Effect of Rosemary on Growth Performance, Meat Quality, Fatty Acid Content, Intestinal Flora, and Antioxidant Capacity of Broilers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Diet Preparation
2.3. Sample Collection
2.4. Measurement Indicators and Methods
2.4.1. Growth Performance
2.4.2. Meat Quality and Muscle Fatty Acid Determination
2.4.3. Cecal Microbiota Determination
2.4.4. Serum and Liver Antioxidant Indices
2.4.5. Relative Expression of Liver Antioxidant-Related Genes
2.5. Statistical Analysis
3. Results
3.1. Effect of Rosemary on the Growth Performance of Broilers
3.2. Effect of Rosemary on Meat Quality and Muscle Fatty Acids in Broilers
3.3. Effect of Rosemary on Cecal Microbiota in Broiler
3.4. Effects of Rosemary on Serum Antioxidant Indices of Broilers
3.5. Effects of Rosemary on Antioxidant Indices in the Liver
3.6. Effect of Rosemary on the Expression of Antioxidant-Related Genes in the Liver
4. Discussion
4.1. Effects of Rosemary on the Growth Performance of Broilers
4.2. Effect of Rosemary on Meat Quality and Muscle Fatty Acids in Broilers
4.3. Microorganisms of the Broiler Cecum
4.4. Effects of Rosemary on the Serum and Liver Antioxidant Indices of Broilers
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sohal, R.S.; Allen, R.G. Oxidative Stress as a Causal Factor in Differentiation and Aging: A Unifying Hypothesis. Exp. Gerontol. 1990, 25, 499–522. [Google Scholar] [CrossRef]
- Shayeghan, M.; Ansari, A.M.; Forouzesh, F.; Javidi, M.A. Reactive Oxygen Species, the Trident of Neptune in the Hands of Hecate; Role in Different Diseases, Signaling Pathways, and Detection Methods. Arch. Biochem. Biophys. 2022, 728, 109357. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Saleem, M.H.; Ali, B.; Rasheed, R.; Ashraf, M.A.; Aziz, H.; Ercisli, S.; Riaz, S.; Elsharkawy, M.M.; Hussain, I.; et al. Impact of Foliar Application of Syringic Acid on Tomato (Solanum lycopersicum L.) under Heavy Metal Stress-Insights into Nutrient Uptake, Redox Homeostasis, Oxidative Stress, and Antioxidant Defense. Front. Plant Sci. 2022, 13, 950120. [Google Scholar] [CrossRef]
- Fan, H.; Tu, T.; Zhang, X.; Yang, Q.; Wang, J.; Liu, G.; Zhang, T.; Zhang, W.; Dong, Z.; Dong, J.; et al. Sinomenine Attenuates Alcohol-Induced Acute Liver Injury via Inhibiting Oxidative Stress, Inflammation and Apoptosis in Mice. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2021, 159, 112759. [Google Scholar] [CrossRef]
- Bai, K.; Jiang, L.; Wang, T. Dimethylglycine Sodium Salt Alleviates Intrauterine Growth Restriction-Induced Low Growth Performance, Redox Status Imbalance, and Hepatic Mitochondrial Dysfunction in Suckling Piglets. Front. Vet. Sci. 2022, 9, 905488. [Google Scholar] [CrossRef] [PubMed]
- Farag, M.R.; Alagawany, M. Physiological Alterations of Poultry to the High Environmental Temperature. J. Therm. Biol. 2018, 76, 101–106. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, H.; Cong, W.; Zhang, K.; Jia, Y.; Wu, L. Chronic Heat Stress Affects Bile Acid Profile and Gut Microbiota in Broilers. Int. J. Mol. Sci. 2023, 24, 10238. [Google Scholar] [CrossRef] [PubMed]
