The Effect of Phytogenic Additive in Broiler’s Diet on Production Results, Physicochemical Parameters, and the Composition of Volatile Organic Compounds of Broiler Meat Assessed by an Electronic Nose System
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Sampling Procedures
2.3. Visual and Tactile Assessment of the Breast Muscle for Quality Defects
- 0 = normal—no distinct white lines,
- 1 = moderate—small white lines, generally <1 mm thick but visible on the fillet surface,
- 2 = severe—large white lines (1–2 mm thick) evident on the fillet surface,
- 3 = extremely—thick white bands (>2 mm thickness) covering almost the entire surface of the fillet [25].
- 0 = normal breast muscle that is flexible throughout;
- 1 = mild breast muscle that is hard mainly in the cranial region but flexible elsewhere;
- 2 = moderate breast muscle that is hard throughout but flexible in the mid to caudal region;
- 3 = severe muscle that is extremely hard and rigid from the cranial region to the caudal tip [26].
- 0 = normal—muscle shows normal consistency and does not display any sign of muscular lesion;
- 1 = moderate—muscle does not show any superficial laceration but has a soft and stringy texture, perceivable by pinching the muscle on its cranial surface;
- 2 = severe—muscle shows extensive superficial lacerations on the cranial and/or caudal surface. Muscle fiber bundles separate from each other, resembling spaghetti pasta [27].
2.4. Breast Muscle Color Parameters (L*, a*, b*)
- ΔE—absolute color difference,
- , , —color parameters of the breast muscles from chickens from the control group (C),
- , , —color parameters of the breast muscles of chickens from the experimental group.
- 0 < ∆E < 1—standard, invisible color deviation;
- < ∆E < 2—minimal deviation, recognizable only by an experienced observer;
- 2.01 < ∆E < 3.5—mean deviation, recognizable by an inexperienced observer;
- 3.51 < ∆E < 5—apparent color deviation;
- ∆E > 5.01—significant color deviation [28].
2.5. Determination of Drip Loss and Thermal Loss
2.6. Determination of Cutting Force
2.7. Measurement of Breast Muscle pH and WHC, and Determination of Basic Chemical Composition and Collagen Content
2.8. Volatile Organic Compounds Profile in Breast Muscle
2.9. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abd El-Hack, M.E.; El-Saadony, M.T.; Salem, H.M.; El-Tahan, A.M.; Soliman, M.M.; Youssef, G.B.A.; Taha, A.E.; Soliman, S.M.; Ahmed, A.E.; El-kott, A.F.; et al. Alternatives to antibiotics for organic poultry production: Types, modes of action and impacts on bird’s health and production. Poult. Sci. 2022, 101, 101696. [Google Scholar] [CrossRef]
- Dong, S.; Li, L.; Hao, F.; Fang, Z.; Zhong, R.; Wu, J.; Fang, X. Improving quality of poultry and its meat products with probiotics, prebiotics, and phytoextracts. Poult. Sci. 2024, 103, 103287. [Google Scholar] [CrossRef] [PubMed]
- Greathead, H. Plants and plant extracts for improving animal productivity. Proc. Nutr. Soc. 2003, 62, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Anadón, A. WS14 The EU ban of antibiotics as feed additives alternatives and consumer safety. J. Veter-Pharmacol. Ther. 2006, 29, 41–44. [Google Scholar] [CrossRef]
- World Health Organization. Ten Threats to Global Health in 2019. World Heal. Organ. 2019, 1–18. Available online: https://www.who.int/news-room/spotlight/ten-threats-to-global-health-in-2019 (accessed on 1 July 2024).
- Anderson, M.; Panteli, D.; Mossialos, E. Policy Brief 51 How Can the EU Support Sustainable Innovation and Access to Effective Antibiotics? Policy Options for Existing and New Medicines. In European Observatory on Health Systems and Policies; 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK594074 (accessed on 1 July 2024).
