Genome-Wide Association Study for Milk Somatic Cell Score in Holstein Friesian Cows in Slovenia
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Phenotypes
Definition of Alternative SCC Traits
2.2. Genotyping and Quality Control
2.3. Linkage Disequilibrium
2.4. Genome-Wide Association Analysis
2.5. Candidiate Gene Identification
3. Results
3.1. SNP Distribution across Chromosomes
3.2. Descriptive Statistics of SCS Traits
3.3. Population Structure Analysis
3.4. Association of SNPs with SCS Traits
3.5. Linkage Disequilibrium
4. Discussion
SNP | BTA | Position (bp) | Previously Reported QTL | Trait | Reference |
---|---|---|---|---|---|
ARS-BFGL-NGS-22211 (rs42598849) | 22 | 43,274,058 | QTL near 52.95–53.26 Mb, associated with SCS and clinical mastitis | Somatic cell score, mastitis | [49] |
ARS-BFGL-NGS-34508 (rs109387887) | 29 | 2,522,803 | QTL associated with body weight (BW) and body weight gain (BWG) | Body weight | [50] |
BovineHD4100011443 (rs41734577) | 14 | 29,888,019 | QTL at 7.86 Mb–39.55 Mb region associated with SCS and mastitis | Somatic cell score, mastitis | [44] |
Hapmap48135-BTA-96568 (rs41591269) | 15 | 5,170,124 | QTL between 50.43–51.63 Mb associated with SCS in Valdostana Red Pied cattle | Somatic cell score | [48] |
ARS-BFGL-NGS-39003 (rs110351063) | 15 | 66,127,887 | QTL associated with fat percentage and fat yield traits in dairy cattle | Fat percentage, yield | [54] |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hogeveen, H.; Huijps, K.; Lam, T.J.G.M. Economic aspects of mastitis: New developments. N. Z. Vet. J. 2011, 59, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Heringstad, B.; Klemetsdal, G.; Ruane, J. Selection for mastitis resistance in dairy cattle: A review with focus on the situation in the Nordic countries. Livest. Prod. Sci. 2000, 64, 95–106. [Google Scholar] [CrossRef]
- Bertrand, J.A.; Berger, P.J.; Freeman, A.E.; Kelley, D.H. Profitability in Daughters of High Versus Average Holstein Sires Selected for Milk Yield of Daughters. J. Dairy Sci. 1985, 68, 2287–2294. [Google Scholar] [CrossRef]
- Welderufael, B.G.; Løvendahl, P.; de Koning, D.J.; Janss, L.L.G.; Fikse, W.F. Genome-wide association study for susceptibility to and recoverability from mastitis in Danish Holstein cows. Front. Genet. 2018, 9, 315632. [Google Scholar] [CrossRef] [PubMed]
- Carlén, E.; Strandberg, E.; Roth, A. Genetic parameters for clinical mastitis, somatic cell score, and production in the first three lactations of Swedish holstein cows. J. Dairy Sci. 2004, 87, 3062–3070. [Google Scholar] [CrossRef]
- Rupp, R.; Boichard, D. Genetic parameters for clinical mastitis, somatic cell score, production, udder type traits, and milking ease in first lactation Holsteins. J. Dairy Sci. 1999, 82, 2198–2204. [Google Scholar] [CrossRef]
- Alam, M.; Cho, C.I.; Choi, T.J.; Park, B.; Choi, J.G.; Choy, Y.H.; Lee, S.S.; Cho, K.H. Estimation of Genetic Parameters for Somatic Cell Scores of Holsteins Using Multi-trait Lactation Models in Korea. Asian-Australas J. Anim. Sci. 2015, 28, 303. [Google Scholar] [CrossRef]
- Ali, A.K.A.; Shook, G.E. An Optimum Transformation for Somatic Cell Concentration in Milk. J. Dairy Sci. 1980, 63, 487–490. [Google Scholar] [CrossRef]
- Miglior, F.; Muir, B.L.; Van Doormaal, B.J. Selection Indices in Holstein Cattle of Various Countries. J. Dairy Sci. 2005, 88, 1255–1263. [Google Scholar] [CrossRef]
