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Simple Summary: Chlamydial infections are a major threat to the health of koalas (Phascolarctos
cinereus), an iconic Australian marsupial. Among the different chlamydial species, Chlamydia pecorum
(C. pecorum) is the major pathogen infecting koalas, affecting their health and long-term survival, both
in the wild and in captivity. Therefore, a deeper understanding of chlamydial infections, including
their epidemiology, transmission mode, pathogenesis, host immune response, control, and prevention,
is critical for the management of chlamydial infections in koalas. Herein, we discuss the current
literature on C. pecorum infection in koalas, including the epidemiology, transmission, pathogenesis,
immune response, and control strategies for chlamydial infection, with the aim of improving koala
health and achieving effective conservation strategies.

Abstract: Chlamydial infections pose a significant threat to koala populations. Chlamydia pecorum
(C. pecorum) remains the major chlamydial species affecting koala health, both in the wild and
in captivity, and chlamydial infections are considered important factors affecting the long-term
survival of koalas. A clear understanding of chlamydial infections, including the epidemiology,
transmission mode, pathogenesis, immune response, control, and prevention thereof, is essential
for improving the management of chlamydial infections in koalas. In this study, we discuss the
important advances made in our understanding of C. pecorum infection in koalas, focusing on the
epidemiology of chlamydial infections, and the transmission, pathogenesis, immune response, and
control strategies for chlamydial infection, with the aim of improving koala health and achieving
effective conservation strategies.
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1. Introduction

Koalas (Phascolarctos cinereus) are an endangered marsupial species threatened by
extinction from various factors, including obligate intracellular bacterial infections and
chlamydiosis [1,2]. Chlamydiosis is a well-documented and important disease in koalas
that is characterized by ocular, urinary, and reproductive lesions [2,3]. Chlamydial ocular
infections can lead to blindness, and genital tract infections can cause infertility, among
other serious clinical manifestations [2]. Chlamydia pecorum (C. pecorum) is globally known
as ‘koala chlamydia’ [4]. C. pecorum gastrointestinal tract (GIT) infection has been shown to
be associated with urogenital tract infections in koalas [5]. It has also been reported that
C. pecorum is present in the reproductive tracts of both male and female koalas [6], and
that the male reproductive tract can act as a reservoir for persistent chlamydia infections in
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koalas [3]. In our previous study, we observed a 21.74% prevalence of C. pecorum in captive
koalas across Japanese zoos, with female koalas having a higher prevalence rate (24.24%)
than male koalas (15.38%) [7]. In Japanese zoos, a higher C. pecorum load was observed in
adult koalas than in other groups [7]. However, no direct association between koala health
and C. pecorum load has been observed in captive koalas in Japanese zoos [7].

Important chlamydial species, including C. pecorum and Chlamydia pneumoniae
(C. pneumoniae) can cause serious infections in koalas [2,8]. The majority of previous
research has focused on C. pecorum because it is recognized as a more prevalent and
pathogenic species in koalas than C. pneumoniae [3,9–13]. Chlamydiosis plays a signif-
icant role in koala population decline [2,14], and C. pecorum infection is believed to be
one of the major pathogens responsible for chlamydiosis in koalas, affecting their long-
term survival [15,16]. Robbins et al. reported chlamydial genotype-based variations in
pathogenicity, where genotypes belonging to both multi-locus sequence-typing sequence
type (ST) 69 and ompA genotype F were linked to disease progression, whereas ST 281 was
linked to the absence of disease [17].

C. pecorum is considered the key chlamydial pathogen infecting koalas, and complex
host–pathogen interactions exist. Therefore, a clear understanding of the prevalence,
transmission, pathogenesis, and preventive tools, such as the development of vaccines
against C. pecorum, is essential for improving koala health and conservation, both in the
wild and in captivity [16]. Therefore, in this review, we focus on the epidemiology of
C. pecorum infection, the transmission mode, pathogenesis, and effects on the host, as well
as control and preventive strategies for the improved management of the koala population.

2. Epidemiology of Chlamydiosis

A thorough understanding of chlamydial epidemiology and disease dynamics in
koalas is critical for improved disease management [18]. However, there is a scarcity of
comprehensive and longitudinal population studies that provide a proper understanding of
chlamydial infections [18,19]. C. pecorum is a significant pathogen in both domestic livestock
and wildlife, including koalas [20]. C. pecorum-specific multi-locus sequence analysis
revealed that Australian koala isolates formed a distinct clade, with limited clustering with
C. pecorum isolates from Australian sheep [20].

Many studies have reported variations in the prevalence of C. pecorum infections in
koalas. C. pecorum infections are endemic to free-ranging koalas in South East Queensland,
where 30% of the surveyed animals exhibited clinical chlamydial disease [13,16]. In con-
trast, Burach et al. reported 9% (2/23) C. pecorum prevalence in Queensland koalas [9].
In addition, chlamydial genotypes were found to differ in two geographically isolated
South East Queensland koala populations [17]. A higher prevalence of genotype B, which
is considered less pathogenic, was reported in Victorian koalas [12]. However, C. peco-
rum genotype B has not been reported in northern (Queensland and New South Wales)
koalas [12]. The prevalence of C. pecorum was also much higher in Victorian koala popula-
tions on Raymond Island (43/104; 41.3%) than in the Mount Eccles National Park koala
populations (30/120; 25%) [11]. However, C. pecorum was not detected in French Island
koala populations (n = 63), and C. pneumoniae was not observed in three Victorian koala
populations, suggesting geographical differences in chlamydia infections [11]. Moreover, C.
pecorum was detected only in urogenital swabs and not in ocular swabs, and no ocular dis-
ease was observed [11], suggesting that ocular and urogenital swab results could indicate
differential pathogenesis in this population.

In a study by Fabijan et al. on South Australian wild koala populations, a 46.7%
C. pecorum prevalence was observed in mainland Mount Lofty Ranges koalas (n = 75),
whereas Kangaroo Island koalas (n = 170) were free of C. pecorum infection [15], indicating
geographical variation in C. pecorum prevalence. A summary of the epidemiology of
C. pecorum infection in Australian koala populations is shown in Figure 1.
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ually transmitted pathogens among koalas, is primarily spread through direct contact, in-
cluding sexual transmission (Figure 2) [2,3,11,21,22]. Another study focusing on the male 
reproductive tract revealed that it may serve as a reservoir for C. pecorum, potentially lead-
ing to its sexual transmission to female koalas [3]. However, further studies have ex-
panded our understanding of C. pecorum transmission by revealing non-sexual pathways, 
particularly between mothers (dams) and offspring (joeys), through vertical transmission 
(Figure 2). Two studies focusing on joeys, one dependent (less than one year old) and the 
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of considering both sexual and non-sexual transmission routes when managing Chlamydia 
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Figure 1. Epidemiology of Chlamydia pecorum infection in Australian koala populations.

3. Transmission Mode of Chlamydia pecorum in Koalas

Chlamydia poses a significant health concern to various species, particularly koalas,
and has become pervasive in koala communities, affecting both captive and wild popu-
lations. Chlamydia can spread systemically in the inner organs of the koala [9], as shown
in Figure 2; understanding the transmission dynamics of this bacterial infection in koalas
is crucial for implementing effective conservation strategies. Chlamydia, recognized as
sexually transmitted pathogens among koalas, is primarily spread through direct contact,
including sexual transmission (Figure 2) [2,3,11,21,22]. Another study focusing on the
male reproductive tract revealed that it may serve as a reservoir for C. pecorum, potentially
leading to its sexual transmission to female koalas [3]. However, further studies have
expanded our understanding of C. pecorum transmission by revealing non-sexual pathways,
particularly between mothers (dams) and offspring (joeys), through vertical transmission
(Figure 2). Two studies focusing on joeys, one dependent (less than one year old) and the
other sexually immature (9 to 13 months old), reported a 27% C. pecorum prevalence in
joeys (n = 15) [16]; (n = 11) [23]. The study involving dependent joeys [23], based on cap-
tive koalas, suggested dam-to-joey transmission as the primary route (Figure 2), although
handling by the same animal handler was not entirely ruled out. Conversely, a sexually
immature joey study [16] conducted in a monitored wild koala population deemed routes
other than dam-to-joey transmission unlikely. These findings underscore the importance of
considering both sexual and non-sexual transmission routes when managing Chlamydia
infection in koala populations.
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An additional potential pathway for C. pecorum transmission is the fecal–oral route.
Pap feeding, the intricate process during which the joey consumes maternal cecal material,
plays a crucial role in the inoculation of the GIT with essential microbes necessary for
efficient digestion. This phenomenon has also been postulated to be a potential vertical
transmission route (Figure 2) [25,26]. In a study by Narayan et al. [27], physiological
stressors were found to play a significant role in the transmission of Chlamydia within koala
populations (Figure 2).

The transmission of C. pecorum in koalas occurs primarily through direct contact with
infected individuals or their bodily fluids. A recent investigation by Casteriano et al. [24]
focused on detecting Chlamydia DNA in environmental samples obtained from a koala
care facility in New South Wales, Australia. This study highlighted contaminated fomites
as a plausible source of C. pecorum infection in koalas, underlining the importance of
considering environmental factors in the transmission dynamics of this pathogen (Figure 2).
The C. pecorum isolates found in French Island koalas were genetically related to livestock
C. pecorum genotypes [28], suggesting potential transmission between species. Overall,
C. pecorum may utilize multiple methods of transmission among koalas; however, sex or
contact with infected genital fluids, such as semen or vaginal fluid, remains the primary
mode of transmission. Therefore, a proper understanding of the C. pecorum transmission
mode is critical for limiting Chlamydia spread among koala populations.

4. Pathogenesis of C. pecorum and Its Effects on Koala Health

Infection with C. pecorum is common in koalas, and the pathogenesis underlying
chlamydiosis is complex. Understanding the intricate stages of C. pecorum infection is
crucial for managing and reducing its harmful effects on koala health. We present a
comprehensive overview of the current understanding, along with recent modifications, in
Figure 3.

Chlamydial infections pose a significant threat to the koala. Initially, the bacterium
targets mucosal surfaces, including the conjunctiva, urogenital tract, and respiratory tract.
However, it is worth noting that infections can often remain subclinical, evading detection
for prolonged periods.
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Both male and female koalas can be infected with C. pecorum, which poses a significant
threat to their health. Variations in the disease manifestations of C. pecorum infection in
different sexes have been reported, where the brown staining of fur around the rump area,
colloquially referred to as ‘wet bottom’, was observed in males, and reproductive tract
pathology was observed in females [12]. Reproductive tract infections further exacerbate
health challenges. In females, these infections can induce inflammation and fibrosis, leading
to complications such as cystic enlargement of the ovarian bursae, metritis, salpingitis, py-
ometra, hydrosalpinx, and vaginitis [26]. Chlamydial infections remain a major contributor
to the development of reproductive cysts, resulting in female infertility and euthanasia [29].
The subclinical infection of C. pecorum in male koalas is also not uncommon [3]. The penile
urethra is the major site of C. pecorum infection in male koalas, along with the prostate and
bulbourethral glands [3]. Males may experience prostatitis, orchitis, and epididymitis [3,10],
which can also lead to infertility [10,26,30,31]. Recent studies by Hulse et al. [22,32] shed
light on the additional impact of C. pecorum infection. They demonstrated the adverse
effects on semen quality in koalas, with disruptions in spermatogenesis and inflammation
in wild koala populations. This leads to a decreased sperm concentration, which is accom-
panied by testicular degeneration and atrophy. These findings underscore the multifaceted
nature of C. pecorum pathogenesis and its implications for the health of koala populations.

Of particular concern are ocular infections, which can lead to keratoconjunctivitis and,
in severe cases, may cause blindness [2,26,33,34]. Urogenital infections present a spectrum
of complications, including urethritis, ureteritis, nephritis, and cystitis. A notable sign is the
‘wet bottom,’ which stems from incontinence [2,26]. However, wet bottom, an indication of
chronic urinary tract infection, was observed in both C. pecorum-infected and non-infected
Victorian koalas, suggesting that other causes may underlie this clinical sign [11], requiring
further investigation. Patterson et al. also observed that fecundity is inversely proportional
to the Chlamydia infection rates in koalas [11].

Respiratory tract infections contribute to the manifestation of rhinitis/pneumonia [35]
in infected individuals. In a previous study, clinical disease with ocular and urogenital
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signs was reported in 5 out of 24 C. pecorum-infected koalas; however, no clinical signs
were observed among seven C. pneumoniae-infected koalas, suggesting C. pecorum is more
pathogenic in koalas than C. pneumoniae [21]. The association of C. pecorum with pneumonia
in juvenile male koalas has been reported [36]. A microscopic examination of the lungs
revealed pyogranulomatous bronchopneumonia, characterized by the proliferation of
bronchiolar and alveolar epithelia, along with interstitial fibrosis [36].

5. Immune Response to Chlamydial Infection

A proper understanding of the host immune response to a particular pathogen is
critical for devising prophylactic and therapeutic interventions against diseases or for
evaluating the efficacy of any given vaccine [37,38]. The innate immune response is a key
component of the host that acts as the first line of immune defense against many viral
infections and shapes adaptive immunity [39]. Unfortunately, due to the unavailability or
limited availability of koala-specific reagents and other characterization tools, such as anti-
bodies and PCR, the innate immune response characterization in C. pecorum-infected koalas
remains unclear [40]. However, genetic resources for koalas should enhance the develop-
ment of characterization tools for studying immune responses in this iconic species [41,42].
Genetic variations, including single nucleotide polymorphisms (SNPs), may influence
innate immune responses against invading pathogens and disease outcomes [43,44].

In two northern populations of koalas, Silver et al. observed the association of MHC
class I genes with chlamydial disease progression and the SNPs of 17 genes involved in the
resolution of Chlamydia infection [45], suggesting a role for host genetics in the outcome
of chlamydial infection. Other studies have also indicated the association of MHC class II
genes with chlamydial disease susceptibility or pathogenesis in koalas [46–48]. An associa-
tion between the expression of the immune cytokine interleukin (IL)-17 has been linked
to MOMP vaccination, and animals with a high urogenital chlamydial load exhibit lower
IL-17 levels, favoring disease progression [49]. Koala retrovirus (KoRV)-positive koalas had
significantly lower levels of IL-17A and interferon (IFN)-γ gene expression compared to
KoRV-negative koalas. However, chlamydial infection and the combined effect of KoRV
did not affect these populations [50]. Interestingly, it has been previously reported that
chlamydial disease in koalas induces significantly higher IL-17A gene expression compared
to that in asymptomatically infected animals [51]. In another study, it was reported that
IFN-γ was unable to restrict the growth of C. pecorum in bovine kidney epithelial cells, while
C. trachomatis was inhibited, suggesting C. pecorum adopts mechanisms to evade immune
response as in its natural host [52]. A recent study reported an association between the
numbers of CD3, CD4, CD79b, and HLA-DR-positive cells [6], where a higher chlamydial
load was associated with a higher inflammatory score, and a low chlamydial load was
associated with a lower inflammatory score [6].

6. Control and Prevention of Chlamydial Infection

Antibiotics remain the front-line treatment for chlamydial infections in koalas despite
their detrimental effects on the gut microbiota, leading to potential dysbiosis and death [33].
Although wild koalas infected with Chlamydia are treated with antibiotics in hospitals, a
large percentage of infected animals do not survive [29]. Daily injections of chloramphenicol
markedly reduced chlamydial shedding, which was undetectable by the end of the 2nd
week of treatment [53]. However, a recent study reported the presence of doxycycline and
chloramphenicol resistance genes in 9.9% of koalas, which may interfere with positive
outcomes during treatment with doxycycline and/or chloramphenicol in chlamydiosis [54].
The development of new treatment strategies is essential to combat antibiotic resistance
in koalas. A recent in vitro and in vivo study demonstrated the effectiveness of the serine
protease HtrA inhibitor JO146 in treating C. pecorum and C. pneumoniae infections [55],
which could be developed as a novel treatment tool for treating chlamydiosis in koalas.

Vaccines remain invaluable tools for preventing infections, which can be used as the
preferred tool to reduce the burden of chlamydial disease in wildlife, including koalas [56].
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A proper understanding of the host immune response to chlamydial infections is important
for developing effective chlamydial vaccines [57]. Scientists are attempting to develop an
effective vaccine to fight widespread chlamydial infection in koalas and its debilitating
effects on koala health.

Kollipara et al. demonstrated the induction of antibodies against epitopes in the
conserved domains of C. pecorum G and H strains of major outer membrane proteins
(MOMP) in both chlamydia-free koalas and naturally infected koalas [57], suggesting that
further refinement of vaccine candidates may offer widespread cross-protection against a
variety of chlamydial infections circulating in wild koala populations. Khan et al. reported
the induction of very low levels of C. pecorum-specific neutralizing antibodies in naturally
infected koalas, whereas a strong induction of C. pecorum-specific neutralizing antibodies
was observed in recombinant MOMP-vaccinated koalas [58]. In another study, Khan et al.
reported that a single dose of a recombinant chlamydial MOMP adjuvanted with either a Tri-
Adj or immune stimulating complex (ISC) vaccine could produce strong cellular (IFN-γ and
IL-17A) and humoral (recombinant MOMP specific IgG) immune responses in Chlamydia-
negative koalas [59]. Desclozeaux et al. reported that a single dose of chlamydial MOMP or
Polymorphic Membrane Protein (PMP) vaccine could induce both a systemic and mucosal
humoral immune response with anti-chlamydial IgG and/or IgA antibodies as well as cell-
mediated immune response with increased IFN-γ and IL-17 production [60]. However, only
MOMP vaccine candidates exhibited a clearance of infection in all infected koalas [60]. Joeys
from vaccinated mothers were also less likely to be infected than those from unvaccinated
mothers, suggesting protection from infection through maternal immunization [23].

It has been shown that vaccinated koalas had an increased life-span (a median lifespan
of 12.25 years) compared to unvaccinated koalas (a median lifespan of 8.8 years), and no
adverse effects were observed in vaccinated koalas [61]. A previous study demonstrated
an improvement in ocular disease conditions in free-ranging koalas after therapeutic
vaccination with recombinant major outer membrane proteins (rMOMP) of C. pecorum
genotypes A, F, and G [33,62]. Another recent study reported the effectiveness of the
chlamydia vaccine in mild ocular chlamydial disease, which increased the efficacy of
antibiotic treatment for cystitis in vaccinated koalas [63]. However, another study reported
a contrasting finding for the chlamydia vaccine, where no significant stimulation of the
plasma anti-MOMP IgG response was generated in koalas vaccinated with a synthetic
peptide vaccine composed of four components of C. pecorum MOMP [64]; therefore, further
investigation is required.

Chlamydial MOMP vaccine or chlamydial MOMP plus a KoRV recombinant envelope
protein (rEnv) vaccine (combined vaccines) were found to be effective against C. pecorum
infection, and the inhibition of C. pecorum became more pronounced over time [1], indicat-
ing the efficacy of the vaccine in suppressing the chlamydial load in koalas. The combined
vaccines also induced an increase in anti-KoRV IgG levels, which reduced KoRV-B expres-
sion [1]. A recombinant chlamydial MOMP-adjuvanted vaccine was shown to reduce C.
pecorum load and clinical disease progression in wild koalas [65], suggesting its efficacy
in reducing chlamydial burden. Notably, a recent study reported the data of a 10-year
assessment of the effectiveness of an MOMP-based vaccine in wild koalas from South East
Queensland, where vaccinated koalas exhibited a significantly lower disease incidence,
with a 64% reduction in chlamydial infection-related mortality [66]. Overall, MOMP-based
chlamydial vaccines show promise for further development and clinical use.

7. Conclusions

C. pecorum is the most pathogenic and prevalent chlamydial species in koalas. C. pecorum
is endemic to many koala populations and has significant effects on their health and
longevity. However, the current knowledge on C. pecorum is limited, with an insufficient
understanding of the immune response in koalas, owing to insufficient analytical tools.
Further focus should be placed on novel control and prevention strategies, such as the
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development of new therapeutic interventions and effective vaccines that will benefit koala
conservation strategies and improve long-term survival.
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