- Urban, J.; Kareem, K.Y.; Matuszewski, A.; Bień, D.; Ciborowska, P.; Lutostański, K.; Michalczuk, M. Enhancing broiler chicken health and performance: The impact of phytobiotics on growth, gut microbiota, antioxidants, and immunity. In Phytochemistry Reviews; Springer: Berlin/Heidelberg, Germany, 2024; pp. 1–15. [Google Scholar] [CrossRef]
- Ricke, S.C. Prebiotics and alternative poultry production. Poult. Sci. 2021, 100, 101174. [Google Scholar] [CrossRef]
- Al-Khalaifa, H.; Al-Nasser, A.; Al-Surayee, T.; Al-Kandari, S.; Al-Enzi, N.; Al-Sharrah, T.; Ragheb, G.; Al-Qalaf, S.; Mohammed, A. Effect of dietary probiotics and prebiotics on the performance of broiler chickens. Poult. Sci. 2019, 98, 4465–4479. [Google Scholar] [CrossRef]
- Yeung, A.W.K.; Orhan, I.E.; Aggarwal, B.B.; Battino, M.; Belwal, T.; Bishayee, A.; Daglia, M.; Devkota, H.P.; El-Demerdash, A.; Balacheva, A.A.; et al. Berberine, a popular dietary supplement for human and animal health: Quantitative research literature analysis—A review. Anim. Sci. Pap. Rep. 2020, 38, 5–19. [Google Scholar]
- Makała, H. Herbs and phytogenic feed additives in poultry nutrition. Med. Weter. 2022, 78, 11–18. [Google Scholar] [CrossRef]
- Hafeez, A.; Männer, K.; Schieder, C.; Zentek, J. Effect of supplementation of phytogenic feed additives (powdered vs. encapsulated) on performance and nutrient digestibility in broiler chickens. Poult. Sci. 2016, 95, 622–629. [Google Scholar] [CrossRef]
- Oso, A.O.; Suganthi, R.U.; Reddy, G.B.M.; Malik, P.K.; Thirumalaisamy, G.; Awachat, V.B.; Selvaraju, S.; Arangasamy, A.; Bhatta, R. Effect of dietary supplementation with phytogenic blend on growth performance, apparent ileal digestibility of nutrients, intestinal morphology, and cecal microflora of broiler chickens. Poult. Sci. 2019, 98, 4755–4766. [Google Scholar] [CrossRef]
- Yadav, S.; Teng, P.Y.; Choi, J.; Singh, A.K.; Vaddu, S.; Thippareddi, H.; Kim, W.K. Influence of rapeseed, canola meal and glucosinolate metabolite (AITC) as potential antimicrobials: Effects on growth performance, and gut health in Salmonella Typhimurium challenged broiler chickens. Poult. Sci. 2022, 101, 101551. [Google Scholar] [CrossRef] [PubMed]
- Yakhkeshi, S.; Rahimi, S.; Gharib Naseri, K. The effects of comparison of herbal extracts, antibiotic, probiotic and organic acid on serum lipids, immune response, GIT microbial population, intestinal morphology and performance of broilers. J. Med. Plants 2011, 10, 80–95. [Google Scholar]
- Ząbek, K.; Szkopek, D.; Michalczuk, M.; Konieczka, P. Dietary phytogenic combination with hops and a mixture of a free butyrate acidifier and gluconic acid maintaining the health status of the gut and performance in chickens. Animals 2020, 10, 1335. [Google Scholar] [CrossRef]
- Hashemipour, H.; Kermanshahi, H.; Golian, A.; Veldkamp, T. Metabolism and nutrition: Effect of thymol and carvacrol feed supplementation on performance, antioxidant enzyme activities, fatty acid composition, digestive enzyme activities, and immune response in broiler chickens. Poult. Sci. 2013, 92, 2059–2069. [Google Scholar] [CrossRef]