- Koeck, A.; Miglior, F.; Kelton, D.F.; Schenkel, F.S. Alternative somatic cell count traits to improve mastitis resistance in Canadian Holsteins. J. Dairy Sci. 2012, 95, 432–439. [Google Scholar] [CrossRef]
- Urioste, J.I.; Franzén, J.; Strandberg, E. Phenotypic and genetic characterization of novel somatic cell count traits from weekly or monthly observations. J. Dairy Sci. 2010, 93, 5930–5941. [Google Scholar] [CrossRef] [PubMed]
- Bobbo, T.; Penasa, M.; Finocchiaro, R.; Visentin, G.; Cassandro, M. Alternative somatic cell count traits exploitable in genetic selection for mastitis resistance in Italian Holsteins. J. Dairy Sci. 2018, 101, 10001–10010. [Google Scholar] [CrossRef] [PubMed]
- Nani, J.P.; Raschia, M.A.; Poli, M.A.; Calvinho, L.F.; Amadio, A.F. Genome-wide association study for somatic cell score in Argentinean dairy cattle. Livest. Sci. 2015, 175, 1–9. [Google Scholar] [CrossRef]
- Green, M.J.; Green, L.E.; Schukken, Y.H.; Bradley, A.J.; Peeler, E.J.; Barkema, H.W.; De Haas, Y.; Collis, V.J.; Medley, G.F. Somatic Cell Count Distributions During Lactation Predict Clinical Mastitis. J. Dairy Sci. 2004, 87, 1256–1264. [Google Scholar] [CrossRef] [PubMed]
- de Haas, Y.; Ouweltjes, W.; Ten Napel, J.; Windig, J.J.; de Jong, G. Alternative Somatic Cell Count Traits as Mastitis Indicators for Genetic Selection. J. Dairy Sci. 2008, 91, 2501–2511. [Google Scholar] [CrossRef]
- Rupp, R.; Boichard, D. Genetics of resistance to mastitis in dairy cattle. Vet. Res. 2003, 34, 671–688. [Google Scholar] [CrossRef]
- Pyörälä, S. New Strategies to Prevent Mastitis. Reprod. Domest. Anim. 2002, 37, 211–216. [Google Scholar] [CrossRef]
- Brajnik, Z.; Ogorevc, J. Candidate genes for mastitis resistance in dairy cattle: A data integration approach. J. Anim. Sci. Biotechnol. 2023, 14, 10. [Google Scholar] [CrossRef]
- Tiezzil, F.; Parker-Gaddis, K.L.; Cole, J.B.; Clay, J.S.; Maltecca, C. A Genome-Wide Association Study for Clinical Mastitis in First Parity US Holstein Cows Using Single-Step Approach and Genomic Matrix Re-Weighting Procedure. PLoS ONE 2015, 10, e0114919. [Google Scholar]
- Ilie, D.E.; Mizeranschi, A.E.; Mihali, C.V.; Neamț, R.I.; Goilean, G.V.; Georgescu, O.I.; Zaharie, D.; Carabaș, M.; Huțu, I. Genome-wide association studies for milk somatic cell score in romanian dairy cattle. Genes 2021, 12, 1495. [Google Scholar] [CrossRef]
- Narayana, S.G.; de Jong, E.; Schenkel, F.S.; Fonseca, P.A.S.; Chud, T.C.S.; Powell, D.; Wachoski-Dark, G.; Ronksley, P.E.; Miglior, F.; Orsel, K.; et al. Underlying genetic architecture of resistance to mastitis in dairy cattle: A systematic review and gene prioritization analysis of genome-wide association studies. J. Dairy Sci. 2023, 106, 323–351. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Liu, L.; Chen, C.J.; Zhang, M.; Lu, X.; Zhang, Z.; Huang, X.; Shi, Y. Genome-wide association study of milk and reproductive traits in dual-purpose Xinjiang Brown cattle. BMC Genom. 2019, 20, 827. [Google Scholar] [CrossRef] [PubMed]
- Meredith, B.K.; Berry, D.P.; Kearney, F.; Finlay, E.K.; Fahey, A.G.; Bradley, D.G.; Lynn, D.J. A genome-wide association study for somatic cell score using the Illumina high-density bovine beadchip identifies several novel QTL potentially related to mastitis susceptibility. Front. Genet. 2013, 4, 64754. [Google Scholar] [CrossRef] [PubMed]
