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Simple Summary: Staphylococcus pseudintermedius is a common bacterium that causes skin infections
in dogs and can occasionally infect humans, posing a public health risk. The presence of the mecA gene
in this bacterium can lead to resistance against methicillin (oxacillin) and other beta-lactam antibiotics,
which limits treatment options. This study investigated the characteristics of oxacillin-resistant and
oxacillin-susceptible mecA-positive S. pseudintermedius isolates from the skin and nasal cavities of
dogs with pyoderma. We found a high prevalence of multidrug resistance and significant genetic
diversity among the isolates, both within the dog itself and among others, highlighting the complexity
of S. pseudintermedius colonization and infection dynamics in pyoderma dogs. Careful monitoring
and treatment strategies are essential to manage the spread of antibiotic resistance effectively.

Abstract: Understanding the epidemiology of mecA-positive Staphylococcus pseudintermedius strains,
including those that are oxacillin-susceptible but potentially inducible to resistance, is crucial for
developing effective treatment strategies and mitigating public health risks. This study characterized
87 mecA-positive S. pseudintermedius isolates obtained from skin lesions and nasal orifices of 46 dogs
with pyoderma enrolled at a referral hospital in Thailand between 2019 and 2020. All isolates
underwent antibiogram profiling, SCCmec typing, and pulsed-field gel electrophoresis (PFGE) for
phenotypic and genetic analysis. Among the 87 isolates, 33 isolates (37.9%) recovered from 15 dogs
were oxacillin-resistant (OR-MRSP), while 54 isolates (62.1%) from 31 dogs were oxacillin-susceptible
(OS-MRSP). All OR-MRSP isolates exhibited multidrug resistance (MDR), and 44% of the OS-MRSP
isolates also showed MDR. SCCmec typing revealed type V as predominant among OR-MRSP isolates
(69.7%), while many oxacillin-susceptible isolates (70.4%) were non-typeable. The OR-MRSP isolates
from the same dog showed consistent antibiogram and SCCmec types, while OS-MRSP isolates
displayed both identical and diverse patterns. No dominant pulsotypes were observed among the
OR-MRSP or OS-MRSP strains. Genetic diversity was also noted among the isolates within the same
dogs and among the others, highlighting the complexity of S. pseudintermedius colonization and
infection dynamics in pyoderma-affected dogs.

Keywords: Staphylococcus pseudintermedius; mecA; dogs; pyoderma; oxacillin-resistant; oxacillin-
susceptible

1. Introduction

Staphylococcus pseudintermedius is an opportunistic pathogen naturally found on dogs’
skin, mucosae, and other body sites. With abnormalities of the skin condition, the bacteria
can also provoke infections of the skin, ears, and other body tissues and cavities [1,2].
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S. pseudintermedius is a major pathogenic microorganism encountered in companion animal
dermatology practice [3] and is mainly found as secondary infections in dogs [4]. Human
colonization and, occasionally, human infections by S. pseudintermedius have been reported
sporadically [3–6], indicating the possibility that this bacterium can be zoonotic and may
pose a public health problem.

Methicillin-resistant S. pseudintermedius (MRSP) is a strain of S. pseudintermedius that
exhibits resistance to methicillin and penicillinase-stable beta-lactam antibiotics. This
resistance is conferred by the mecA gene, which encodes a modified penicillin-binding
protein 2a (PBP2a) [1]. MRSP is considered a reservoir for resistant genes to various
antibiotics [7], as MRSP isolates are frequently multidrug-resistant (MDR), which is defined
as resistance to at least one agent in three or more classes of antimicrobials [8]. In recent
years, the frequency of MRSP detection in microbiological samples from dogs and cats
has increased [1], posing a significant threat to veterinary medicine due to the limited
therapeutic options available [9].

Apart from methicillin resistance, methicillin (oxacillin)-susceptible mecA-positive
staphylococci have been increasingly identified globally [10–14]. Reports have documented
Staphylococcus aureus isolates carrying the mecA gene while remaining phenotypically
susceptible to oxacillin, termed oxacillin-susceptible MRSA (OS-MRSA). OS-MRSA can be
inducible to resistance after antibiotic exposure [15], resulting in therapeutic failures with
beta-lactam antimicrobials [16]. Importantly, a recent study detected OS-MRSA isolates in
the nasal mucosa of healthy dogs and their owners [17]. In the case of S. pseudintermedius,
the presence of mecA-positive strains that remain oxacillin-susceptible has not been com-
prehensively investigated and characterized. Given that mecA PCR is not routinely
employed in laboratories, these strains may be unobserved, potentially facilitating their silent
dissemination and posing challenges for effective treatment in infected dogs, particularly with
bata-lactam antibiotics. Our previous study demonstrated a high prevalence of mecA-positive
S. pseudintermedius in skin lesions of dogs with pyoderma; however, these strains have yet
to be thoroughly characterized [18]. Therefore, this study aims to characterize and com-
pare oxacillin-resistant and oxacillin-susceptible mecA-positive S. pseudintermedius isolates
from dogs with clinical pyoderma. We also aim to compare infecting and colonizing
strains within individuals and among the studied group. Understanding the epidemiology
and characteristics of mecA-positive S. pseudintermedius strains is crucial for developing
effective treatment strategies in veterinary clinical settings and for mitigating potential
public health risks.

2. Materials and Methods
2.1. Sample Collection

Eighty-seven S. pseudintermedius isolates included in this study were obtained from
46 out of 63 enrolled dogs with pyoderma that visited the Veterinary Teaching Hospital,
Faculty of Veterinary Medicine, Khon Kaen University, between September 2019 and
September 2020. Two skin swabs were collected from two separate lesions on each dog,
and one nasal swab was obtained from each enrolled dog. These swabs were placed in a
transport medium and stored at 4 ◦C before being cultured on blood agar, which contains
a blood agar base supplemented with 5% defibrinated sheep blood (Clinical Diagnostics,
Bangkok, Thailand). Inoculated plates were subsequently incubated at 37 ◦C under aerobic
conditions for 18 to 48 h.

2.2. Isolation and Identification of Oxacillin-Resistant and Oxacillin-Susceptible mecA-Positive
Staphylococcus pseudintermedius

Staphylococci-like colonies grown on sheep blood agar were subjected to species
identification based on their phenotype and genotype. All 87 isolates were phenotyp-
ically identified as S. pseudintermedius using the VITEK® 2 system (Biomerieux, Marcy
l’etoile, France) and genotypically confirmed through polymerase chain reaction (PCR)
targeting the nuc gene [19]. The mecA gene in each S. pseudintermedius isolate was detected
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using conventional PCR, following the protocol developed by Olivera [20], as previously
described [18].

Antimicrobial susceptibility testing was performed using the VITEK® 2 system to identify
oxacillin-resistant and oxacillin-susceptible isolates (Biomerieux, France). The antibiotics
tested included oxacillin (OXA), benzylpenicillin (BEN), amoxicillin/clavulanic acid (AMC),
cephalothin (CEP), cefpodoxime (CPD), cefovecin (CEV), amikacin (AMK), gentamicin (GEN),
enrofloxacin (ENR), marbofloxacin (MAR), pradofloxacin (PRA), erythromycin (ERY), clin-
damycin (CLI), doxycycline (DOX), minocycline (MIN), nitrofurantoin (NIT), chloramphenicol
(CHL), florfenicol (FLO), and trimethoprim/sulfamethoxazole (SXT). The minimum inhibitory
concentration (MIC) of oxacillin was set at ≥0.5 µg/mL as an indicator of methicillin resistance;
resistance to other antimicrobial agents was determined according to the recommendations
of the Clinical and Laboratory Standards Institute (CLSI) [21]. A disk diffusion test was also
performed using a 1 µg oxacillin disk, with a cut-off of <20 mm used to determine resistance
or susceptibility [22].

2.3. Pulsed-Field Gel Electrophoresis (PFGE)

The pulsed-field gel electrophoresis (PFGE) protocol was based on a prior study [23]
with minor modifications. A CHEF-DR III system (Bio-Rad Laboratories, CA, USA) was
used to conduct PFGE. All genomic DNA plugs were initially digested with SmaI (New
England BioLabs Inc., MA, USA). Those isolates not digested by SmaI were subsequently
digested with XmaI (New England BioLabs Inc., MA, USA). Cluster analysis was performed
using the Unweighted Pair Group Method with Arithmetic Mean (UPGMA) in BIO-PROFIL
Bio-1D++ software (Vilber Lourmat, Eberhardzell, Germany), employing the Dice similarity
coefficient with a 2% interval of confidence for band matching. Isolates were clustered
based on an 80% similarity cut-off.

2.4. SCCmec Typing

SCCmec typing was performed using two multiplex PCR sets (M-PCR 1 and M-PCR 2)
described by Kondo et al. [24]. The first set (M-PCR 1) was used to detect the mecA gene and
identify the ccr gene complex, while the second set (M-PCR 2) was employed to identify the
mec gene complex. For M-PCR 1, the reaction mixture in a total volume of 25 µL contained
1x Qiagen Multiplex PCR Master Mix (Qiagen, Tegelen, The Netherlands), 10 pmol of
each primer, 2 µL of extracted DNA, and RNase-free water to make up the volume. The
PCR cycles consisted of an initial denaturation at 95 ◦C for 15 min, followed by 35 cycles
of 94 ◦C for 2 min, 57 ◦C for 90 s, 72 ◦C for 2 min, and a final extension at 72 ◦C for
10 min. For M-PCR 2, the reaction mixture and reaction conditions were the same as for
M-PCR 1, except that the annealing temperature was changed to 60 ◦C. DNA fragments
were analyzed by electrophoresis in 1x TBE buffer on a 1.5% agarose gel stained with 1x
Redsafe™ (iNtRON Biotechnology Inc., Seongnam, Republic of Korea).

2.5. Statistical Analysis

Statistical analyses were performed to assess the prevalence and associations of the
isolates. Prevalence was calculated as a proportion of the total number of isolates or dogs
and corresponding confidence intervals (CIs). The two-tailed Fisher’s exact test was used
to evaluate the association between genotypic characteristics and phenotypes. This test
was chosen due to the categorical nature of the data and the small sample sizes in some
categories. A p-value of less than 0.05 was considered statistically significant. All statistical
analyses and heatmaps were performed using GraphPad Prism version 10.0 for Windows
(GraphPad Software, Boston, MA, USA; www.graphpad.com (accessed on 3 August 2024).

www.graphpad.com
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3. Results
3.1. Sample Origins and Distribution of S. pseudintermedius Isolates Positive for the mecA Gene

The 87 S. pseudintermedius isolates positive for the mecA gene comprised 67 skin isolates
and 20 nasal isolates, which were recovered from 46 dogs out of 63 dogs (73%, 95% CI:
60.3–83.4). Only one isolate was obtained from each sampling site of an individual dog.
Single skin isolates were obtained from nine dogs, and single nasal isolates from another
six dogs. Seventeen dogs yielded two skin isolates each, while four dogs yielded both a
skin and a nasal isolate. Ten dogs yielded two skin isolates and one nasal isolate, as shown
in Table 1.

Table 1. Sample origins and distribution of Staphylococcus pseudintermedius isolates positive for the
mecA gene recovered from 46 enrolled dogs.

Origin of Samples
Number of Dogs (n)

One Isolate Two Isolates 1 Three Isolates 2

Skin lesions 9 17 0
Nasal cavity 6 0 0

Skin lesions and nasal cavity 0 4 10
1 Isolates were obtained from two different sites on the dog. 2 Two isolates were from skin lesions, and another
isolate was from a nasal swab.

Based on an MIC value of ≥0.5 µg/mL and a zone diameter of <20 mm for a 1 µg
oxacillin disk, 33 out of 87 isolates (37.9%) were identified as OR-MRSP, while 54 isolates
(62.1%) were classified as OS-MRSP. The MIC values of the isolates were consistent with
the results of the disk diffusion test. Among the 33 OR-MRSP isolates, there were 24 skin
isolates and 9 nasal isolates, obtained from 15 of the 63 enrolled dogs, representing 23.8%
(95% CI: 14.0–36.2). The 54 oxacillin-susceptible isolates included 43 skin isolates and
11 nasal isolates from 31 dogs, accounting for 49.2% of 63 dogs (95% CI: 36.4–62.1).

3.2. Phenotypic Characteristics of Oxacillin-Resistant and Oxacillin-Susceptible mecA-Positive
S. pseudintermedius

A total of 40 different antibiogram patterns were identified among the 87 S. pseudintermedius
isolates, with no predominant antibiogram observed (Figures 1 and 2). All OR-MRSP isolates
exhibited multidrug resistance (MDR). Of 33 oxacillin-resistant isolates, 14 antibiogram patterns
were identified. The most prevalent MDR pattern among OR-MRSP isolates was resistant to
15 antibiotics including oxacillin, benzylpenicillin, amoxicillin/clavulanic acid, cephalothin,
cefpodoxime, cefovecin, gentamicin, enrofloxacin, marbofloxacin, pradofloxacin, erythromycin,
clindamycin, doxycycline, minocycline, and chloramphenicol. This pattern was observed in
6 out of the 33 OR-MRSP isolates (18.2%). These six isolates were derived from skin lesions
(four isolates) and nasal cavities (two isolates) of two dogs (Figure 1).

Additionally, 24 out of 54 (44.4%) OS-MRSP isolates, derived from skin lesions
(20 isolates) and nasal cavities (4 isolates) of 15 dogs, exhibited multidrug resistance,
with a total of 20 distinct MDR patterns observed. However, a significant association was
found between OR-MRSP isolates and multidrug resistance (MDR) (p ≤ 0.0001), but not
with oxacillin-susceptible isolates. Of 26 antibiogram patterns identified among OS-MRSP
isolates, the most prevalent pattern was resistance solely to benzylpenicillin (BEN), which
was detected in 11 isolates (11/54, 20.4%) originating from skin lesions (9 isolates) and
nasal cavities (2 isolates) of eight dogs. Notably, two oxacillin-susceptible isolates from
the skin lesions of a single dog exhibited resistance to all beta-lactams tested except for
oxacillin (Figure 2).
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Figure 1. Heat map illustrating the antibiogram patterns of 33 oxacillin-resistant mecA-positive
Staphylococcus pseudintermedius (OR-MRSP) isolates. Antimicrobial susceptibility was assessed using
the VITEK® 2 system. Each row represents an individual isolate, labelled by the dog number
from which it was obtained, the sample origin (skin lesion or nasal swab), and the corresponding
isolate number from each dog. The heat map employs a color gradient where dark blue boxes
indicate resistance, light blue boxes represent intermediate susceptibility, and white boxes represent
susceptibility to the tested antibiotics.

3.3. Genotypic Characteristics of Oxacillin-Resistant and Oxacillin-Susceptible mecA-Positive
Staphylococcus pseudintermedius
3.3.1. SCCmec Type

Thirty-nine isolates (39/87, 44.8%) harbored the ccr gene complex 5 (C) and mec gene
class C2, classified as SCCmec type V. SCCmec types could not definitively be assigned to
48 isolates (55.2%) due to their combination of ccr and mec gene complexes, which could
not be classified using the conventional method outlined by the International Working
Group on the Classification of Staphylococcal Cassette Chromosome (2009). Among these
non-typeable isolates, 46 carried two ccr gene complexes, 3 had two mec gene complexes,
and 9 lacked the mec gene complex altogether. One isolate possessed a novel combination
of ccr and mec gene complexes. Details of the SCCmec typing results, using two sets of
multiplex PCR, are summarized in Table 2.
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Figure 2. Heat map illustrating the antibiogram patterns of 54 oxacillin-susceptible mecA-positive
Staphylococcus pseudintermedius (OS-MRSP) isolates. Antimicrobial susceptibility was assessed using
the VITEK® 2 system. Each row represents an individual isolate, labelled by the dog number
from which it was obtained, the sample origin (skin lesion or nasal swab), and the corresponding
isolate number from each dog. The heat map employs a color gradient where dark blue boxes
indicate resistance, light blue boxes represent intermediate susceptibility, and white boxes represent
susceptibility to the tested antibiotics.
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Table 2. Characteristics of typeable and non-typeable SCCmec Staphylococcus pseudintermedius isolates.

ccr Gene Complex mec Gene Complex SCCmec Type Total Isolates (%)

5 (C) C2 V 39/87 (45)
1 (A1B1) and 5 (C) C2 NT 33/87 (38)
1 (A1B1) and 5 (C) A NT 2/87 (2)
2 (A2B2) and 5 (C) B and C2 NT 2/87 (2)

1 (A1B1) A and C2 NT 1/87 (1)
1 (A1B1) and 5 (C) Negative NT 9/87 (10)

5 (C) A NT (5A, new combination) 1/87 (1)
NT, non-typeable.

The majority (23/33, 69.7%) of OR-MRSP isolates were identified as SCCmec type
V, while the remaining 10 isolates could not be classified (Table 3). In contrast, most
oxacillin-susceptible isolates were non-typeable (70.4%), with SCCmec type V detected in
only 16 isolates (16/54, 29.6%), as shown in Table 4. A significant association was found
between SCCmec type V and OR-MRSP isolates, as well as between non-typeable SCCmec
types and OS-MRSP isolates, using Fisher’s exact test (p ≤ 0.0004).

Table 3. Genotypic characteristics and multidrug-resistant phenotypes of 33 oxacillin-resistant
mecA-positive Staphylococcus pseudintermedius (OR-MRSP) isolates.

Dog
No.

Isolate
Code

Origin of
Sample

MR/MS
Phenotype

MDR
Phenotype

PFGE
Pulsotype

SCCmec Typing

ccr Gene Complex mec Gene
Complex

SCCmec
Type

4
4 S1 Skin MR MDR SmaI-AH 5 (C) A NT
4 S2 Skin MR MDR XmaI-D 5 (C), 1 (A1B1) A NT

6
6 S1 Skin MR MDR SmaI-B 5 (C), 1 (A1B1) C2 NT
6 S2 Skin MR MDR SmaI-B 5 (C), 1 (A1B1) C2 NT
6 N1 Nasal MR MDR SmaI-B 5 (C), 1 (A1B1) C2 NT

11 11 N1 Nasal MR MDR XmaI-C 5 (C) C2 V

12
12 S1 Skin MR MDR XmaI-E 5 (C) C2 V
12 S2 Skin MR MDR XmaI-E 5 (C) C2 V
12 N1 Nasal MR MDR nt 5 (C) C2 V

18
18 S1 Skin MR MDR SmaI-K 5 (C) C2 V
18 S2 Skin MR MDR XmaI-I 5 (C) C2 V
18 N1 Nasal MR MDR XmaI-I 5 (C) C2 V

19
19 S1 Skin MR MDR SmaI-E 5 (C), 1 (A1B1) C2 NT
19 S2 Skin MR MDR SmaI-A 5 (C) C2 V

23
23 S2 Skin MR MDR SmaI-AB 5 (C) C2 V
23 N1 Nasal MR MDR SmaI-AB 5 (C) C2 V

26
26 S1 Skin MR MDR SmaI-S 5 (C) C2 V
26 S2 Skin MR MDR SmaI-I 5 (C) C2 V

32
32 S1 Skin MR MDR XmaI-G 5 (C), 2 (A2B2) B, C2 NT
32S2 Skin MR MDR XmaI-G 5 (C), 2 (A2B2) B, C2 NT

33
33 S1 Skin MR MDR SmaI-AE 5 (C) C2 V
33 S2 Skin MR MDR SmaI-AE 5 (C) C2 V

36 36 N1 Nasal MR MDR SmaI-AB 5 (C), 1 (A1B1) C2 NT

41
41 S1 Skin MR MDR SmaI-AB 5 (C) C2 V
41 S2 Skin MR MDR SmaI-AB 5 (C) C2 V
41 N1 Nasal MR MDR SmaI-G 5 (C) C2 V

42
42 S1 Skin MR MDR SmaI-D 5 (C) C2 V
42 S2 Skin MR MDR XmaI-M 5 (C) C2 V
42 N1 Nasal MR MDR SmaI-M 5 (C) C2 V
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Table 3. Cont.

Dog
No.

Isolate
Code

Origin of
Sample

MR/MS
Phenotype

MDR
Phenotype

PFGE
Pulsotype

SCCmec Typing

ccr Gene Complex mec Gene
Complex

SCCmec
Type

43
43 S1 Skin MR MDR SmaI-AG 5 (C) C2 V
43 S2 Skin MR MDR SmaI-AC 5 (C) C2 V
43 N1 Nasal MR MDR SmaI-AC 5 (C) C2 V

57 57 S2 Skin MR MDR SmaI-C 5 (C), 1 (A1B1) C2 NT

nt, not tested; NT, non-typeable; MR/MS, methicillin-resistant/methicillin-susceptible (based on VITEK results
and oxacillin disk diffusion test); MDR, multidrug-resistant (based on VITEK results); Pos, positive; Neg, negative.

Table 4. Genotypic characteristics and multidrug-resistant phenotypes of 54 oxacillin-susceptible
mecA-positive Staphylococcus pseudintermedius (OS-MRSP) isolates.

Dog
No.

Isolates
Code

Origin of
Sample

MR/MS
Phenotype

MDR
Phenotype

PFGE
Pulsotype

SCCmec Typing

ccr Gene Complex mec Gene
Complex

SCCmec
Type

7 7 S2 Skin MS NO SmaI-Y 5 (C), 1 (A1B1) C2 NT

8
8 S1 Skin MS MDR SmaI-A 5 (C), 1 (A1B1) C2 NT
8 S2 Skin MS MDR SmaI-A 5 (C), 1 (A1B1) C2 NT

9
9 S1 Skin MS MDR SmaI-A 5 (C), 1 (A1B1) (-) NT
9 S2 Skin MS MDR SmaI-R 5 (C), 1 (A1B1) (-) NT
9 N1 Nasal MS MDR SmaI-F 5 (C) C2 V

10 10 S2 Skin MS MDR SmaI-P 5 (C), 1 (A1B1) (-) NT

13
13 S1 Skin MS NO XmaI-L 5 (C), 1 (A1B1) C2 NT
13 S2 Skin MS NO XmaI-J 5 (C), 1 (A1B1) A NT

15
15 S1 Skin MS NO SmaI-V 5 (C), 1 (A1B1) (-) NT
15 S2 Skin MS NO SmaI-L 5 (C), 1 (A1B1) A, C2 NT

16 16 S1 Skin MS NO SmaI-A 5 (C), 1 (A1B1) (-) NT

17
17 S2 Skin MS NO SmaI-H 5 (C), 1 (A1B1) (-) NT
17 N1 Nasal MS NO SmaI-V 5 (C), 1 (A1B1) C2 NT

20
20 S1 Skin MS NO XmaI-F 5 (C), 1 (A1B1) C2 NT
20 S2 Skin MS NO SmaI-E 5 (C), 1 (A1B1) (-) NT

21 21 N1 Nasal MS NO SmaI-W 5 (C) C2 V

22 22 S1 Skin MS NO SmaI-L 5 (C), 1 (A1B1) C2 NT

25
25 S1 Skin MS MDR XmaI-K 5 (C), 1 (A1B1) (-) NT
25 S2 Skin MS MDR XmaI-K 5 (C), 1 (A1B1) C2 NT

27
27 S1 Skin MS NO SmaI-N 5 (C), 1 (A1B1) C2 NT
27 S2 Skin MS NO SmaI-N 5 (C), 1 (A1B1) (-) NT

28 28 S1 Skin MS NO SmaI-O 5 (C), 1 (A1B1) C2 NT

29 29 S2 Skin MS NO SmaI-G 5 (C), 1 (A1B1) C2 NT

30
30 S1 Skin MS NO SmaI-AE 5 (C) C2 V
30 S2 Skin MS NO SmaI-AE 5 (C) C2 V

31
31 S2 Skin MS NO XmaI-N 5 (C) C2 V
31 N1 Nasal MS NO XmaI-N 5 (C) C2 V

34
34 S1 Skin MS MDR SmaI-U 5 (C), 1 (A1B1) C2 NT
34 S2 Skin MS MDR SmaI-U 5 (C), 1 (A1B1) C2 NT

35 35 S2 Skin MS MDR XmaI-H 5 (C) C2 V

37 37 N1 Nasal MS NO SmaI-Q 5 (C) C2 V



Animals 2024, 14, 2613 9 of 15

Table 4. Cont.

Dog
No.

Isolates
Code

Origin of
Sample

MR/MS
Phenotype

MDR
Phenotype

PFGE
Pulsotype

SCCmec Typing

ccr Gene Complex mec Gene
Complex

SCCmec
Type

44
44 S1 Skin MS NO SmaI-Z 5 (C) C2 V
44 S2 Skin MS NO SmaI-AA 5 (C), 1 (A1B1) C2 NT
44 N1 Nasal MS NO SmaI-V 5 (C) C2 V

45 45 N1 Nasal MS NO SmaI-AF 5 (C), 1 (A1B1) C2 NT

46
46 S1 Skin MS MDR SmaI-E 5 (C), 1 (A1B1) C2 NT
46 S2 Skin MS MDR SmaI-E 5 (C), 1 (A1B1) C2 NT

48
48 S1 Skin MS MDR SmaI-V 5 (C), 1 (A1B1) C2 NT
48 S2 Skin MS NO SmaI-C 5 (C), 1 (A1B1) C2 NT

49
49 S1 Skin MS MDR XmaI-A 5 (C), 1 (A1B1) C2 NT
49 S2 Skin MS MDR XmaI-A 5 (C), 1 (A1B1) C2 NT

56
56 S1 Skin MS NO SmaI-V 5 (C) C2 V
56 S2 Skin MS NO SmaI-AD 5 (C) C2 V
56 N1 Nasal MS MDR SmaI-T 5 (C), 1 (A1B1) C2 NT

58
58 S2 Skin MS MDR XmaI-B 5 (C), 1 (A1B1) C2 NT
58 N1 Nasal MS MDR SmaI-J 5 (C), 1 (A1B1) C2 NT

59 59 S2 Skin MS MDR XmaI-B 5 (C), 1 (A1B1) C2 NT

60
60 S1 Skin MS MDR SmaI-R 5 (C) C2 V
60 S2 Skin MS NO SmaI-X 5 (C), 1 (A1B1) C2 NT
60 N1 Nasal MS NO SmaI-X 5 (C), 1 (A1B1) C2 NT

62 62 N1 Nasal MS MDR SmaI-A 5 (C) C2 V

63
63 S1 Skin MS MDR SmaI-R 5 (C) C2 V
63 S2 Skin MS MDR SmaI-R 5 (C) C2 V

NT, non-typeable; MR/MS, methicillin-resistant/methicillin-susceptible (based on VITEK results and oxacillin
disk diffusion test); MDR, multidrug-resistant (based on VITEK results).

3.3.2. Pulsed-Field Gel Electrophoresis (PFGE) Analysis

Out of a total of 87 MRSP isolates, 65 (74.7%) could be digested by SmaI, and 21
(24.1%) by XmaI restriction enzymes, while 1 isolate was resistant to digestion by both
enzymes. Among the SmaI-digested isolates, 49 were from skin and 16 from nasal samples,
whereas among the XmaI-digested isolates, 18 were from skin and 3 from nasal samples.
The undigested isolate originated from a nasal sample. A total of 34 pulsotypes were
identified in the SmaI-PFGE dendrogram and 14 pulsotypes were identified in the XmaI-
PFGE dendrogram (Supplementary Figures S1 and S2, Tables 3 and 4). The PFGE analysis
revealed diverse patterns across all 87 isolates, including those from both OR-MRSP and
OS-MRSP groups, with no predominant pulsotypes observed.

3.4. Comparative Genotypic and Phenotypic Analysis of S. pseudintermedius Isolates from
Individual Dogs and Different Dogs

The genotypic characteristics and multidrug-resistant phenotypes of the 33 OR-MRSP and
54 OS-MRSP isolates from each individual dog are presented in Tables 3 and 4, respectively.

Phenotypically, when two or three OR-MRSP isolates were recovered from a single
dog, they exhibited the same antibiogram pattern (Table 3, Figure 1). In contrast, OS-MRSP
isolates from a single dog were found to exhibit both identical and different patterns, and
both multidrug-resistant (MDR) and non-MDR profiles were observed among isolates
originating from a single dog (Table 4, Figure 2).

Genotypically, OR-MRSP isolates from a single dog consistently exhibited the same
SCCmec type, irrespective of whether they were obtained from skin lesions or nasal cavities,
except for two skin isolates from one dog containing a different ccr complex (Table 3). The



Animals 2024, 14, 2613 10 of 15

SCCmec types of OS-MRSP isolates from the same dog were found to be both uniform
and varied, as shown in Table 4. These results parallel the findings of the antibiogram.
Based on the chromosomal genomic patterns analyzed by PFGE, no specific patterns were
observed in either group. Both OR-MRSP and OS-MRSP isolates from a single dog exhibited
both similar and dissimilar pulsotypes. However, isolates with identical pulsotypes were
generally derived from different sites on the same dog. Identical pulsotypes were also
observed between skin and nasal isolates, while different pulsotypes were noted among
skin isolates from individual dogs. With various phenotypes and genotypes observed, no
common strains circulated among the dog populations in this study.

4. Discussion

The identification and characterization of mecA-positive S. pseudintermedius isolates
from pyoderma-affected dogs provide comprehensive insights into the epidemiology and
potential treatment challenges associated with this pathogen and its public health risk. Our
study recovered 87 mecA-positive S. pseudintermedius isolates from 46 out of 63 enrolled
dogs (73%). This highlights a notable estimated prevalence of S. pseudintermedius carrying
the mecA gene among dogs affected by pyoderma. The detection of mecA-positive isolates
in both skin and nasal samples aligns with previous findings [25,26], emphasizing the
potential for bacterial colonization in multiple anatomical locations. Notably, nasal isolates
of OR-MRSP exhibited identical antibiograms and SCCmec types to the infected skin isolates
within a single dog. This ability to colonize various sites contributes to its persistent
dissemination and potential transfer of resistant genes, thereby complicating treatment and
control strategies.

The estimated prevalence of mecA-positive S. pseudintermedius in our study is concerning,
as this gene confers resistance to methicillin and other beta-lactam antibiotics commonly
used in veterinary practice [27,28]. The OR-MRSP isolates are generally multidrug-resistant,
limiting antibiotic treatment options. Although the impact of OS-MRSP is not well understood,
there have been reports indicating that OS-MRSA can become inducibly resistant to oxacillin
and other beta-lactams after antibiotic exposure [15]. The mechanisms behind the oxacillin
susceptibility of these isolates have been reported to include the absence of a complete SCCmec
structure except for the mecA gene, as well as mutations or insertions in the mecA gene or its
promoter. Revertant isolates containing mutated genes, different from the parental strains,
can revert to a resistant phenotype after cefoxitin exposure [15]. Therefore, the isolates with
the mecA gene may lead to therapeutic failures, as observed in the previous study involving
OS-MRSA in humans [16]. The mechanisms of OS-MRSP isolates in this study necessitate
further investigation.

Among the 87 mecA-positive S. pseudintermedius isolates, 33 (37.9%) were classified
as oxacillin-resistant, while 54 (62%) were oxacillin-susceptible. Identifying 40 distinct
antibiogram patterns with no predominant pattern suggests significant phenotypic diversity
and challenges in selecting effective antimicrobial treatments. Multidrug resistance was
observed in 65.5% (57/87) of all S. pseudintermedius isolates. In line with previous studies [29,30],
our findings, though at a higher proportion, showed that all OR-MRSP isolates exhibited
multidrug resistance (MDR), underscoring the significant therapeutic challenges posed by
these strains. Additionally, MDR was detected in a significant proportion (24/54, 44.4%) of
OS-MRSP isolates. Although most of these isolates were susceptible to extended-spectrum
beta-lactam antibiotics, they exhibited resistance to multiple other classes, including tetracy-
clines, sulphonamides, macrolides, fluoroquinolones, chloramphenicol, and aminoglycosides.
A recent study reported an association between the presence of the mecA gene and resistance
genes to other antibiotic classes, including aminoglycosides, tetracyclines, lincosamides, and
macrolides [31]. Interestingly, two oxacillin-susceptible isolates demonstrated resistance to
beta-lactam drugs, except oxacillin. The mechanisms underlying this phenotype and other
MDR phenotypes of oxacillin-susceptible isolates require further investigation.
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SCCmec type V was found to be the predominant SCCmec type circulating in the study
area, located in northeastern Thailand. This finding aligns with global reports indicating
that MRSP SCCmec types II-III and V are the two main types widely distributed worldwide,
including in Europe and North America [7]. Both types are also prevalent in Asia. Most
MRSP isolates in North China and Japan have been identified as SCCmec type II-III [5,32],
while most isolates in South China, Thailand, and Korea have been identified as SCCmec
type V [33–36]. In our study, SCCmec type V was identified in 69.7% of the OR-MRSP
isolates, demonstrating a strong association between this SCCmec type and its role in
disseminating antimicrobial resistance. In contrast, the majority of OS-MRSP isolates
were found to carry non-typeable SCCmec elements. The structural differences in SCCmec
elements could be a potential reason for the large number of non-typeable isolates among
OS-MRSP, similar to what has been observed in OS-MRSA [15].

The inability to type a significant portion of isolates using conventional methods
suggests the presence of novel or atypical SCCmec elements or limitations of the SCCmec
typing method used. Only two sets of the six multiplex PCRs developed by Kondo et al. [24]
were used. According to Turlej et al. [37], these two sets of multiplex PCRs are adequate for
characterizing most SCCmec elements and are widely used worldwide. These two sets of
multiplex PCRs can identify ccr gene complexes 1 to 5 and mec gene complex classes A, B,
and C2. However, ccr gene complexes 6 to 9 cannot be detected; thus, SCCmec types VII, X,
XI, XII, and XIII cannot be identified [38,39].

Notably, 38% of the isolates harbored a combination of ccr gene complexes 1 and 5
and mec gene class C2. This SCCmec type was identified in both OR-MRSP and OS-MRSP.
A similar result was reported by Chanayat et al. [35], who reported these non-typeable
SCCmec elements in 33% (4/12) of MRSP isolates from Chiang Mai province, located in
northern Thailand. Additionally, our study identified an SCCmec combination, comprising
ccr gene complex class 5 and mec gene complex class A in one isolate (1/87, 1%) of OR-MRSP.
This specific SCCmec combination has also been reported in South Africa [39].

For PFGE analysis, more than one restriction enzyme was needed for genomic DNA
digestion in our study. Most of the isolates (74.7%) could be digested with SmaI like
those reported by previous studies [7,33,40]. The remaining isolates, except one, could be
digested with XmaI, the neoschizomers of SmaI. Neoschizomers have the same recognition
sequence but are cut at different positions, providing a solution if one enzyme cannot digest
an isolate. This case was also experienced by Chanchaithong et al. [33], who used Cfr9I
(XmaI) as neoschizomers of SmaI. Sasaki et al. [4] also used XmaI as neoschizomers of SmaI.
In addition, they used AscI as a restriction enzyme for isolates that both SmaI and XmaI
enzymes could not digest.

The PFGE analysis revealed extensive genetic diversity among the isolates, with
34 pulsotypes identified by SmaI digestion and 14 by XmaI digestion, and no typical or
predominant PFGE pulsotypes were identified. These mecA-positive S. pseudintermedius
isolates possibly originated from discrete sources, not just from a single source. A similar
result of high diversity among isolates was also discovered by previous studies [29,32,33,40,41].
Even though PFGE has high discriminatory power and is considered the gold standard for
bacteria typing [42], due to the absence of the standardized PFGE method for S. pseudintermedius,
the results obtained between laboratories or between studies have been varied and difficult to
compare [43].

The findings of this study underscore the complexity of S. pseudintermedius colonization
and infection dynamics in pyoderma-affected dogs. Despite different pulsotypes, the
consistent SCCmec types and antibiogram patterns among OR-MRSP isolates from individual
dogs suggest the horizontal transfer of SCCmec elements and other antibiotic-resistant genes
within hosts. This highlights the role of SCCmec elements in disseminating antibiotic resistance
among S. pseudintermedius populations, which can complicate treatment strategies.
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In contrast, the variability in phenotypes and genotypes observed among OS-MRSP
isolates from a single dog suggests the potential for mixed infections. This finding underscores
the importance of comprehensive sampling from multiple sites to characterize resistance
profiles and inform effective treatment regimens accurately. The high level of genetic variability,
as indicated by the presence of both similar and dissimilar pulsotypes among isolates from the
same dog, further complicates the infection dynamics. The detection of identical pulsotypes
from different anatomical sites within the same dog indicates that S. pseudintermedius can
colonize multiple locations, facilitating its persistence and dissemination.

Our study has limitations due to its sampling strategy, which was confined to diseased
dogs. This focus may not fully capture the diversity of the broader canine population.
Future research incorporating whole genome analysis could offer a more comprehensive
understanding of the genetic relationships among isolates, as well as insights into the
antimicrobial resistance mechanisms of both oxacillin-resistant and oxacillin-susceptible
mecA-positive S. pseudintermedius.

5. Conclusions

This study underscores the significant challenge posed by mecA-positive S. pseudintermedius
in canine pyoderma, particularly due to the high prevalence of multidrug resistance and the
genetic diversity of isolates. The findings highlight the necessity for routine mecA screening
in diagnostic laboratories to ensure accurate diagnosis and effective treatment. Enhanced
surveillance is crucial to managing infections and mitigating the spread of mecA-positive
strains. Future research should focus on elucidating the mechanisms underlying the oxacillin
susceptibility in mecA-positive S. pseudintermedius isolates and their potential to revert to a
resistant phenotype.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/ani14172613/s1; Figure S1: SmaI-pulsed-field gel electrophoresis (PFGE)
dendrogram of 65 mecA-positive Staphylococcus pseudintermedius isolates; Figure S2: XmaI-pulsed-field
gel electrophoresis (PFGE) dendrogram of 21 mecA-positive Staphylococcus pseudintermedius isolates.
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