- Saartje Mandey, J.; Nery Sompie, F. Phytogenic Feed Additives as An Alternative to Antibiotic Growth Promoters in Poultry Nutrition; IntechOpen: Rijeka, Croatia, 2021. [Google Scholar] [CrossRef]
- El-Ashram, S.; Abdelhafez, G.A.; Farroh, K.Y. Effects of nanochitosan supplementation on productive performance of Japanese quail. J. Appl. Poult. Res. 2020, 29, 917–929. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; El-Saadony, M.T.; Saad, A.M.; Salem, H.M.; Ashry, N.M.; Abo Ghanima, M.M.; Shukry, M.; Swelum, A.A.; Taha, A.E.; El-Tahan, A.M.; et al. Essential oils and their nanoemulsions as green alternatives to antibiotics in poultry nutrition: A comprehensive review. Poult. Sci. 2022, 101, 101584. [Google Scholar] [CrossRef]
- Yang, X.; Liu, Y.; Yan, F.; Yang, C.; Yang, X. Effects of encapsulated organic acids and essential oils on intestinal barrier, microbial count, and bacterial metabolites in broiler chickens. Poult. Sci. 2019, 98, 2858–2865. [Google Scholar] [CrossRef] [PubMed]
- Puvača, N.; Tufarelli, V.; Giannenas, I. Essential Oils in Broiler Chicken Production, Immunity and Meat Quality: Review of Thymus vulgaris, Origanum vulgare, and Rosmarinus officinalis. Agriculture 2022, 12, 874. [Google Scholar] [CrossRef]
- Aviagen Ross 308: Broiler Performance Objectives; Aviagen Inc.: Huntsville, AL, USA, 2022; pp. 1–16. Available online: https://aviagen.com/assets/Tech_Center/Ross_Broiler/RossxRoss308-BroilerPerformanceObjectives2022-EN.pdf (accessed on 15 June 2024).
- Chodkowska, K.A.; Abramowicz-Pindor, P.A.; Tuśnio, A.; Gawin, K.; Taciak, M.; Barszcz, M. Effect of Phytobiotic Composition on Production Parameters, Oxidative Stress Markers and Myokine Levels in Blood and Pectoral Muscle of Broiler Chickens. Animals 2022, 12, 2625. [Google Scholar] [CrossRef]
- Kuttappan, V.A.; Hargis, B.M.; Owens, C.M. White striping and woody breast myopathies in the modern poultry industry: A review. Poult. Sci. 2016, 95, 2724–2733. [Google Scholar] [CrossRef]
- Khalil, S.; Saenbungkhor, N.; Kesnava, K.; Sivapirunthep, P.; Sitthigripong, R.; Jumanee, S.; Chaosap, C. Effects of Guanidinoacetic Acid Supplementation on Productive Performance, Pectoral Myopathies, and Meat Quality of Broiler Chickens. Animals 2021, 11, 3180. [Google Scholar] [CrossRef] [PubMed]
- Baldi, G.; Soglia, F.; Petracci, M. Spaghetti Meat Abnormality in Broilers: Current Understanding and Future Research Directions. Front. Physiol. 2021, 12, 684497. [Google Scholar] [CrossRef]
- Bendowski, W.; Michalczuk, M.; Jóźwik, A.; Kareem, K.Y.; Łozicki, A.; Karwacki, J.; Bień, D. Using Milk Thistle (Silybum marianum) Extract to Improve the Welfare, Growth Performance and Meat Quality of Broiler Chicken. Animals 2022, 12, 684497. [Google Scholar] [CrossRef] [PubMed]
- Iwiński, H.; Chodkowska, K.A.; Drabik, K.; Batkowska, J.; Karwowska, M.; Kuropka, P.; Szumowski, A.; Szumny, A.; Różański, H. The Impact of a Phytobiotic Mixture on Broiler Chicken Health and Meat Safety. Animals 2023, 13, 2155. [Google Scholar] [CrossRef]
- Michalczuk, M.; Jóźwik, A.; Damaziak, K.; Zdanowska-Sasiadek, Z.; Marzec, A.; Gozdowski, D.; Strzałkowska, N. Age-related changes in the growth performance, meat quality, and oxidative processes in breast muscles of three chicken genotypes. Turkish, J. Vet. Anim. Sci. 2016, 40, 389–398. [Google Scholar] [CrossRef]
- Wojtasik-Kalinowska, I.; Guzek, D.; Górska-Horczyczak, E.; Głabska, D.; Brodowska, M.; Sun, D.W.; Wierzbicka, A. Volatile compounds and fatty acids profile in Longissimus dorsi muscle from pigs fed with feed containing bioactive components. LWT 2016, 67, 112–117. [Google Scholar] [CrossRef]
- Górska-Horczyczak, E.; Wojtasik-Kalinowska, I.; Guzek, D.; Sun, D.W.; Wierzbicka, A. Differentiation of chill-stored and frozen pork necks using electronic nose with ultra-fast gas chromatography. J. Food Process Eng. 2017, 40, e12540. [Google Scholar] [CrossRef]
- Marć-Pieńkowska, J.; Podkówka, Z.; Borowski, S. The influence of herb addition to broilers` diet on production results and meat chemical composition. J. Cent. Eur. Agric. 2019, 20, 1055–1062. [Google Scholar] [CrossRef]
- Zaikina, A.S.; Buryakov, N.P.; Buryakova, M.A.; Zagarin, A.Y.; Razhev, A.A.; Aleshin, D.E. Impact of Supplementing Phytobiotics as a Substitute for Antibiotics in Broiler Chicken Feed on Growth Performance, Nutrient Digestibility, and Biochemical Parameters. Vet. Sci. 2022, 9, 672. [Google Scholar] [CrossRef]
- Sakr, S.A.; EL-Emam, H.A.; Naiel, M.A.E.; Wahed, N.M.; Zaher, H.A.; Mohamed Soliman, M.; Shukry, M.; Shehata, A.M.; Alkhedaide, A.; Elghareeb, M.M. The effects of paulownia (Paulownia tomentosa) leaf extract enriched diets on meat quality, sensory attributes, and the potential economic impact of broilers. Ital. J. Anim. Sci. 2022, 21, 1430–1441. [Google Scholar] [CrossRef]
- Dokou, S.; Vasilopoulou, K.; Bonos, E.; Grigoriadou, K.; Savvidou, S.; Stefanakis, M.K.; Christaki, S.; Kyriakoudi, A.; Mourtzinos, I.; Tzora, A.; et al. Effects of Dietary Supplementation with Phytobiotic Encapsulated Plant Extracts on Broilers’ Performance Parameters, Welfare Traits and Meat Characteristics. Ann. Anim. Sci. 2023, 23, 1105–1118. [Google Scholar] [CrossRef]
- Aljumaah, M.R.; Suliman, G.M.; Abdullatif, A.A.; Abudabos, A.M. Effects of phytobiotic feed additives on growth traits, blood biochemistry, and meat characteristics of broiler chickens exposed to Salmonella typhimurium. Poult. Sci. 2020, 99, 5744–5751. [Google Scholar] [CrossRef] [PubMed]
- Bello, B.M.; Abdullahi, B.M.; Lamido, M.; Rashida, M.; Mohamed, A.E.M. Effect of Phytobiotics and Antibiotic on Growth Performance, Intestinal Morphology and Nutrients Transporters Expression of Broiler Chickens. Afr. J. Agric. Food Sci. 2023, 6, 78–91. [Google Scholar] [CrossRef]
- Mehala, C.; Moorthy, M. Production performance of broilers fed with Aloe vera and Curcuma longa (turmeric). Int. J. Poult. Sci. 2008, 7, 852–856. [Google Scholar] [CrossRef]
- Akbarian, A.; Golian, A.; Kermanshahi, H.; Gilani, A.; Moradi, S. Influence of turmeric rhizome and black pepper on blood constituents and performance of broiler chickens. Afr. J. Biotechnol. 2012, 11, 8606–8611. [Google Scholar] [CrossRef]
- Martínez, Y.; Paredes, J.; Avellaneda, M.C.; Botello, A.; Valdivié, M. Diets with Ganoderma lucidum Mushroom Powder and Zinc-Bacitracin on Growth Performance, Carcass Traits, Lymphoid Organ Weights and Intestinal Characteristics in Broilers. Rev. Bras. Cienc. Avic. Brazilian J. Poult. Sci. 2022, 24, eRBCA-2021. [Google Scholar] [CrossRef]
- Zdanowska-Sąsiadek, Ż.; Lipińska-Palka, P.; Damaziak, K.; Michalczuk, M.; Grzybek, W.; Kruzińska, B.; Jasińska, K.; Róg, D.; Kordos, K.; Ząbek, K.; et al. Antioxidant effects of phytogenic herbal-vegetable mixtures additives used in chicken feed on breast meat quality. Anim. Sci. Pap. Reports 2019, 37, 393–408. [Google Scholar]
- Kiczorowska, B.; Samolińska, W.; Al-Yasiry, A.; Zając, M. Immunomodulant feed supplement Boswellia serrata to support broiler chickens’ health and dietary and technological meat quality. Poult. Sci. 2020, 99, 1052. [Google Scholar] [CrossRef] [PubMed]
- Vasilopoulos, S.; Dokou, S.; Papadopoulos, G.A.; Savvidou, S.; Christaki, S.; Kyriakoudi, A.; Dotas, V.; Tsiouris, V.; Bonos, E.; Skoufos, I.; et al. Dietary Supplementation with Pomegranate and Onion Aqueous and Cyclodextrin Encapsulated Extracts Affects Broiler Performance Parameters, Welfare and Meat Characteristics. Poultry 2022, 1, 74–93. [Google Scholar] [CrossRef]
- Makała, H.; Olkiewicz, M. Zasady opracowywania nowych produktów z uwzględnieniem oczekiwań konsumentów, na przykładzie mięsa i jego przetworów. Żywność Nauka Technol. Jakość. 2004, 1, 120–133. [Google Scholar]
- Purwanti, S.; Zuprizal, Z.; Yuwanta, T.; Supadmo, S. Physical and Sensory Quality of Broiler Meat as Influenced by Dietary Supplementation of Turmeric (Curcuma longa), Garlic (Allium sativum) and in Combinations as a Feed Additive. Anim. Prod. 2019, 20, 61–69. [Google Scholar] [CrossRef]
- Shuvo, A.A.; Rahman, A.M. Influence of phytobiotics and organic acid on nutrient utilization efficiency and carcass characteristics of broiler. Tavukçuluk Araştırma Derg. 2023, 20, 62–67. [Google Scholar] [CrossRef]
- Sari, T.V.; Hasanah, U.; Harahap, R.I.H.; Zalukhu, P.; Trisna, A. Chemical and physical quality of broiler meat with drinking water containing boiled and fermented water of various cooking spices as phytobiotics. In Proceedings of the IOP Conference Series: Earth and Environmental Science (2022), Medan, Indonesia, 18 November 2021; p. 977. [Google Scholar]
- Wójcik, W.; Damaziak, K.; Łukasiewicz-Mierzejewska, M.; Świder, O.; Niemiec, J.; Wójcicki, M.; Roszko, M.; Gozdowski, D. Dietary supplementation broilers with β-alanine and garlic extract improves production results and muscle oxidative status. Anim. Sci. Pap. Reports 2023, 41, 359–376. [Google Scholar] [CrossRef]
- Gallas, L.; Standarová, E.; Steinhauserová, I.; Steinhauser, L.; Vorlová, L. Tvorba biogenních aminů u kuřecího masa skladovańho v modifikované atmosféře. Acta Vet. Brno 2010, 79, 107–116. [Google Scholar] [CrossRef]
- Martin, D.; Antequera, T.; Muriel, E.; Perez-Palacios, T.; Ruiz, J. Volatile compounds of fresh and dry-cured loin as affected by dietary conjugated linoleic acid and monounsaturated fatty acids. Meat Sci. 2009, 81, 549–556. [Google Scholar] [CrossRef] [PubMed]
Component g/kg Diet | Starter 1–10 Days | Grower 11–24 Days | Finisher 25–39 Days | Calculated Nutrient Density | Starter 1–10 Days | Grower 11–24 Days | Finisher 25–39 Days |
---|---|---|---|---|---|---|---|
Maise | 330.2 | 326.6 | 327.2 | ME (MJ/kg) | 12.39 | 12.81 | 13.23 |
Soybean meal | 306.4 | 300.5 | 245.6 | Crude protein (g/kg) | 212.9 | 209.0 | 189.3 |
Wheat | 300.0 | 300.0 | 350.0 | Crude fiber (g/kg) | 34.7 | 34.2 | 32.1 |
Oil | 28.8 | 42.7 | 50.6 | Crude fat (g/kg) | 51.7 | 65.4 | 73.4 |
Bro1% Robenz | 10.0 | 10.0 | 10.0 | Met. + Cys (g/kg) | 8.6 | 8.4 | 7.4 |
Limestone | 6.4 | 4.8 | 3.5 | Threonine (g/kg) | 7.7 | 7.5 | 6.6 |
Monocalcium phosphate | 7.7 | 6.0 | 4.7 | Lysine (g/kg) | 12.0 | 11.2 | 9.8 |
Choline chloride | 2.1 | 2.4 | 2.4 | Calcium (g/kg) | 9.6 | 8.7 | 7.9 |
Methionine | 2.8 | 2.6 | 2.0 | Avail. phosphorus (g/kg) | 4.8 | 4.4 | 4.0 |
Lysine | 3.5 | 2.7 | 2.5 | ||||
L-Threonine | 1.1 | 0.9 | 0.7 | ||||
NaHCO3 | 1.0 | 0.7 | 0.6 | ||||
Optiphose (0.01%) Matrix | 0.1 | 0.1 | 0.1 |
Parameter | Group | |
---|---|---|
Control | Experimental | |
The average age of slaughter (days) | 39 | 39 |
Final live weight (kg) | 2.55 | 2.56 |
EPEF (scores) | 369 | 400 |
FCR (kg × kg−1) | 1.66 | 1.54 |
Indicator | Group | p-Value | |||
---|---|---|---|---|---|
Control | SD | Experimental | SD | ||
pH24 | 5.99 | 0.135 | 6.10 | 0.217 | 0.182 |
Drip loss (%) | 2.01 ** | 0.513 | 1.23 ** | 0.266 | <0.001 |
Thermal leakage (%) | 37.87 | 2.145 | 37.07 | 1.082 | 0.302 |
WHC (cm2/g) | 14.90 ** | 0.619 | 13.01 ** | 1.273 | 0.003 |
Cutting force (N) | 70.33 * | 3.081 | 64.46 * | 5.742 | 0.027 |
L* | 76.17 | 3.919 | 77.30 | 4.860 | 0.576 |
a* | 8.91 * | 0.935 | 10.01 | 0.888 | 0.015 |
b* | 22.49 | 1.226 | 22.39 | 1.365 | 0.865 |
∆E | 0 | - | 1.58 | - | - |
Indicator | Group | p-Value | |||
---|---|---|---|---|---|
Control | SD | Experimental | SD | ||
Water | 74.97 | 1.305 | 74.39 | 0.675 | 0.287 |
Fat | 3.44 | 0.156 | 3.20 | 0.327 | 0.056 |
Protein | 21.77 | 0.670 | 22.08 | 0.571 | 0.293 |
Collagen | 0.83 * | 0.044 | 0.90 * | 0.095 | 0.049 |
Indicator | Statistic | Score | Group | |||
---|---|---|---|---|---|---|
Control | Experimental | |||||
% | n | % | n | |||
White striping (WS) | 0 | 33.3 | 5 | 73.3 | 11 | |
1 | 46.7 | 7 | 26.7 | 4 | ||
2 | 20.0 | 3 | 0.0 | 0 | ||
Mann–Whitney U test | p = 0.060 | |||||
Wooden breast (WB) | 0 | 100.0 | 15 | 100.0 | 15 | |
1 | 0.0 | 0 | 0.0 | 0 | ||
2 | 0.0 | 0 | 0.0 | 0 | ||
3 | 0.0 | 0 | 0.0 | 0 | ||
4 | 0.0 | 0 | 0.0 | 0 | ||
5 | 0.0 | 0 | 0.0 | 0 | ||
Mann–Whitney U test | - | |||||
Spaghetti meat (SM) | 0 | 100.0 | 15 | 100.0 | 15 | |
1 | 0.0 | 0 | 0.0 | 0 | ||
2 | 0.0 | 0 | 0.0 | 0 | ||
Mann–Whitney U test | - |
VOCs Group (%) $ | Group | p-Value | |||||
---|---|---|---|---|---|---|---|
Control | SD | Sensory Descriptors | Experimental | SD | Sensory Descriptors | ||
Esters | 2.12 ** | 0.302 | agreeable acetone | 0.95 ** | 0.406 | agreeable | <0.001 |
Amines | 11.51 ** | 3.013 | alcoholic | 45.04 ** | 13.587 | alcoholic | <0.001 |
Alcohols | 45.45 * | 5.370 | alcoholic | 34.96 * | 7.262 | alcoholic | 0.017 |
Aldehydes | 14.60 ** | 1.934 | acetaldehyde cheese earthy | 9.02 ** | 3.626 | alkane aldehydic floral cheese earthy cinnamon | 0.008 |
Ketones | 4.42 ** | 0.560 | butter | 5.47 * | 0.814 | butter | 0.026 |
Hydrocarbons | 0.95 ** | 0.174 | alkane | 0.00 ** | 0.000 | - | <0.001 |
Terpenes | 0.79 ** | 0.143 | citrus | 0.27 ** | 0.129 | citrus | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michalczuk, M.; Abramowicz-Pindor, P.; Urban, J.; Bień, D.; Ciborowska, P.; Matuszewski, A.; Zalewska, A.; Opacka, E.; Wojtasik-Kalinowska, I. The Effect of Phytogenic Additive in Broiler’s Diet on Production Results, Physicochemical Parameters, and the Composition of Volatile Organic Compounds of Broiler Meat Assessed by an Electronic Nose System. Animals 2024, 14, 2428. https://doi.org/10.3390/ani14162428
Michalczuk M, Abramowicz-Pindor P, Urban J, Bień D, Ciborowska P, Matuszewski A, Zalewska A, Opacka E, Wojtasik-Kalinowska I. The Effect of Phytogenic Additive in Broiler’s Diet on Production Results, Physicochemical Parameters, and the Composition of Volatile Organic Compounds of Broiler Meat Assessed by an Electronic Nose System. Animals. 2024; 14(16):2428. https://doi.org/10.3390/ani14162428
Chicago/Turabian StyleMichalczuk, Monika, Paulina Abramowicz-Pindor, Jakub Urban, Damian Bień, Patrycja Ciborowska, Arkadiusz Matuszewski, Anna Zalewska, Eliza Opacka, and Iwona Wojtasik-Kalinowska. 2024. "The Effect of Phytogenic Additive in Broiler’s Diet on Production Results, Physicochemical Parameters, and the Composition of Volatile Organic Compounds of Broiler Meat Assessed by an Electronic Nose System" Animals 14, no. 16: 2428. https://doi.org/10.3390/ani14162428
APA StyleMichalczuk, M., Abramowicz-Pindor, P., Urban, J., Bień, D., Ciborowska, P., Matuszewski, A., Zalewska, A., Opacka, E., & Wojtasik-Kalinowska, I. (2024). The Effect of Phytogenic Additive in Broiler’s Diet on Production Results, Physicochemical Parameters, and the Composition of Volatile Organic Compounds of Broiler Meat Assessed by an Electronic Nose System. Animals, 14(16), 2428. https://doi.org/10.3390/ani14162428