- Jeretina, J.; Škorjanc, D.; Babnik, D. A new somatic cell count index to more accurately predict milk yield losses. Arch. Anim. Breed. 2017, 60, 373–383. [Google Scholar] [CrossRef]
- Yin, T.; Jaeger, M.; Scheper, C.; Grodkowski, G.; Sakowski, T.; Klopcic, M.; Bapst, B.; König, S. Multi-breed genome-wide association studies across countries for electronically recorded behavior traits in local dual-purpose cows. PLoS ONE 2019, 14, e0221973. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; De Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Hill, W.G.; Robertson, A. Linkage disequilibrium in finite populations. Theor. Appl. Genet. 1968, 38, 226–231. [Google Scholar] [CrossRef]
- Liu, X.; Huang, M.; Fan, B.; Buckler, E.S.; Zhang, Z. Iterative Usage of Fixed and Random Effect Models for Powerful and Efficient Genome-Wide Association Studies. PLoS Genet. 2016, 12, e1005767. [Google Scholar] [CrossRef]
- Huang, M.; Liu, X.; Zhou, Y.; Summers, R.M.; Zhang, Z. BLINK: A package for the next level of genome-wide association studies with both individuals and markers in the millions. Gigascience 2019, 8, giy154. [Google Scholar] [CrossRef]
- Nicolazzi, E.L.; Caprera, A.; Nazzicari, N.; Cozzi, P.; Strozzi, F.; Lawley, C.; Pirani, A.; Soans, C.; Brew, F.; Jorjani, H.; et al. SNPchiMp v.3: Integrating and standardizing single nucleotide polymorphism data for livestock species. BMC Genom. 2015, 16, 283. [Google Scholar] [CrossRef]
- Durinck, S.; Moreau, Y.; Kasprzyk, A.; Davis, S.; De Moor, B.; Brazma, A.; Huber, W. BioMart and Bioconductor: A powerful link between biological databases and microarray data analysis. Bioinformatics 2005, 21, 3439–3440. [Google Scholar] [CrossRef] [PubMed]
- Aken, B.L.; Ayling, S.; Barrell, D.; Clarke, L.; Curwen, V.; Fairley, S.; Fernandez Banet, J.; Billis, K.; García Girón, C.; Hourlier, T.; et al. The Ensembl gene annotation system. Database 2016, 2016, baw093. [Google Scholar] [CrossRef] [PubMed]
- da Silva, J.E.; Barbosa, S.B.P.; da Abreu, B.S.; Santoro, K.R.; da Silva, E.C.; Batista, Â.M.V.; Martinez, R.L.V. Effect of somatic cell count on milk yield and milk components in Holstein cows in a semi-arid climate in Brazil. Rev. Bras. Saúde Produção Anim. 2018, 19, 391–402. [Google Scholar] [CrossRef]
- Costa, A.; Lopez-Villalobos, N.; Visentin, G.; De Marchi, M.; Cassandro, M.; Penasa, M. Heritability and repeatability of milk lactose and its relationships with traditional milk traits, somatic cell score and freezing point in Holstein cows. Animal 2019, 13, 909–916. [Google Scholar] [CrossRef] [PubMed]
- Lambertz, C.; Sanker, C.; Gauly, M. Climatic effects on milk production traits and somatic cell score in lactating Holstein-Friesian cows in different housing systems. J. Dairy Sci. 2014, 97, 319–329. [Google Scholar] [CrossRef]
- Cebeci, Z.; Bayraktar, M.; Gökçe, G. Comparison of the statistical methods for genome-wide association studies on simulated quantitative traits of domesticated goats (Capra hircus L.). Small Rumin. Res. 2023, 227, 107053. [Google Scholar] [CrossRef]
- Kaler, A.S.; Gillman, J.D.; Beissinger, T.; Purcell, L.C. Comparing Different Statistical Models and Multiple Testing Corrections for Association Mapping in Soybean and Maize. Front. Plant Sci. 2020, 10, 486047. [Google Scholar] [CrossRef]
- Rupp, R.; Clément, V.; Piacere, A.; Robert-Granié, C.; Manfredi, E. Genetic parameters for milk somatic cell score and relationship with production and udder type traits in dairy Alpine and Saanen primiparous goats. J. Dairy Sci. 2011, 94, 3629–3634. [Google Scholar] [CrossRef]
- Wijga, S.; Bastiaansen, J.W.M.; Wall, E.; Strandberg, E.; de Haas, Y.; Giblin, L.; Bovenhuis, H. Genomic associations with somatic cell score in first-lactation Holstein cows. J. Dairy Sci. 2012, 95, 899–908. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Masuda, Y.; Nakagawa, S.; Abe, H.; Gotoh, Y.; Baba, T.; Kawahara, T. Genetic parameters for mastitis incidence and its indicators based on somatic cell score for Holsteins in Hokkaido, Japan. Anim. Sci. J. 2019, 90, 915–923. [Google Scholar] [CrossRef]
- Meredith, B.K.; Kearney, F.J.; Finlay, E.K.; Bradley, D.G.; Fahey, A.G.; Berry, D.P.; Lynn, D.J. Genome-wide associations for milk production and somatic cell score in Holstein-Friesian cattle in Ireland. BMC Genet. 2012, 13, 21. [Google Scholar] [CrossRef] [PubMed]
- Strillacci, M.G.; Frigo, E.; Schiavini, F.; Samoré, A.B.; Canavesi, F.; Vevey, M.; Cozzi, M.C.; Soller, M.; Lipkin, E.; Bagnato, A. Genome-wide association study for somatic cell score in Valdostana Red Pied cattle breed using pooled DNA. BMC Genet. 2014, 15, 106. [Google Scholar] [CrossRef] [PubMed]
- Lund, M.S.; Sahana, G.; Andersson-Eklund, L.; Hastings, N.; Fernandez, A.; Schulman, N.; Thomson, B.; Viitala, S.; Williams, J.L.; Sabry, A.; et al. Joint Analysis of Quantitative Trait Loci for Clinical Mastitis and Somatic Cell Score on Five Chromosomes in Three Nordic Dairy Cattle Breeds. J. Dairy Sci. 2007, 90, 5282–5290. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ma, P.; Liu, J.; Zhang, Q.; Zhang, Y.; Ding, X.; Jiang, L.; Wang, Y.; Zhang, Y.; Sun, D.; et al. Genome-wide association study in Chinese Holstein cows reveal two candidate genes for somatic cell score as an indicator for mastitis susceptibility. BMC Genet. 2015, 16, 111. [Google Scholar] [CrossRef]
- Wibowo, T.A.; Gaskins, C.T.; Newberry, R.C.; Thorgaard, G.H.; Michal, J.J.; Jiang, Z. Genome Assembly Anchored QTL Map of Bovine Chromosome 14. Int. J. Biol. Sci. 2008, 4, 406. [Google Scholar] [CrossRef]
- Lund, M.S.; Guldbrandtsen, B.; Buitenhuis, A.J.; Thomsen, B.; Bendixen, C. Detection of Quantitative Trait Loci in Danish Holstein Cattle Affecting Clinical Mastitis, Somatic Cell Score, Udder Conformation Traits, and Assessment of Associated Effects on Milk Yield. J. Dairy Sci. 2008, 91, 4028–4036. [Google Scholar] [CrossRef]
- Boichard, D.; Grohs, C.; Bourgeois, F.; Cerqueira, F.; Faugeras, R.; Neau, A.; Rupp, R.; Amigues, Y.; Boscher, M.Y.; Levéziel, H. Detection of genes influencing economic traits in three French dairy cattle breeds. Genet. Sel. Evol. 2003, 35, 77–101. [Google Scholar] [CrossRef]
- Strillacci, M.G. Genome-Wide Detection of QTL and CNVs in Dairy Cattle Population. M.g. Strillacci; tutor: A, Bagnato. Dipartimento Di Scienze Veterinarie Per La Salute, La Produzione Animale E La Sicurezza Alimentare, 2014 Nov 21. 27. ciclo, Anno Accademico 2014. Ph.D. Thesis, University of Milan, Milano, Italy, 2014. [Google Scholar] [CrossRef]
- Cai, Z.; Iso-Touru, T.; Sanchez, M.P.; Kadri, N.; Bouwman, A.C.; Chitneedi, P.K.; MacLeod, I.M.; Vander Jagt, C.J.; Chamberlain, A.J.; Gredler-Grandl, B.; et al. Meta-analysis of six dairy cattle breeds reveals biologically relevant candidate genes for mastitis resistance. Genet. Sel. Evol. 2024, 56, 54. [Google Scholar] [CrossRef]
- Snelling, W.M.; Allan, M.F.; Keele, J.W.; Kuehn, L.A.; McDaneld, T.; Smith, T.P.L.; Sonstegard, T.S.; Thallman, R.M.; Bennett, G.L. Genome-wide association study of growth in crossbred beef cattle. J. Anim. Sci. 2010, 88, 837–848. [Google Scholar] [CrossRef]
- Schulman, N.F.; Viitala, S.M.; De Koning, D.J.; Virta, J.; Mäki-Tanila, A.; Vilkki, J.H. Quantitative Trait Loci for Health Traits in Finnish Ayrshire Cattle. J. Dairy Sci. 2004, 87, 443–449. [Google Scholar] [CrossRef]
- Ashwell, M.S.; Heyen, D.W.; Sonstegard, T.S.; Van Tassell, C.P.; Da, Y.; VanRaden, P.M.; Ron, M.; Weller, J.I.; Lewin, H.A. Detection of Quantitative Trait Loci Affecting Milk Production, Health, and Reproductive Traits in Holstein Cattle. J. Dairy Sci. 2004, 87, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Peters, S.O.; Kizilkaya, K.; Garrick, D.J.; Fernando, R.L.; Reecy, J.M.; Weaber, R.L.; Silver, G.A.; Thomas, M.G. Bayesian genome-wide association analysis of growth and yearling ultrasound measures of carcass traits in Brangus heifers. J. Anim. Sci. 2012, 90, 3398–3409. [Google Scholar] [CrossRef]
- Jiang, J.; Ma, L.; Prakapenka, D.; VanRaden, P.M.; Cole, J.B.; Da, Y. A large-scale genome-wide association study in U.S. Holstein cattle. Front. Genet. 2019, 10, 442321. [Google Scholar] [CrossRef] [PubMed]
- Shi, G.; Abbott, K.N.; Wu, W.; Salter, R.D.; Keyel, P.A. Dnase1L3 regulates inflammasome-dependent cytokine secretion. Front. Immunol. 2017, 8, 262447. [Google Scholar] [CrossRef] [PubMed]
- Kato, K.; Haniuda, K.; Fukao, S.; Kitamura, D. B cell-intrinsic DNase1L3 is essential for the T cell-independent type II response in mice. Int. Immunol. 2023, 35, 275–286. [Google Scholar] [CrossRef] [PubMed]
- Taylor, P.M. Role of amino acid transporters in amino acid sensing. Am. J. Clin. Nutr. 2014, 99, 223S–230S. [Google Scholar] [CrossRef] [PubMed]
- Weiss, H.J.; Angiari, S. Metabolite Transporters as Regulators of Immunity. Metabolites 2020, 10, 418. [Google Scholar] [CrossRef]
- Reyer, H.; Honerlagen, H.; Oster, M.; Ponsuksili, S.; Kuhla, B.; Wimmers, K. Multi-tissue gene expression profiling of cows with a genetic predisposition for low and high milk urea levels. Anim. Biotechnol. 2024, 35, 2322542. [Google Scholar] [CrossRef]
- Huang, Y.; Jiang, Z.; Gao, X.; Luo, P.; Jiang, X. ARMC Subfamily: Structures, Functions, Evolutions, Interactions, and Diseases. Front. Mol. Biosci. 2021, 8, 791597. [Google Scholar] [CrossRef]
- Hu, Y.; Lao, L.; Mao, J.; Jin, W.; Luo, H.; Charpentier, T.; Qi, S.; Peng, J.; Hu, B.; Marcinkiewicz, M.M.; et al. Armc5 deletion causes developmental defects and compromises T-cell immune responses. Nat. Commun. 2017, 8, 13834. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, L.; Wang, Z.; Xu, L.; Chen, Y.; Zhang, L.; Xu, L.; Gao, X.; Gao, H.; Zhu, B.; et al. Genomic Prediction and Association Analysis with Models Including Dominance Effects for Important Traits in Chinese Simmental Beef Cattle. Animals 2019, 9, 1055. [Google Scholar] [CrossRef] [PubMed]
- Bekele, R.; Taye, M.; Abebe, G.; Meseret, S. Genomic Regions and Candidate Genes Associated with Milk Production Traits in Holstein and Its Crossbred Cattle: A Review. Int. J. Genom. 2023, 2023, 8497453. [Google Scholar] [CrossRef] [PubMed]
- Bonnefont, C.M.D.; Toufeer, M.; Caubet, C.; Foulon, E.; Tasca, C.; Aurel, M.R.; Bergonier, D.; Boullier, S.; