary Medicine,
Jiangxi Academy of Agricultural Sciences, approved under (2010−JAAS−XM−01). The
animal experiments were conducted at the scientific and technological service workstation
of the Jiangxi Academy of Agricultural Sciences (Ganzhou Lvlinwan Agricultural and
Animal Husbandry Co., Ltd., Ganzhou, China).

2.1. Experimental Animals

Healthy male lambs with similar birth weights from Hu (Hu × Hu) and CAH (Charo-
lais × Australian White × Hu) breeds were weaned centrally and uniformly after being
nursed by their mothers until 45 days of age. Subsequently, 11 CAH and 11 Hu lambs
were selected for 90 days of short-term fattening. All CAH and Hu lamb were centrally
allocated to group pens. The feeding regimen involved providing feed at 8:00 am and
17:00 pm, with lambs having ad libitum access to feed and water. Immunization protocols
were implemented in compliance with company policies. The diet consisted of digestible
energy at 10.82 MJ/kg, crude protein at 16.95%, neutral detergent fiber at 27.68%, acid
detergent fiber at 17.31%, calcium at 0.65%, and phosphorus at 0.35% for the total mixed
ration. Detailed nutrient fractions are described in Wang et al. [8].

2.2. Sample Collection

Rumen fluid was collected from lambs using a gastric tube rumen sampler in the
morning prior to feeding at 135 days of age in all lambs, following the method described in
detail by Wang et al. [8]. The rumen fluid was dispensed into cryopreservation tubes, snap
frozen in liquid nitrogen, and sent to the laboratory to be stored at −80 ◦C for subsequent
macrogenomic and metabolomic sequencing. Body size correlation was measured using a
soft ruler and an electronic scale. Ruminal enzyme activities were determined according to
the kit instructions (Shanghai Kexing Biotechnology Co., Ltd., Shanghai, China). Ruminal
VFA molar concentration was determined by gas chromatography (GC-7890B, Agilent Tech-
nologies, Petaling Jaya, Malaysia). Rumen pH was determined using a portable pH meter
(PHBJ-260F; INESA Scientific Instruments Co., Ltd., Shanghai, China). Subsequently, ac-
etate/propionate (A/P) and VFA molar ratios were calculated. Detailed information on the
experimentally relevant data is described in the pre-publication article by Wang et al. [8].

2.3. Metagenome Sequencing and Bioinformatics Analysis

Bacterial DNA was extracted from the rumen fluid of 20 lambs following the instruc-
tions of the TGuide S96 Magnetic Stool DNA Kit from Beijing. Initially, the bacterial genomic
DNA suitable for testing was enzymatically fragmented. Subsequently, the fragmented
DNA underwent end repair, adaptor ligation, library amplification, and purification to
produce a qualified library. The Qsep-400 was utilized for fragment quality control, and
sequencing of the qualified libraries was carried out using the Illumina NovaSeq6000 (Il-
lumina Inc., San Diego, CA, USA). Raw tags were filtered using fastp (version 0.23.1)
software [31] and compared with the host genome sequence using bowtie2 (version
2.2.4) [32] to eliminate host contamination and obtain high-quality clean tags. Follow-
ing this, macrogenome assembly was conducted using the MEGAHIT (version 1.1.2) [33]
software to filter contig sequences shorter than 300 bp, and the assembly results were
assessed using the QUAST (version 2.3) software [34]. Redundancy was then eliminated us-
ing the MMseqs2 (https://github.com/soedinglab/mmseqs2, Version 12-113e3, 2 October
2023) software [35] based on set thresholds (95% similarity and 90% coverage). Simulta-
neously, the annotation process identified carbohydrate-active enzymes in the genome
by comparing the protein sequences of non-redundant genes to the CAZy [36] database
separately. Subsequently, representative sequences from the non-redundant gene catalog
were aligned with the Nr [37] (Non-Redundant Protein Database) and KEGG [38] (Kyoto

https://github.com/soedinglab/mmseqs2
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Encyclopedia of Genes and Genomes) databases using BLASTP (expected e-value is 10−5)
to obtain annotation information.

2.4. Metabolome Sequencing and Bioinformatics Analysis

An amount of 100 µL of the sample was mixed with 500 µL of extraction solution
containing an internal standard (Vmethanol:Vacetonitrile = 1:1, internal standard concentration
20 mg/L); this was vortexed and mixed for 30 s. Next, following ultrasonic ice bath (10
min), standing (1 h, −20 ◦C), and centrifugation (15 min, 4 ◦C, 12,000 rpm), 500 µL of
the supernatant was taken to dry the extract in a vacuum concentrator. Subsequently, the
extract was reconstituted (160 µL, Vacetonitrile:Vwater = 1:1), vortexed (30 s), subjected to
ultrasonic ice bath (10 min), and centrifuged (15 min, 4 ◦C, 12,000 rpm), and then 120 µL of
the supernatant was taken in a 2 mL injection vial and assayed on the machine (10 µL of each
sample was taken and mixed to form a QC sample). The LC/MS system for metabolomics
analysis is composed of Waters Acquity I-Class PLUS ultra-high-performance liquid tandem
Waters Xevo G2-XS QTOF high-resolution mass spectrometer (Waters, Milford, MA, USA)
(Waters Acquity UPLC HSS T3, 1.8 µm, 2.1 × 100 mm). Subsequently, mass spectral data
were collected with a high-resolution mass spectrometer (Waters Xevo G2-XS QTOF) in
MSe mode under the control of the acquisition software (MassLynx V4.2, Waters). Finally,
Progenesis QI (version 4.0) software was used for peak extraction, peak comparison, and
identification of the raw data obtained using the online METLIN database and Biomark’s
own libraries [39]. Metabolites were screened (FC > 1, p value < 0.05, and VIP > 1) and
annotated using the KEGG (https://www.genome.jp/kegg/, accessed on 30 September
2023) database, and then the annotated metabolites were mapped to the KEGG pathway
database [40,41].

2.5. Data Statistics and Analysis

The alpha diversity of the experimental sample was assessed through the QIIME2
(https://qiime2.org, accessed on 6 June 2020) software, which including ACE, Chao1,
Shannon, and Simpson indices. The degree of similarity of the sample microbial com-
munities was evaluated based on the binary Jaccard distance using beta diversity, which
primarily involved principal coordinate analysis (PCoA) and non-metric multidimensional
scaling (NMDS). Additionally, a Student’s t-test was conducted to determine if there were
significant differences in alpha and beta diversity between different sample groups. Linear
discriminant analysis (LDA) effect size (LEfSe [42]) was utilized to identify significant taxo-
nomic differences between groups. Furthermore, orthogonal projections to latent structures
discriminant analysis (OPLS-DA, version 1.6.2 [43]) was employed to identify metabolic
differences between the two groups.

3. Results
3.1. Genome Profiling of Rumen Microorganisms
3.1.1. Sequencing and Diversity Analysis of Rumen Microbiota

Metagenomic analysis of rumen contents in Hu and CAH showed that raw reads
were obtained, excluding low-quality and n-containing reads. Hu and CAH acquired
7,145,045,673 and 6,617,688,378 clean databases, respectively. Furthermore, optimized
clean no-host databases were obtained for subsequent analysis after removing the host
genome sequence, resulting in 7,062,137,125 and 6,538,847,179 clean databases for Hu and
CAH, respectively. Finally, Hu and CAH obtained 47,197,640 and 43,688,879 effective
reads, respectively. This experiment focuses on the rumen microbiome and metabolome
to investigate potential mechanisms for improving growth performance in three-way-
crossbred lambs. Therefore, our subsequent analyses focused mainly on the archaeal,
bacterial, and fungi species. According to the principal coordinate analysis (PCoA) at the
species level, archaeal (Figure 1A), bacterial (Figure 1B), and fungal (Figure 1C) species
showed significant differences in both groups (p < 0.05).

https://www.genome.jp/kegg/
https://qiime2.org
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Figure 1. Comparison of rumen microbial diversity in Hu and CAH lambs. Figures (A–C) show PCoA
results for archaea (A), bacteria (B), and fungi (C) at the species level. Next, alpha diversity analysis of
Hu and CAH rumen microbes at species (D–G), KEGG-enzyme (I–L) and CAZy-family levels (N–Q)
were presented. Finally, Hu and CAH lamb were analyzed by non-metric multidimensional scaling
(NMDS) at species (H), KEGG-enzyme (M), and CAZy-family levels (R). * in the alpha diversity plot
indicates p < 0.05.

According to the rumen community analyzed in Figure 1A, at the species and KEGG-
enzyme levels, it can be seen that Hu lambs were significantly lower than CAH lambs
in Chao1 (Figure 1D,I) and ACE (Figure 1E,J) indices (p < 0.05). However, there was no
significant difference in either the Shannon (Figure 1F,K) or Simpson (Figure 1G,L) indices
(p > 0.05). Moreover, at the CAZy-family level, the Chao1 (Figure 1N), ACE (Figure 1O),
Shannon (Figure 1P), and Simpson (Figure 1Q) indices of Hu lambs were significantly
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lower than those of CAH lambs (p < 0.05). Further, the results analyzed in the NMDS
and analysis of similarity (ANOSIM) of rumen microbes of Hu and CAH lambs showed
stress values of less than 0.2 and p value values of less than 0.05. This result suggests
that there are significant differences between the microbes of Hu and CAH lambs at the
species (stress = 0.1015, R = 0.65, p = 0.001, Figure 1H), KEGG-enzyme (stress = 0.0788,
R = 0.31, p =0.001, Figure 1M), and CAZy-family levels (stress = 0.1366, R = 0.17, p = 0.006,
Figure 1R).

3.1.2. Analysis of Rumen Microbial Composition, Function, and Correlation

Differential analysis revealed that there were a total of 3552 distinct microorganisms
in archaea, bacteria, and fungi. Microbiome analysis revealed 121 (CAH was up-regulated
by 101 and down-regulated by 20), 73 (CAH was up-regulated by 60 and down-regulated
by 13), and 3361 (CAH was up-regulated by 2581 and down-regulated by 780) significantly
different archaea, fungi, and bacteria in the rumen of Hu and CAH lambs, respectively
(p < 0.05). The dominant microorganisms in the rumen are bacteria (H: 80.45%, CAH:
76.98%) (Figure 2A). Additionally, the dominant microorganisms in the rumen at the phyla
level were Bacteroidetes (H: 42.32%, CAH: 33.92%), Firmicutes (H: 27.54%, CAH: 27.75%),
Euryarchaeota (H:0.71%, CAH: 2.28%) and Tenericutes (H: 0.93%, CAH: 1.25%) (Figure 2B).
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Figure 2. Analysis of rumen microbial composition, function, and correlation. Stacked histograms
of the relative abundance of the rumen microbiota of the Hu and CAH groups at the kingdom (A),
phylum (B), species (C), CAZy−family (D), and KEGG−enzyme (E) levels of the top 30. In addition,
correlation network maps were constructed with abundance top 80, p < 0.05, at the species (F),
KEGG−enzyme (G), and CAZy−family (H) levels, respectively. In the network diagram, the size
of the node circle represents abundance, the connecting line of the node represents correlation, the
thickness of the line indicates the strength of the correlation, red indicates positive correlation, and
green indicates negative correlation. We further correlated rumen microorganisms with sheep body
size indicators and rumen parameters (I). Pairwise comparisons of body size indicators (BW: body
weight, BL: body length, CC: chest circumference, BH: body height, and TC: tube circumference),
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rumen enzyme activity (MMC, β−GLU, xylanase, lipase, amylase, CMC, and pepsin), rumen VFA
molar concentration (AA: acetic acid, PA: propionic acid, BA: butyric acid, IBA: isobutyric acid, VA:
valeric acid, IVA: isovaleric acid, and TVFAs), pH, A/P (acetic acid/propionic acid), and molar
proportion (AAR: AA ratio, PAR: PA ratio, BAR: BA ratio, IBAR: IBA ratio, VAR: VA ratio, and IVAR:
IVA ratio) are shown Figure 2. Spearman’s correlation coefficient is indicated by the colored circles.
Edge width corresponds to the Mantel’s r statistic for the corresponding distance correlations, and
edge color denotes the statistical significance based on permutations. In the heat map, * indicates
significant correlation, and values indicate correlation coefficients. Finally, the linear discriminant
analysis effect size (LEfSe) analysis of sheep rumen microorganisms is shown in (J).

First, according to the comparative analysis, phyla-level top 30 differences revealed
that the abundance of 13 phyla (Euryarchaeota, Tenericutes, Candidatus Saccharibacte-
ria, Synergistetes, Planctomycetes, Lentisphaerae, Verrucomicrobia, Cyanobacteria, Chlo-
roflexi, Acidobacteria, Candidatus Thermoplasmatota, Candidatus Absconditabacteria,
and Candidatus Gracilibacteria) in CAH was higher than that in Hu (p < 0.05), and two
phyla (Bacteroidetes and Fusobacteria) were significantly lower than those in the Hu group
(p < 0.05) (Figure 2B). At the species level (top 30), compared to Hu sheep, CAH significantly
increased bacterium_F082, bacterium_P3, Bacteroidales_bacterium_WCE2004, Methanobrevibac-
ter_millerae, Bacteroidales_bacterium_WCE2008, Clostridiales_bacterium, bacterium_F083, Candi-
datus_Nanosyncoccus_alces, bacterium_P201, Alistipes_sp._CAG_51, Mycoplasma_sp._CAG_877,
and Alistipes_sp._CAG_435 but decreased Prevotella_sp._tc2_28, Prevotella_ruminicola, Pre-
votella_sp._ne3005, Prevotella_brevis, Prevotella_bryantii, Ruminococcaceae_bacterium_P7, Pre-
votella_sp._BP1_148, and Prevotellaceae_bacterium_HUN156 (p < 0.05) (Figure 2C). At the
CAZy-family level (top 30), compared to Hu sheep, CAH significantly increased GH13,
GH3, GH28, GH1, GT1, GH92, and GH38 but decreased GT2, GH23, GH43, GH2, GH35,
GT0, and GH73 (p < 0.05) (Figure 2D). At the KEGG-enzyme level (top 30), compared
to Hu sheep, CAH significantly increased EC:2.7.7.6 (DNA-directed RNA polymerase),
EC:5.99.1.3 (DNA topoisomerase- ATP-hydrolysing), EC:3.6.3.- (catalyzing transmembrane
movement of substances),EC:3.6.4.- (cellular and subcellular movement), EC:6.2.1.3 (long-
chain-fatty-acid-CoA ligase), EC:1.2.7.1 1.2.7.- (pyruvate-ferredoxin/flavodoxin oxidore-
ductase), EC:6.1.1.20 (phenylalanine-tRNA ligase), EC:3.1.1.- (Carboxylic ester hydrolases),
EC:2.7.9.1 (pyruvate, phosphate dikinase), and EC:6.1.1.5 (isoleucine-tRNA ligase) but
decreased EC:2.1.1.72 (site-specific DNA-methyltransferase), EC:3.1.21.3 (type I site-specific
deoxyribonuclease), EC:5.2.1.8 (peptidylprolyl isomerase), EC:3.2.1.23 (beta-galactosidase),
EC:1.6.5.3 (NADH:ubiquinone reductase- H+-translocating), and EC:1.4.1.13 1.4.1.14 (gluta-
mate synthase) (p < 0.05) (Figure 2E).

Then, we performed correlation analyses differences at the species (Figure 2F), KEGG-
enzyme (Figure 2G), and CAZy-family (Figure 2H) levels (top 80), respectively. At the
species level, Prevotella_sp._FD3004 and Prevotella_sp._lc2012 were maximally positively
correlated (Figure 2F). Additionally, there was a positive correlation among species, with
Bacteroides_sp._CAG_1060 showing the closest correlation with the other species (Figure 2F).
The top five differentially correlated species at the species level were bacterium_F082, bac-
terium_P3, Prevotella_sp._tc2_28, Prevotella_ruminicola, and Bacteroidales_bacterium_WCE2004
(Figure 2F). At the KEGG-enzyme level, EC:6.1.1.9 (valine-tRNA ligase) and EC:2.7.7.6 (DNA-
directed RNA polymerase) were maximally positively correlated (Figure 2G). EC:6.1.1.9
(valine-tRNA ligase) was most closely correlated with the other species, and the negative
correlations were mainly concentrated in EC:2.7.8.- (Transferases for other substituted
phosphate groups) and EC:2.5.1.49 (O-acetylhomoserine aminocarboxypropyltransferase)
(Figure 2G). At the KEGG-enzyme level, the top five differentially correlated abundances
were EC:2.7.7.6 (DNA-directed RNA polymerase), EC:5.99.1.3 (DNA topoisomerase- ATP-
hydrolysing), EC:5.2.1.8 (peptidylprolyl isomerase), EC:3.6.4.- (cellular and subcellular
movement), and EC:1.6.5.8 (NADH: ubiquinone reductase -Na+-transporting) (Figure 2G).
At the CAZy-family level, GH35 and GH1 were maximally negative correlated (Figure 2H).
GH35 and GH1 were most closely correlated with the other species (Figure 2H). At the
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CAZy-family level, the top five differentially correlated abundances were GT2, GH43,
GH28, GH1, and GT51 (Figure 2H).

Subsequently, we further correlated rumen microorganisms with sheep body size indi-
cators, rumen enzyme activity, rumen VFA molar concentration, and molar proportion, as
shown in Figure 2I. The correlations between the body size indicators of sheep were mainly
positive, and microorganisms significantly affected BW and TC, with the most significant
correlations between BW and CC (Figure 2I). Additionally, there was an overall positive
correlation between rumen fluid enzyme activities in sheep, but β-GLU was negatively cor-
related with CMC and amylase. Meanwhile, MCC showed significant positive correlation
with xylanase and pepsin, respectively. Microorganisms had significant effects on xylanase,
amylase, and CMC but not on MCC, β-GLU, and pepsin (Figure 2I). Ruminal pH showed
an overall negative correlation with VFA molar concentration, but there was an overall
significant positive correlation between the VFAs, and the microorganisms significantly
influenced the VFA molar concentration (PA, IBA, BA, IVA, VA, and TVFAs) (Figure 2I).
Additionally, A/P showed a significant positive correlation with AAR, but it was signifi-
cantly negatively correlated with PAR, IBAR, BAR, and VAR (Figure 2I). Meanwhile, AAR
showed a significant negative correlation with VFA molar proportion (PAR, IBAR, BAR,
and VAR), while other VFA molar proportions showed a basically positive correlation with
each other (Figure 2I). Among the phenotypes associated with body size indicators and
rumen parameters, rumen microbes had the highest correlation with PA, followed by IBA
(Figure 2I).

Finally, LEfSe was used to analyze biomarkers in the rumen of crossbred offspring lambs,
with an LDA score of 3.5. The analysis revealed 34 statistically different biomarkers in the ru-
men fluid of lambs from various crossbreeding offspring, including 7 in Hu and 33 in CAH. At
the species level, five biomarkers were found to be Prevotella_sp__tc2_28, Prevotella_ruminicola,
Ruminococcus_bromii, Prevotella_bryantii, and Prevotella_multisaccharivorax in the Hu group. The
eight biomarkers in CAH sheep were Schwartzia_succinivorans, Alistipes_sp__CAG_435, Alis-
tipes_sp__CAG_514, Mycoplasma_sp__CAG_877, Succiniclasticum_ruminis, Coprobacillus_sp__CA
G_826, Candidatus_Nanosyncoccus_alces, and Methanobrevibacter_millerae (Figure 2J).

3.2. Comparison of Ruminal Metabolites in Hu and CAH Lambs

The OPLS-DA from Figure 3A indicated that Hu lamb and CAH lamb rumen fluid
samples were distinguished. Moreover, the evaluated models were stable and reliable
(Q2Y = 0.939 > 0.9) for screening differential metabolites for subsequent analysis. With
VIP > 1 and p < 0.05 as the screening criteria for differentially accumulated metabolites, 2970
(1339 up-regulated and 1451 down-regulated by CAH vs. Hu lambs) differentially accumu-
lating metabolites were screened from a total of 6119 metabolites (Figure 3B). Figure 3C
demonstrates the significant up-regulation (Phenethyl rutinoside, Tryptophyl-Gamma-
glutamate, Pantetheine 4’-phosphate, DG(10:0/LTE4/0:0), 1-(2-Methoxyethoxy)hexadecane,
Oleic Acid ethyl ester, 1-Cyclohexyl-N-([1-(4-Methylphenyl)-1h-Indol-3-Yl]methyl)methan
amine, Alpha-Linolenoyl ethanolamide, Forodesine, and PA(15:0/PGF2alpha)) and down-
regulation (Deoxyribonucleic acid, Pyrimidopurinone, Glucocochlearin, Hexahydro-6,7-
dihydroxy-5-(hydroxymethyl)-3-(2-hydroxyphenyl)-2H-pyrano [2,3-d]oxazol-2-one, Avenan-
thramide 1c, Cefadroxil, Citiolone, N-Benzylglucamine dithiocarbamate, Aklavinone, and
N-(L-Arginino)succinate) of CAH vs. Hu top 10 metabolites.
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Figure 3. Comparison of ruminal metabolites in Hu and CAH lambs. The OPLS-DA model score plots
for the Hu and CAH groups are displayed in (A), and the metabolite volcano plots are shown in (B).
In addition, the top 10 with the largest up-and down-regulation of differential metabolite multiplicity
are shown in (C). Meanwhile, (D) plots the information of the top 20 entries with the largest number
of differential metabolites annotated to the differential metabolites in the pathway using the KEGG
database annotation. Subsequently, the metabolic pathways of top 20 were further mapped (E),
and the KEGG enrichment network map of the top 5 differential metabolites was constructed (F).
Meanwhile, we further correlated rumen metabolites with sheep body size indexes and rumen
parameters (G), as well as rumen microbes and differential metabolites (H) in the top 5 pathways of the
KEGG enrichment network map. Pairwise comparisons of body size indicators and rumen parameters
are shown (G), whereas pairwise comparisons of differential metabolites in the top 5 pathways of the
KEGG enrichment network maps are shown in (H). The correlation of rumen differential biomarkers
with succinic acid is shown in (I). Spearman’s correlation coefficient is indicated by the colored circles.
Edge width corresponds to the Mantel’s r statistic for the corresponding distance correlations, and
edge color denotes the statistical significance based on permutations. In the heat map, * indicates
significant correlation, and values indicate correlation coefficients.
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Subsequently, we annotated the differential metabolites using the KEGG database and
selected the top 20 with the most annotations to differential metabolites in the pathway,
as shown in Figure 3D, including amino acid metabolism (3 pathway, including tyrosine
metabolism, histidine metabolism, and arginine and proline metabolism), biosynthesis of
other secondary metabolites (1 pathway, including neomycin, kanamycin, and gentamicin
biosynthesis), cancer: overview (1 pathway, including central carbon metabolism in can-
cer), carbohydrate metabolism (1 pathway, including amino sugar and nucleotide sugar
metabolism), digestive system (2 pathway, including bile secretion and protein digestion
and absorption), lipid metabolism (6 pathway, including steroid hormone biosynthesis,
steroid biosynthesis, arachidonic acid metabolism, biosynthesis of unsaturated fatty acids,
linoleic acid metabolism, and primary bile acid biosynthesis), membrane transport (1 path-
way, including ABC transporters), the metabolism of cofactors and vitamins (2 pathway,
including porphyrin metabolism, ubiquinone, and other terpenoid-quinone biosynthesis),
signaling molecules and interaction (1 pathway, including neuroactive ligand–receptor
interaction), and xenobiotics biodegradation and metabolism (2 pathway, including the
metabolism of xenobiotics by cytochrome P450 and drug metabolism-cytochrome P450).

Then, we further analyzed the pathways, as shown in Figure 3E, and constructed top
five differential metabolite KEGG enrichment network graphs (Figure 3F). The study of the
biological process of the KEGG pathway enriched by these differential metabolites revealed
that they were mainly involved in biological processes such as amino acid metabolism
(tyrosine metabolism and valine, leucine, and isoleucine biosynthesis), cancer: overview
(chemical carcinogenesis-DNA adducts), and the metabolism of cofactors and vitamins
(riboflavin metabolism and porphyrin metabolism) (Figure 3E,F).

Finally, the correlation analysis of metabolites with body size indexes and rumen
parameters of sheep in Figure 3G showed that metabolites significantly affected body size
indexes (BW, CC, and TC), rumen enzyme activity (MCC, xylanase, amylase, and CMC),
rumen pH, rumen VFA molar concentration (PA, IBA, BA, VA, and TVFAs), and molar pro-
portion (PAR, IBAR, and VAR) (Figure 3G). Additionally, in Figure 3H, we analyzed the dif-
ferential metabolites in the top five pathway in the constructed KEGG enrichment network
map for correlation with the microbiome. Overall, the microbiome significantly affected the
metabolites in the top five pathway, with the strongest correlation with neg_1108 (succinic
acid of the tyrosine metabolism pathway), followed by pos_3963 (urobilinogen of the por-
phyrin metabolism pathway), neg_998 (dopaquinone of the tyrosine metabolism pathway),
pos_2114 (leucodopachrome of the tyrosine metabolism pathway), and neg_631 (D-Ribulose
5-phosphate of the riboflavin metabolism pathway), respectively (Figure 3H). Meanwhile,
the differential metabolites were also significantly correlated with each other. Among
them, the differential metabolites in the tyrosine metabolism, chemical carcinogenesis-
DNA adducts, riboflavin metabolism, and valine, leucine, and isoleucine biosynthesis
pathways, in general, were significantly negatively correlated with those in the porphyrin
metabolism pathway, respectively (Figure 3H). Subsequently, we further showed by correla-
tion analysis of succinic acid with species-level microbial markers that Prevotella_sp._tc2_28,
Prevotella_ruminicola, and Prevotella_bryantii were significantly negatively correlated and
associated with succinic acid, but Schwartzia_succinivorans, Alistipes_sp._CAG_435, Alis-
tipes_sp._CAG_514, Mycoplasma_sp._CAG_877, Succiniclasticum_ruminis, Coprobacillus_sp._C
AG_826, Candidatus_Nanosyncoccus_alces, and Methanobrevibacter_millerae showed signifi-
cant positive correlation with succinic acid (Figure 3I).

3.3. Relationship between Rumen Biomarkers and Differential Metabolites in Sheep

With VIP > 1.5, log2FC absolute value > 4, and p < 0.05 as the screening criteria
for differentially accumulated metabolites, 56 metabolites (25 up-regulated and 31 down-
regulated by CAH vs. Hu lambs) were identified from a total of 6119 metabolites. Subse-
quently, a correlation analysis was conducted between the microbial markers and the identi-
fied differential metabolites, with the results presented in Figure 4A,B. Overall, biomarkers
have a significant impact on the differential metabolites. The strongest correlation was with



Animals 2024, 14, 2256 13 of 22

pos_2154 (2-(4-Amino-1-isopropyl-1H-pyrazolo[3,4-d]pyrimidin-3-yl)-1H-indol-5-ol); in
order, the top five were (2-(4-Amino-1-isopropyl-1H-pyrazolo[3,4-d]pyrimidin-3-yl)-1H-
indol-5-ol), pos_2114 (Leucodopachrome), pos_2115 (2,4-DPD), pos_2142 (Gibberellin A39),
and neg_3589 ((R)-N-Methylsalsolinol), respectively (Figure 4A). In addition, up-regulated
and up-regulated differential metabolites showed generally positive correlations with
each other (Figure 4A). Meanwhile, the down-regulated and down-regulated differential
metabolites were basically positively correlated with each other (Figure 4A). However,
up-regulated and down-regulated differential metabolites were basically negatively cor-
related with each other (Figure 4A). Correlation analysis of biomarkers with differential
metabolites showed that rumen microbial markers in Hu sheep were generally positively
correlated with down-regulated metabolites and negatively correlated with up-regulated
metabolites, especially Prevotella_sp._tc2_28, Prevotella_ruminicola, and Prevotella_bryantii
(Figure 4B). Additionally, CAH lamb rumen microbial markers overall showed negative
correlations with down-regulated metabolites and positive correlations with up-regulated
metabolites (Figure 4B).
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Figure 4. Correlation between rumen differential biomarkers and differential metabolites.
(A) demonstrates Mantel’s r analysis of rumen differential biomarkers with differential metabo-
lites. Spearman’s correlation coefficient is indicated by the colored circles. Edge width corresponds
to the Mantel’s r statistic for the corresponding distance correlations, and edge color denotes the
statistical significance based on permutations. (B) Exhibits Spearman’s correlation analysis of ru-
men differential biomarkers with differential metabolites. In the heat map, * indicates significant
correlation, and values indicate correlation coefficients.
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4. Discussion
4.1. Effect of Three-Way Crosses on the Rumen Macrogenome of Sheep
4.1.1. Effect of Three-Way Crossbreeding on Rumen Microbial Diversity in Sheep

Crossbreeding can exploit heterosis to allow the progeny to acquire the advantageous
characteristics of diverse varieties, thus improving the growth performance of livestock and
poultry. The findings of this preliminary experiment indicated that three-way-crossbred
sheep CAH significantly altered rumen parameters and increased body weights. Addition-
ally, 16S rRNA V3−V4 sequencing revealed that three-way hybridization elevated rumen
microbial α-diversity, and the presence of rumen microbes in lambs was notably distinct
between Hu and CAH lambs at 135 days of age [8]. However, microbial communities
are subject to influences such as host genetics, sex, diet, age, environment, geographic
location [11,44–48], and the vertical transmission of gut microbes [49]. Furthermore, the
results of Wang et al. demonstrated that rumen microbes contributed 20% of the phe-
notypic variation when host genetics were considered [11]. Interestingly, our research
has revealed a significant decrease in the rumen fluid VFA molar concentration in the
three-way-hybrid lamb compared to the Hu lamb. However, the VFA molar ratio and
acetic acid/propionic acid were not significantly impacted [8]. Hence, we hypothesized
that hybridization may impact rumen fermentation and VFA utilization by modulating
the composition and metabolism of rumen microbes. Species-level microorganism PCoA
and NMDS analyses revealed that archaea, bacteria, and fungi were clearly segregated
in the rumen of Hu and CAH lambs. Meanwhile, α-diversity assessment of rumen mi-
croorganisms showed that the ACE and Chao1 indices were significantly higher in CAH
than in Hu lamb at the species, KEGG-enzyme, and CAZy-family levels. In addition, the
Simpson and Shannon indices in the CAH group were significantly higher than in Hu
sheep at the CAZy-family level. This result may be related to the fact that host genetics
play a key role in determining rumen microbial communities. This result may be related to
the fact that different gene expression programs and gene flow may influence microbial
composition [26,50,51]. Meanwhile, the effect of hybridization on the offspring microbiota
was greater than the maternal effect [50,52]. Moreover, the diversity of the rumen ecosystem
was more beneficial for maintaining rumen homeostasis and resistance to environmental
changes [53].

4.1.2. Effect of Three-Way Crossbreeding on Rumen Microbial Composition in Sheep

Similar to many previous studies using metagenomics to assess the rumen microbiome,
bacteria were the most abundant microbial kingdom in the rumen [54], accounting for more
than 76.98% of the community. The experimental results show that, at the phylum level,
the dominant bacteria remained Bacteroidetes and Firmicutes, which is consistent with the
structure of the dominant rumen bacteria in ruminants (sheep [8,55], goat [48], cattle [56],
dairy cows [57], and yak [58]). It was found that, at the top 30 abundance, three-way cross-
breeding significantly increased Euryarchaeota (Methanobrevibacter_millerae), Tenericutes
(Mycoplasma_sp._CAG_877), Candidatus Saccharibacteria (Candidatus_Nanosyncoccus_alces),
Synergistetes, Planctomycetes, Lentisphaerae, Verrucomicrobia, Cyanobacteria, Chloroflexi,
Acidobacteria, Candidatus Thermoplasmatota, Candidatus Absconditabacteria, and Can-
didatus Gracilibacteria but significantly reduced Bacteroidetes (Prevotella_sp._tc2_28, Pre-
votella_ruminicola, Prevotella_sp._ne3005, Prevotella_brevis, Prevotella_bryantii, Prevotella_sp._B
P1_148, and Prevotellaceae_bacterium_HUN156) and Fusobacteria. Furthermore, at the species
level, three-way crossbreeding also significantly increased Unclassified (bacterium_F082, bac-
terium_P3, bacterium_F083, bacterium_P201, Bacteroidales_bacterium_WCE2008, Bacteroidales_b
acterium_WCE2004, and Clostridiales_bacterium) and Bacteroidetes (Alistipes_sp._CAG_435
and Alistipes_sp._CAG_51) but decreased Firmicutes (Ruminococcaceae_bacterium_P7). The
results indicate that the process of three-way hybridization has a notable impact on the
microbial composition of the rumen. The study illustrated that Verrucomicrobiota, which
is enriched with genes linked to the breakdown of lignocellulosic polymers and the fermen-
tation of degradation byproducts into VFAs, along with Synergistota, enhanced the con-
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version of cellulose degradation into VFAs for organismal utilization [59–61]. Meanwhile,
Euryarchaeota contain physiologically diverse groups of archaea, such as methanogens,
extremophilic archaea, and hyperthermophilic archaea, for which methane production is
an integral part of their metabolism [62]. The abundance of Tenericutes is closely related to
the metabolic state. Studies in a mouse model of the metabolic syndrome found that the
abundance of Bacteroidetes and Tenericutes was strongly associated with obesity-related
inflammation [63]. Moreover, there was lower Tenericutes abundance in metabolically
unhealthy, obese individuals [64] and individuals with reduced insulin sensitivity [65].
In addition, studies have shown that disease and inflammation can cause a decrease in
the abundance of Acidobacteria [66–68] and that obesity increases Acidobacteria abun-
dance [69]. Lentisphaerae abundance is reduced in disease [70] and immunodeficiency [71]
and possesses a polysaccharide degradation function [72,73]. It is evident that rumen
microbes and their hosts evolve synergistically during long-term adaptation to the envi-
ronment and co-regulate host physiology [11–15]. The findings indicate that three-way
crossings have the potential to modify microbial composition, thereby impacting rumen
function and metabolic processes. Meanwhile, this experimental study found that three-
way crossbreeding of the sheep rumen dominant genus Prevotella was significantly reduced,
but at the phylum level, the three-way crossbreeding significantly reduced the abundance
of Bacteroidetes and increased Firmicutes/Bacteroidetes (F/B). Studies have shown that
Prevotellaceae produce mainly acetate and succinate [74] and are negatively correlated with
growth rates [75] and production performance [76,77] in ruminants. However, this is also
contrary to some studies that found Prevotella species to be associated with higher milk
production [78,79]. Meanwhile, studies have shown that lower F/B is strongly associated
with weight loss [80], reduced feed efficiency [18], and reduced milk fat production in dairy
cows [77]. This result suggests that, while focusing on the dominant bacteria playing an
important role in the physiological functions of the host, even more noteworthy are the
low-abundance bacteria. Despite their low abundance, their taxa numbers and diversity are
much higher than those of the host’s high-abundance bacteria and may play a key role in
various aspects of host physiology. Furthermore, in complex rumen ecosystems, microbiota
interactions may be more important for ecosystem function than abundance [75,81]. The
Mantel test allows for a visual understanding of the relationship between community
matrices and environmental factors. The Mantel test found that rumen microorganisms
significantly affected body size indexes (BW and TC), rumen enzyme activities (xylanase,
amylase, and CMC), VFA molar concentration (PA, IBA, BA, IVA, VA, and TVFAs), and
VFA molar proportion (PAR and VAR), with the highest correlation with PA. The findings
indicated that the microorganisms in the rumen of sheep exhibit a high level of complexity
and diversity. Moreover, the construction of species-level correlation network diagrams
revealed significant correlations among microbial communities. Consequently, alterations
in the gastric microbiome of the crossbred offspring could have been impacted by animal
genetics. Previous research has indicated that gene flow can influence microbial compo-
sition, with this trait being heritable. Moreover, hybridization was found to have a more
pronounced impact on microbial composition compared to maternal effects, as supported
by related studies [11,26,50,52,53,75,82].

4.1.3. Effect of Three-Way Crossbreeding on Rumen Microbial Functions in Sheep

Carbohydrates can significantly influence microbiota structure and microbial inter-
actions, whether competitive or synergistic. The evolution and acquisition of specific
CAZymes provide a competitive advantage for certain bacteria. Additionally, microbial
carbohydrate degradation activities, including glycoside hydrolases (GH), polysaccharide
lyases (PL), carbohydrate esterases (CE), and auxiliary activity (AA), provide nutrients to
the host. Typically, CAZymes are accompanied by carbohydrate-binding modules (CBMs),
which are crucial for enhancing the catalytic activity of the attached CAZyme but do not
possess catalytic activity themselves [36]. Furthermore, microorganisms produce CAZymes
that work in synergy with the animal body to break down complex carbohydrates before
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being further metabolized and utilized by the organism, generating new bio-signaling
molecules that act as a bridge between host and microbial regulation. Macrogenomic
analysis revealed that the GH and GT families were enriched in rumen species, which is
similar to previous findings [83,84]. Meanwhile, a significant correlation between the CAZy
family was found by constructing a CAZy-family level correlation network diagram and
differential correlation abundance top five for GT2 (Hexosyltransferases), GH43 and GH28
(hydrolyse O- and S-glycosyl compounds), GH1 (Hexosyltransferases, hydrolyse O- and S-
glycosyl compounds), and GT51 (peptidoglycan glycosyltransferase). Among them, the GH
family is mainly involved in cellulases, hemicellulose, oligosaccharide-degrading enzymes,
and related debranching enzymes [84,85]. It was found that crossbred sheep (CAH) were
significantly enriched in Hexosyltransferases and hydrolyse O- and S-glycosyl compounds
(GH13, GH3, and GH1), hydrolyse O- and S-glycosyl compounds (GH28), Hexosyltrans-
ferases and Pentosyltransferases (GT1), and hydrolyse O- and S-glycosyl compounds
(GH38, GH92), while Hu sheep were significantly enriched in Hexosyltransferases (GT2),
hydrolyse O- and S-glycosyl compounds and peptidoglycan lytic transglycosylase (GH23),
hydrolyse O- and S-glycosyl compounds (GH2, GH43, and GH73), Hexosyltransferases
and hydrolyse O- and S-glycosyl compounds (GH35), and GT0 (Glycosyltransferases not
yet assigned to a family). In addition, in the GH family, GH13 had the highest abundance,
with GH23 and GH3 second and third, respectively. In the GT family, GT2 had the highest
abundance, with GT51 and GT28 second and third, respectively. It was found that in the
top 30, differential function in the rumen of CAH and Hu lambs was mainly enriched in
GH and GT but had essentially no significant effect in CBMs, CEs, AAs, and PLs. This
result may be related to the fact that in our previous study, we found that there were
significant differences in VFA molar content between three-way-crossbred lambs and Hu,
but basically no significant changes in VFA molar proportion [8]. Additionally, the rumen
VFA molar proportion remained essentially unchanged, which may be related to the fact
that ruminants can maintain the stability of rumen molar proportion through a complex
regulatory mechanism [86]. Studies have shown that an increase in VFA molar concentra-
tion can enhance pancreatic sensitivity, leading to increased insulin secretion, increased fat
oxidation, and decreased fat deposition and body weight [87]. Furthermore, studies have
indicated that an increase in VFA concentration can increase anorexigenic signaling and de-
crease orexigenic signaling, affecting food intake, resulting in negative energy balance and
influencing feed intake [88]. The pre-fasting VFAs molar concentration of Hu sheep was
significantly higher than that of CAH, while the body weight was lower than that of CAH.
This result is consistent with the theory mentioned above [87] and further demonstrates the
difference in the efficiency of VFA utilization between the bodies of Hu sheep and crossbred
progeny. Macrogenomic KEGG-enzyme analysis revealed that CAH significantly increased
Oxidoreductases (pyruvate-ferredoxin/flavodoxin oxidoreductase), Transferases (DNA-
directed RNA polymerase, pyruvate, and phosphate dikinase), Hydrolases (catalyzing
transmembrane movement of substances, cellular and subcellular movement, and Car-
boxylic ester hydrolases), Isomerases (DNA topoisomerase-ATP-hydrolysing), and Ligases
(long-chain-fatty-acid-CoA ligase, phenylalanine-tRNA ligase, and isoleucine-tRNA ligase)
but decreased Oxidoreductases (NADH:ubiquinone reductase-H+-translocating and glu-
tamate synthase), Transferases (site-specific DNA-methyltransferase), Hydrolases (type I
site-specific deoxyribonuclease and beta-galactosidase), and Isomerases (peptidylprolyl iso-
merase). Meanwhile, a significant correlation between enzymes was found by constructing
a KEGG-enzyme level correlation network diagram. The differential correlation abundance
top five included DNA-directed RNA polymerase, DNA topoisomerase-ATP-hydrolysing,
peptidylprolyl isomerase, cellular and subcellular movement, and NADH: ubiquinone
reductase -Na+-transporting. Therefore, it was speculated that three-way hybridization
could modulate rumen metabolite production by altering rumen microbial composition
and thus enriching the KEGG enzyme and CAZy family.
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4.2. Effect of Three-Way Crossbreeding on Rumen Metabolism in Sheep

Ruminal metabolites are the basis for participation in the physiological metabolism of
ruminants and bridge the interaction between rumen microorganisms and the host [75,89].
The current experimental study revealed notable variances in rumen metabolites between
CAH and Hu sheep. The analysis of the KEGG pathway enriched by the top five differential
metabolites indicated that a majority of the differential metabolites are involved in tyrosine
metabolism; valine, leucine, and isoleucine biosynthesis; and chemical carcinogenesis-DNA
adducts; and that the riboflavin metabolism pathways were significantly down-regulated
in CAH. Only Succinic acid, 5,6-Indolequinone-2-carboxylic acid, Maleic acid, Vapreotide,
4-(Methylnitrosamino)-1-(3- pyridyl)-1-butanol glucuronide, riboflavin, and reduced ri-
boflavin were significantly up-regulated in the CAH lamb. However, differential metabo-
lites in the porphyrin metabolism pathway were largely significantly up-regulated in CAH,
with only D-Urobilinogen, Porphobilinogen, (3b,7b,22x)-Cucurbita-5,24-diene-3,7,23-triol
7- glucoside, and primary fluorescent chlorophyll catabolite being down-regulated. Sub-
sequently, our analysis of rumen microbes and KEGG pathway differential metabolites
using the Mantel test revealed that the rumen microbes were most strongly associated with
neg_1108 (Succinic acid), followed by pos_3963 (Urobilinogen) and neg_998 (Dopaquinone)
in second and third order, respectively. In this study, we observed a significant reduction
in 2-oxoglutarate in CAH rumen fluid. Of particular note, succinate, a metabolite closely
associated with rumen microbes, plays a crucial role in the organismal energy metabolism
as a downstream product of the host cell and gut microbial metabolite 2-oxoglutarate dehy-
drogenase complex. Previous research has shown that succinate serves as an intermediate
metabolite in the Krebs cycle, participating in inflammatory responses via endocrine and
paracrine signaling pathways, facilitating skeletal muscle protein synthesis, regulating
myofibrillar restructuring, contributing to energy supply, and maintaining glucose home-
ostasis [90,91]. Furthermore, succinate functions as an epigenetic regulator involved in gene
transcription, translation, and post-translational modification [92]. Hormones (e.g., IGF-1)
and nutrients (e.g., amino acids) are generally essential in the regulation of skeletal muscle
protein synthesis. Succinate further stimulates skeletal muscle protein synthesis through
the Erk/Akt signaling pathway by activating the Akt/mTOR/S6 cascade and inhibiting
FoxO3a [93]. It is worth noting that certain amino acids and TCA cycle intermediates, such
as α-ketoisocaproate, β-hydroxy-β-methylbutyrate, and 2-oxoglutarate, have also been
identified to promote skeletal muscle growth by increasing protein synthesis and inhibiting
protein degradation. Meanwhile, metabolite analysis by the succinate and KEGG top five
pathways showed that succinate had a significant negative correlation with a large number
of metabolites and significantly positively correlated with only a few metabolites (Maleic
acid, Riboflavin, Reduced riboflavin, 8-Ethyl-12-methyl-3-vinylbacteriochlorophyllided,
Red chlorophyll catabolite, 12-Ethyl-8-propylbacteriochlorophyllided, Urobilinogen, and
5-Oxo-delta-bilirubin). Then, we further analyzed the correlation analysis of succinic acid
with species-level microbial markers and found that succinic acid showed a negative cor-
relation with Hu lamb species-level markers (Prevotella_sp._tc2_28, Prevotella_ruminicola,
and Prevotella_bryantii), while it showed a positive correlation with CAH lamb species-
level markers (Schwartzia_succinivorans, Alistipes_sp._CAG_435, Alistipes_sp._CAG_514, My-
coplasma_sp._CAG_877, Succiniclasticum_ruminis, Coprobacillus_sp._CAG_826, Candidatus_
Nanosyncoccus_alces and Methanobrevibacter_millerae).

In addition, we collected rumen fluid non-target metabolomic data and phenotypic
data from Hu and CAH lambs with highly uniform feeding environments for correlation
analysis. Our study demonstrated that the rumen metabolites significantly affected body
size indexes (body weight, chest circumference, and tube circumference), rumen enzyme ac-
tivities (MCC, xylanase, amylase, and CMC), pH, VFAs molar concentration (propionic acid,
butyric acid, isobutyric acid, valeric acid, and TVFA), and VFA molar proportion (propionic
acid ratio, isobutyric acid ratio, and valeric acid ratio). Mantel analysis of biomarkers and
differential metabolites of rumen microorganisms at species level showed that biomarkers
significantly affected differential metabolites and that differential metabolites were signifi-
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cantly correlated with each other. However, the interactions between microbial metabolites
and host physiology are complex and are influenced by the environment, microbes, and
host genetics, and act as signaling molecules and substrates for metabolic reactions in the
host [93]. In conclusion, three-way hybridization may regulate succinate metabolism and
promote lamb growth and development by affecting the rumen microbiota. Our present
research indicates a close relationship between rumen metagenomics and metabolomics
with host traits. Furthermore, it was observed that the rumen microbes and metabolites
have the ability to interact with each other, collectively influencing host phenotypes.

5. Conclusions

This study identified notable variances in the taxonomic characteristics, functions, and
metabolites of rumen microorganisms in Hu and CAH lambs. The diversity of offspring
microbial communities was significantly increased through three-way crossbreeding, with
biomarkers playing a crucial role in influencing rumen differential metabolites. Addi-
tionally, microbes significantly affected the top five pathway metabolites, with a specific
focus on succinic acid. This study’s findings indicated notable interactions between ru-
men microbes and metabolites. Despite controlling for various external factors such as
feed and management practices that could affect lamb growth, the study revealed that
three-way crossbreeding can lead to alterations in rumen metabolite composition, microbial
composition and function, and a significant association with host phenotype.
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