- Alagawany, M.; Elnesr, S.S.; Farag, M.R.; El-Hack, M.E.A.; Khafaga, A.F.; Taha, A.E.; Tiwari, R.; Yatoo, M.I.; Bhatt, P.; Khurana, S.K.; et al. Omega-3 and Omega-6 Fatty Acids in Poultry Nutrition: Effect on Production Performance and Health. Animals 2019, 9, 573. [Google Scholar] [CrossRef]
- Attia, Y.A.; Al-Harthi, M.A.; Abo El-Maaty, H.M. The Effects of Different Oil Sources on Performance, Digestive Enzymes, Carcass Traits, Biochemical, Immunological, Antioxidant, and Morphometric Responses of Broiler Chicks. Front. Vet. Sci. 2020, 7, 181. [Google Scholar] [CrossRef] [PubMed]
- Naveed, M.; Naveed, M.; Haleem, K.S.; Ghazanfar, S.; Tauseef, I.; Bano, N.; Adetunji, C.O.; Saleem, M.H.; Alshaya, H.; Paray, B.A. Quantitative Estimation of Aflatoxin Level in Poultry Feed in Selected Poultry Farms. BioMed Res. Int. 2022, 2022, 5397561. [Google Scholar] [CrossRef]
- Basiouni, S.; Tellez-Isaias, G.; Latorre, J.D.; Graham, B.D.; Petrone-Garcia, V.M.; El-Seedi, H.R.; Yalçın, S.; El-Wahab, A.A.; Visscher, C.; May-Simera, H.L.; et al. Anti-Inflammatory and Antioxidative Phytogenic Substances against Secret Killers in Poultry: Current Status and Prospects. Vet. Sci. 2023, 10, 55. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Y.; Zhang, H.; Wang, T. Pterostilbene as a Protective Antioxidant Attenuates Diquat-Induced Liver Injury and Oxidative Stress in 21-Day-Old Broiler Chickens. Poult. Sci. 2020, 99, 3158–3167. [Google Scholar] [CrossRef]
- Hassan, M.; Wang, Y.; Rajput, S.A.; Shaukat, A.; Yang, P.; Farooq, M.Z.; Cheng, Q.; Ali, M.; Mi, X.; An, Y.; et al. Ameliorative Effects of Luteolin and Activated Charcoal on Growth Performance, Immunity Function, and Antioxidant Capacity in Broiler Chickens Exposed to Deoxynivalenol. Toxins 2023, 15, 478. [Google Scholar] [CrossRef]
- Xiang, X.; Wang, H.; Zhou, W.; Wang, C.; Guan, P.; Xu, G.; Zhao, Q.; He, L.; Yin, Y.; Li, T. Glutathione Protects against Paraquat-Induced Oxidative Stress by Regulating Intestinal Barrier, Antioxidant Capacity, and CAR Signaling Pathway in Weaned Piglets. Nutrients 2023, 15, 198. [Google Scholar] [CrossRef]
- Alkadi, H. A Review On Free Radicals and Antioxidants. Infect. Disord. Drug Targets 2020, 20, 16–26. [Google Scholar] [CrossRef]
- Lee, D.-K.; Jang, H.-D. Carnosic Acid Attenuates an Early Increase in ROS Levels during Adipocyte Differentiation by Suppressing Translation of Nox4 and Inducing Translation of Antioxidant Enzymes. Int. J. Mol. Sci. 2021, 22, 6096. [Google Scholar] [CrossRef]
- Borges, R.S.; Ortiz, B.L.S.; Pereira, A.C.M.; Keita, H.; Carvalho, J.C.T. Rosmarinus Officinalis Essential Oil: A Review of Its Phytochemistry, Anti-Inflammatory Activity, and Mechanisms of Action Involved. J. Ethnopharmacol. 2019, 229, 29–45. [Google Scholar] [CrossRef] [PubMed]
- Kunová, S.; Taglieri, I.; Haščík, P.; Ben Hsouna, A.; Mnif, W.; Venturi, F.; Kačániová, M. Dried Herbs as an Easy-to-Use and Cost-Effective Alternative to Essential Oils to Extend the Shelf Life of Sheep Lump Cheese. Foods 2023, 12, 4487. [Google Scholar] [CrossRef]
- Hussain, S.M.; Syeda, A.; Alshammari, M.; Alnasser, S.M.; Alenzi, N.D.; Alanazi, S.; Nandakumar, K. Cognition Enhancing Effect of Rosemary (Rosmarinus officinalis L.) in Lab Animal Studies: A Systematic Review and Meta-Analysis. Braz. J. Med. Biol. Res. 2022, 55, e11593. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, J.R.; de Jesus, D.; Figueira, L.W.; de Oliveira, F.E.; Pacheco Soares, C.; Camargo, S.E.A.; Jorge, A.O.C.; de Oliveira, L.D. Biological Activities of Rosmarinus officinalis L. (Rosemary) Extract as Analyzed in Microorganisms and Cells. Exp. Biol. Med. 2017, 242, 625–634. [Google Scholar] [CrossRef]
- Ban, L.; Narasimhamoorthy, B.; Zhao, L.; Greaves, J.A.; Schroeder, W.D. Antioxidant Activities from Different Rosemary Clonal Lines. Food Chem. 2016, 201, 259–263. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Hong, H.-L.; Kim, G.M.; Leem, J.; Kwon, H.H. Protective Effects of Carnosic Acid on Lipopolysaccharide-Induced Acute Kidney Injury in Mice. Molecules 2021, 26, 7589. [Google Scholar] [CrossRef]
- Huang, P.; Wang, Z.; Shi, Y.; Zhang, R.; Feng, X.; Kan, J. Deodorizing Effects of Rosemary Extract on Silver Carp (Hypophthalmichthys Molitrix) and Determination of Its Deodorizing Components. J. Food Sci. 2022, 87, 636–650. [Google Scholar] [CrossRef]
- Abandansarie, S.S.R.; Ariaii, P.; Langerodi, M.C. Effects of Encapsulated Rosemary Extract on Oxidative and Microbiological Stability of Beef Meat during Refrigerated Storage. Food Sci. Nutr. 2019, 7, 3969–3978. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zhang, N.; Fan, Q.; Lin, M.; Zhang, C.; Fan, G.; Zhai, X.; Zhang, F.; Chen, Z.; Yao, J. Protective Efficacy of Carnosic Acid against Hydrogen Peroxide Induced Oxidative Injury in HepG2 Cells through the SIRT1 Pathway. Can. J. Physiol. Pharmacol. 2015, 93, 625–631. [Google Scholar] [CrossRef]
- Seidavi, A.; Corazzin, M.; Noveir, M.R. Supplementing Dietary Rosmarinus officinalis L. Powder in Quails. Vet. Arh. 2021, 90, 159–167. [Google Scholar]
- Rostami, H.; Seidavi, A.; Dadashbeiki, M.; Asadpour, Y.; Simões, J.; Shah, A.A.; Laudadio, V.; Losacco, C.; Perillo, A.; Tufarelli, V. Supplementing Dietary Rosemary (Rosmarinus officinalis L.) Powder and Vitamin E in Broiler Chickens: Evaluation of Humoral Immune Response, Lymphoid Organs, and Blood Proteins. Environ. Sci. Pollut. Res. 2018, 25, 8836–8842. [Google Scholar] [CrossRef]
- Petricevic, V.; Lukic, M.; Skrbic, Z.; Rakonjac, S.; Doskovic, V.; Petricevic, M.; Stanojkovic, A. The Effect of Using Rosemary (Rosmarinus officinalis) in Broiler Nutrition on Production Parameters, Slaughter Characteristics, and Gut Microbiological Population. Turk. J. Vet. Anim. Sci. 2018, 42, 658–664. [Google Scholar] [CrossRef]
- Norouzi, B.; Qotbi, A.A.A.; Seidavi, A.; Schiavone, A.; Marín, A.L.M. Effect of Different Dietary Levels of Rosemary (Rosmarinus officinalis) and Yarrow (Achillea millefolium) on the Growth Performance, Carcass Traits and Ileal Micro-Biota of Broilers. Ital. J. Anim. Sci. 2015, 14, 3930. [Google Scholar] [CrossRef]
- Ghozlan, S.; El-Far, A.H.; Sadek, K.M.; Abourawash, A.; Abdel-Latif, M.A. Effect of Rosemary (Rosmarinus officinalis) Dietary Supplementation in Broiler Chickens Concerning Immunity, Antioxidant Status, and Performance. Alex. J. Vet. Sci. 2017, 55, 152–161. [Google Scholar] [CrossRef]
- Council, N.R. Nutrient Requirements of Poultry, 9th ed.; The National Academies Press: Washington, DC, USA, 1994; ISBN 978-0-309-04892-7. [Google Scholar]
- Luo, Q.; Li, J.; Li, H.; Zhou, D.; Wang, X.; Tian, Y.; Qin, J.; Tian, X.; Lu, Q. The Effects of Purple Corn Pigment on Growth Performance, Blood Biochemical Indices, Meat Quality, Muscle Amino Acids, and Fatty Acids of Growing Chickens. Foods 2022, 11, 1870. [Google Scholar] [CrossRef]
- Chiang, G.; Lu, W.Q.; Piao, X.; Hu, J.; Gong, L.; Thacker, P.A. Effects of Feeding Solid-State Fermented Rapeseed Meal on Performance, Nutrient Digestibility, Intestinal Ecology and Intestinal Morphology of Broiler Chickens. Asian-Australas. J. Anim. Sci. 2009, 23, 263–271. [Google Scholar] [CrossRef]
- Radwan IA, H.; Moustafa, M.M.; Abdel-Wahab, S.H.; Ali, A.; Abed, A.H. Effect of Essential Oils on Biological Criteria of Gram-Negative Bacterial Pathogens Isolated from Diseased Broiler Chickens. Int. J. Vet. Sci. 2022. [Google Scholar] [CrossRef]
- Alagawany, M.; Qattan, S.Y.A.; Attia, Y.A.; El-Saadony, M.T.; Elnesr, S.S.; Mahmoud, M.A.; Madkour, M.; Abd El-Hack, M.E.; Reda, F.M. Use of Chemical Nano-Selenium as an Antibacterial and Antifungal Agent in Quail Diets and Its Effect on Growth, Carcasses, Antioxidant, Immunity and Caecal Microbes. Animals 2021, 11, 3027. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Zukiwsky, N.M.; Afrouziyeh, M.; Robinson, F.E.; Zuidhof, M.J. Broiler Growth and Efficiency in Response to Relaxed Maternal Feed Restriction. Poult. Sci. 2021, 100, 100993. [Google Scholar] [CrossRef]
- Dheyauldeen Salahdin, O.; Othman, H.; Hafsan, H.; Mohammed, F.; Ahmed Hamza, T.; Kadhim, M.; Aravindhan, S.; Prakaash, A.; Fakri Mustafa, Y. Effect of Licorice Essential Oil (Glycyrrhizaglabraglabra) on Performance and Some Biochemical Parameters of Broiler Chickens. Arch. Razi Inst. 2023, 78, 95–105. [Google Scholar] [CrossRef]
- Feng, T.; Hu, Z.; Tong, Y.; Yao, L.; Zhuang, H.; Zhu, X.; Song, S.; Lu, J. Preparation and Evaluation of Mushroom (Lentinus Edodes) and Mealworm (Tenebrio Molitor) as Dog Food Attractant. Heliyon 2020, 6, e05302. [Google Scholar] [CrossRef] [PubMed]
- Rostami, H.K.; Seidavi, A.; Dadashbeiki, M.; Asadpour, Y.; Simões, J. Effects of Different Dietary Rosmarinus Officinalis Powder and Vitamin E Levels on the Performance and Gut Gross Morphometry of Broiler Chickens. Braz. J. Poult. Sci. 2015, 17, 23–30. [Google Scholar] [CrossRef]
- Mohammadi, A.; Ghazanfari, S.; Sharifi, S.D. Comparative Effects of Dietary Organic, Inorganic, and Nano-Selenium Complexes and Rosemary Essential Oil on Performance, Meat Quality and Selenium Deposition in Muscles of Broiler Chickens. Livest. Sci. 2019, 226, 21–30. [Google Scholar] [CrossRef]
- Yang, M.; Yin, Y.; Wang, F.; Bao, X.; Long, L.; Tan, B.; Yin, Y.; Chen, J. Effects of Dietary Rosemary Extract Supplementation on Growth Performance, Nutrient Digestibility, Antioxidant Capacity, Intestinal Morphology and Microbiota of Weaning Pigs. J. Anim. Sci. 2021, 99, skab237. [Google Scholar] [CrossRef]
- Choi, J.; Kong, B.; Bowker, B.C.; Zhuang, H.; Kim, W.K. Nutritional Strategies to Improve Meat Quality and Composition in the Challenging Conditions of Broiler Production: A Review. Animals 2023, 13, 1386. [Google Scholar] [CrossRef]
- Turcu, R.P.; Panaite, T.D.; Untea, A.E.; Vlaicu, P.A.; Badea, I.A.; Mironeasa, S. Effects of Grape Seed Oil Supplementation to Broilers Diets on Growth Performance, Meat Fatty Acids, Health Lipid Indices and Lipid Oxidation Parameters. Agriculture 2021, 11, 404. [Google Scholar] [CrossRef]
- Reda, F.M.; El-Saadony, M.T.; Elnesr, S.S.; Alagawany, M.; Tufarelli, V. Effect of Dietary Supplementation of Biological Curcumin Nanoparticles on Growth and Carcass Traits, Antioxidant Status, Immunity and Caecal Microbiota of Japanese Quails. Animals 2020, 10, 754. [Google Scholar] [CrossRef]
- Hesamoddin Farrokhi, R.A.; Rezaeipour, V. Influence of Dietary Phytase and Protease, Individually or in Combination, on Growth Performance, Intestinal Morphology, Microbiota Composition and Nutrient Utilisation in Broiler Chickens Fed Sesame Meal-Based Diets. Ital. J. Anim. Sci. 2021, 20, 2122–2130. [Google Scholar] [CrossRef]
- Gong, J.; Forster, R.J.; Yu, H.; Chambers, J.R.; Wheatcroft, R.; Sabour, P.M.; Chen, S. Molecular Analysis of Bacterial Populations in the Ileum of Broiler Chickens and Comparison with Bacteria in the Cecum. FEMS Microbiol. Ecol. 2002, 41, 171–179. [Google Scholar] [CrossRef]
- Sultan, A.; Bibi, S.; Naz, S.; Islam, Z.; Alrefaei, A.F.; Khan, R.U.; Abdelrahman, S.H.; Selvaggi, M. Effect of Anise Seed (Pimpinella anisum L.) and Protease Alone or in Combination on Growth Performance, Carcase Characteristics, Humoral Immunity, Nutrients Digestibility and Cecal Microbiota in Japanese Quails. Food Agric. Immunol. 2024, 35, 2351362. [Google Scholar] [CrossRef]
- Ahmad, A.; Sultan, A.; Naz, S.; Chand, N.; Islam, Z.; Alhidary, I.A.; Khan, R.U.; Abdelrahman, S.H.; Dai, S. Growth Performance, Nutrients Digestibility, Intestinal Microbiota and Histology Altered in Broilers Fed Maize- or Sorghum-Based Diets. Vet. Q. 2024, 44, 1–8. [Google Scholar] [CrossRef]
- Trefts, E.; Gannon, M.; Wasserman, D.H. The Liver. Curr. Biol. 2017, 27, R1147–R1151. [Google Scholar] [CrossRef]
- Surai, P.F.; Kochish, I.I.; Fisinin, V.I.; Kidd, M.T. Antioxidant Defence Systems and Oxidative Stress in Poultry Biology: An Update. Antioxidants 2019, 8, 235. [Google Scholar] [CrossRef] [PubMed]
- Barrera, G.; Pizzimenti, S.; Daga, M.; Dianzani, C.; Arcaro, A.; Cetrangolo, G.P.; Giordano, G.; Cucci, M.A.; Graf, M.; Gentile, F. Lipid Peroxidation-Derived Aldehydes, 4-Hydroxynonenal and Malondialdehyde in Aging-Related Disorders. Antioxidants 2018, 7, 102. [Google Scholar] [CrossRef] [PubMed]
- Farouk, S.M.; Abdel-Rahman, H.G.; Abdallah, O.A.; El-Behidy, N.G. Comparative Immunomodulatory Efficacy of Rosemary and Fenugreek against Escherichia Coli Infection via Suppression of Inflammation and Oxidative Stress in Broilers. Environ. Sci. Pollut. Res. 2022, 29, 40053–40067. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Wu, L.; Deng, X.; Liang, Q.; Xu, Y.; Deng, R.; Lv, L.; Ji, M.; Hao, Z.; He, J. The Antioxidant Rosmarinic Acid Ameliorates Oxidative Lung Damage in Experimental Allergic Asthma via Modulation of NADPH Oxidases and Antioxidant Enzymes. Inflammation 2020, 43, 1902–1912. [Google Scholar] [CrossRef]
- Kubiriza, G.K.; Árnarson, J.; Sigurgeirsson, Ó.I.; Hamaguchi, P.Y.; Snorrason, S.S.; Tomasson, T.; Thorarensen, H. Growth and Hepatic Antioxidant Enzyme Activity of Juvenile Arctic Charr (Salvelinus alpinus) Fed on Diets Supplemented with Ethoxyquin, Rosemary (Rosmarinus officinalis), or Bladder Wrack (Fucus vesiculosus). Aquac. Int. 2018, 27, 287–301. [Google Scholar] [CrossRef]
- Essawy, A.E.; Abdel-Wahab, W.M.; Sadek, I.A.; Khamis, O.M. Dual Protective Effect of Ginger and Rosemary Extracts against CCl4-Induced Hepatotoxicity in Rats. Environ. Sci. Pollut. Res. 2018, 25, 19510–19517. [Google Scholar] [CrossRef]
- Li, D.; Shao, R.; Wang, N.; Zhou, N.; Du, K.; Shi, J.; Wang, Y.; Zhao, Z.; Ye, X.; Zhang, X.; et al. Sulforaphane Activates a Lysosome-Dependent Transcriptional Program to Mitigate Oxidative Stress. Autophagy 2021, 17, 872–887. [Google Scholar] [CrossRef]
- Qader, M.; Xu, J.; Yang, Y.; Liu, Y.; Cao, S. Natural Nrf2 Activators from Juices, Wines, Coffee, and Cocoa. Beverages 2020, 6, 68. [Google Scholar] [CrossRef]
- Kim, D.W.; Kim, M.J.; Shin, Y.; Jung, S.K.; Kim, Y.-J. Green Pepper (Piper nigrum L.) Extract Suppresses Oxidative Stress and LPS-Induced Inflammation via Regulation of JNK Signaling Pathways. Appl. Sci. 2020, 10, 2519. [Google Scholar] [CrossRef]
- Albalawi, A.; Alhasani, R.H.A.; Biswas, L.; Reilly, J.; Shu, X. Protective Effect of Carnosic Acid against Acrylamide-Induced Toxicity in RPE Cells. Food Chem. Toxicol. 2017, 108, 543–553. [Google Scholar] [CrossRef]
- Wang, H.; Sun, Z.; Rehman, R.; Wang, H.; Wang, Y.; Wang, H. Rosemary Extract-Mediated Lifespan Extension and Attenuated Oxidative Damage in Drosophila Melanogaster Fed on High-Fat Diet. J. Food Sci. 2017, 82, 1006–1011. [Google Scholar] [CrossRef]
Items % | The Brood Stage (1–21 d) | The Incubation Period (22–42 d) | |||||||
---|---|---|---|---|---|---|---|---|---|
Group: | Control | Positive Control | 0.5% Rosemary | 2% Rosemary | Control | Positive Control | 0.5% Rosemary | 2% Rosemary | |
Ingredients | |||||||||
Corn | 44.11 | 44.11 | 43.61 | 42.11 | 48.31 | 48.31 | 47.81 | 46.31 | |
Flour | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | |
Extruded soybean | 15.00 | 15.00 | 15.00 | 15.00 | 15.00 | 15.00 | 15.00 | 15.00 | |
Soybean meal | 10.59 | 10.59 | 10.59 | 10.59 | 10.29 | 10.29 | 10.29 | 10.29 | |
Corn gluten meal | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 | |
Peruvian fishmeal | 4.33 | 4.33 | 4.33 | 4.33 | — | — | — | — | |
Soybean oil | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | |
Fine limestone | 0.82 | 0.82 | 0.82 | 0.82 | 0.85 | 0.85 | 0.85 | 0.85 | |
Coarse limestone | 0.54 | 0.54 | 0.54 | 0.54 | 0.57 | 0.57 | 0.57 | 0.57 | |
CaHPO4 | 1.18 | 1.18 | 1.18 | 1.18 | 1.36 | 1.36 | 1.36 | 1.36 | |
NaCl | 0.23 | 0.23 | 0.23 | 0.23 | 0.35 | 0.35 | 0.35 | 0.35 | |
(DL-Met) | 0.15 | 0.15 | 0.15 | 0.15 | 0.07 | 0.07 | 0.07 | 0.07 | |
(Lys) | 0.05 | 0.05 | 0.05 | 0.05 | 0.20 | 0.20 | 0.20 | 0.20 | |
Broiler Premix 1 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |
Kitasamycin (mg/kg) | 0 | 30 | 0 | 0 | 0 | 30 | 0 | 0 | |
Rosemary powder (%) | 0 | 0 | 0.5 | 2 | 0 | 0 | 0.5 | 2 | |
Total | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | |
Nutrient levels 2 | |||||||||
ME (MJ/kg) | 13.4 | 13.4 | |||||||
CP (%) | 23.0 | 20.0 | |||||||
Lys (%) | 1.10 | 1.00 | |||||||
Met (%) | 0.50 | 0.38 | |||||||
Sulfur-containing amino acids (%) | 0.90 | 0.72 | |||||||
Ca (%) | 1.00 | 0.90 | |||||||
AP (%) | 0.45 | 0.35 |
Primer Name | Primer Sequence | Annealing Temperature (°C) | Length (bp) |
---|---|---|---|
β-actin | F:AGTACCCCATTGAACACGGT R:ATACATGGCTGGGGTGTTGA | 55.4 | 197 |
Nrf 2 | F:TGTCGAAGGAGCAGTTCAGT R:CCATCTTCATCACGCAGCAT | 55.4 | 265 |
CAT | F:CCGTTTCAGGAGATGTGCAG R:TGGCTTGCGTGTATGTCCTA | 57.4 | 279 |
GPX1 | F:CAACGGCTTCAAACCCAACT R:CTCGAAGTTCCAGGAGACGT | 57.4 | 190 |
SOD1 | F:ACTGGCTTGTCTGATGGAGA R:TCCTCCCTTTGCAGTCACAT | 55.4 | 171 |
HO-1 | F:GCAGAGATCCCATGTCCTGA R:TGGGCGATTTTCTTCAGCAC | 57.4 | 149 |
Items 1 | Control 2 | Positive Control 3 | 0.5% Rosemary | 2% Rosemary | SEM | p-Value |
---|---|---|---|---|---|---|
ADG(g) | 49.25 | 53.15 | 51.45 | 51.12 | 0.56 | 0.13 |
ADFI (g) | 75.68 a | 81.96 b | 79.98 b | 78.89 b | 0.65 | 0.02 |
F/G | 1.55 | 1.55 | 1.56 | 1.55 | 0.02 | 0.86 |
Diarrhea rate/% | 19.44 | 8.33 | 13.89 | 16.67 | 0.65 | |
Mortality rate/% | 8.33 | 2.78 | 5.56 | 8.33 | 0.87 |
Items 1 | Control 2 | Positive Control 3 | 0.5% Rosemary | 2% Rosemary | SEM | p-Value | |
---|---|---|---|---|---|---|---|
Cooking loss (%) | 29.04 | 30.18 | 33.34 | 26.94 | 1.02 | 0.16 | |
Breast muscle | Shear force (kg) | 2.61 | 3.38 | 3.80 | 3.01 | 0.28 | 0.52 |
pH | 6.12 | 6.17 | 6.03 | 6.11 | 0.03 | 0.12 | |
drip loss (%) | 8.77 | 8.22 | 8.17 | 8.13 | 0.32 | 0.90 | |
Cooking loss (%) | 29.06 | 27.35 | 30.01 | 22.75 | 1.51 | 0.35 | |
Thigh muscle | Shear force (kg) | 4.22 | 3.40 | 3.40 | 2.89 | 0.39 | 0.71 |
pH | 6.21 a | 6.38 b | 6.15 a | 6.16 a | 0.03 | <0.01 | |
drip loss (%) | 8.99 | 8.55 | 8.43 | 8.54 | 0.31 | 0.93 |
Fatty Acid (μg/g) 1 | Control 2 | Positive Control 3 | 0.5% Rosemary | 2% Rosemary | SEM | p-Value | |
---|---|---|---|---|---|---|---|
SFA | C14:0 myristic acid | 1.44 | 1.66 | 1.46 | 1.76 | 0.09 | 0.61 |
C15:0 Pentadecanoic acid | 0.92 | 0.95 | 0.86 | 1.03 | 0.06 | 0.85 | |
C16:0 Palmitic acid | 141 | 112 | 112 | 126 | 10.05 | 0.62 | |
C17:0 Heptadecanoic acid | 1.19 | 0.87 | 1.15 | 0.9 | 0.13 | 0.77 | |
C18:0 Stearic acid | 56.7 | 59.48 | 60.03 | 65.1 | 2.52 | 0.75 | |
C20:0 Arachidic acid | 0.87 | 0.82 | 0.82 | 0.79 | 0.03 | 0.83 | |
C21:0 Heneicosanoic acid | 0.83 | 0.83 | 0.84 | 0.84 | 0 | 0.3 | |
MUFA | C14:1 Tetradecenoic acid | 0.45 | 0.41 | 0.46 | 0.45 | 0.03 | 0.97 |
C15:1 Pentadecenoic acid | 0.44 | 0.38 | 0.67 | 0.41 | 0.06 | 0.26 | |
C16:1 Palmitoleic acid | 35.69 | 19.64 | 22.89 | 19.95 | 4.8 | 0.67 | |
C17:1 cis-10-heptadecenoic acid | 0.59 b | 0.68 b | 0.46 b | 1.14 a | 0.09 | <0.001 | |
C18:1 Oleic acid | 67.72 | 77.34 | 91.76 | 76.23 | 4.91 | 0.05 | |
C20:1 Eicosenoic acid | 1.55 | 1.13 | 1.38 | 1.53 | 0.09 | 0.3 | |
PUFA | C18:2 Linoleic acid | 68.95 | 140 | 109 | 159 | 16.45 | 0.35 |
C20:2 Eicosadienoic acid | 9.26 | 13.16 | 12.54 | 13.33 | 1.35 | 0.75 | |
C20:4 Arachidonic acid | 0.85 | 0.56 | 0.66 | 0.79 | 0.09 | 0.13 | |
C20:5 Aicosapentaenoic acid | 0.28 | 0.28 | 0.29 | 0.29 | 0 | 0.25 | |
n3 PUFA | C18:3 α-Linolenic acid | 50.15 | 33.95 | 41 | 43.53 | 4.78 | 0.75 |
C22:6 Docosahexaenoic acid | 3.35 | 3.45 | 3.41 | 3.47 | 0.31 | 0.66 |
Cecal Microbiota(lg cfu/g) 1 | Control 2 | Positive Control | 0.5% Rosemary | 2% Rosemary | SEM | p-Value |
---|---|---|---|---|---|---|
Escherichia coli | 8.27 | 8.03 | 7.99 | 7.40 | 0.14 | 0.17 |
Lactic acid bacteria | 6.96 | 7.20 | 7.29 | 7.23 | 0.09 | 0.51 |
yeasts | 7.55 | 7.57 | 7.92 | 7.53 | 0.09 | 0.46 |
Items 1 | Control 2 | Positive Control 3 | 0.5% Rosemary | 2% Rosemary | SEM | p-Value |
---|---|---|---|---|---|---|
CAT (U/mL) | 4.12 a | 4.33 a | 5.61 b | 5.34 b | 0.18 | 0.003 |
T-SOD (U/mL) | 141.7 a | 172.5 c | 159.1 b | 154.9 b | 2.67 | <0.001 |
GSH-Px (U/mL) | 2366 | 2441 | 2543 | 2465 | 25.56 | 0.1 |
T-AOC (U/mL) | 9.57 a | 9.28 a | 16.40 c | 13.16 b | 0.65 | <0.001 |
MDA (nmol/mL) | 5.69 c | 4.28 b | 3.32 a | 6.00 c | 0.19 | <0.001 |
Items 1 | Control 2 | Positive Control 3 | 0.5% Rosemary | 2% Rosemary | SEM | p-Value |
---|---|---|---|---|---|---|
CAT (U/mg protein) | 16.7 a | 17.65 a | 36.25 c | 29.20 b | 1.72 | <0.0001 |
T-SOD (U/mg protein) | 82.32 a | 82.35 a | 95.79 b | 92.77 b | 1.68 | 0.003 |
GSH-Px (U/mg protein) | 91.89 ab | 70.78 a | 102.8 b | 76.53 a | 4.37 | 0.03 |
T-AOC (U/mg protein) | 12.30 a | 12.69 a | 15.40 b | 12.85 a | 0.40 | 0.02 |
MDA (nmol/mg protein) | 5.61 ab | 4.11 a | 4.59 a | 8.11 b | 0.49 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Wei, Q.; Zhang, C.; Pan, H.; Li, J.; Ji, P.; Ma, Y.; Dou, T.; Wang, Y.; Li, Q.; et al. Effect of Rosemary on Growth Performance, Meat Quality, Fatty Acid Content, Intestinal Flora, and Antioxidant Capacity of Broilers. Animals 2024, 14, 2480. https://doi.org/10.3390/ani14172480
Wang P, Wei Q, Zhang C, Pan H, Li J, Ji P, Ma Y, Dou T, Wang Y, Li Q, et al. Effect of Rosemary on Growth Performance, Meat Quality, Fatty Acid Content, Intestinal Flora, and Antioxidant Capacity of Broilers. Animals. 2024; 14(17):2480. https://doi.org/10.3390/ani14172480
Chicago/Turabian StyleWang, Ping, Qiang Wei, Chunyong Zhang, Hongbin Pan, Jintao Li, Peng Ji, Yidan Ma, Tengfei Dou, Ying Wang, Qihua Li, and et al. 2024. "Effect of Rosemary on Growth Performance, Meat Quality, Fatty Acid Content, Intestinal Flora, and Antioxidant Capacity of Broilers" Animals 14, no. 17: 2480. https://doi.org/10.3390/ani14172480
APA StyleWang, P., Wei, Q., Zhang, C., Pan, H., Li, J., Ji, P., Ma, Y., Dou, T., Wang, Y., Li, Q., & An, Q. (2024). Effect of Rosemary on Growth Performance, Meat Quality, Fatty Acid Content, Intestinal Flora, and Antioxidant Capacity of Broilers. Animals, 14(17), 2480. https://doi.org/10.3390/ani14172480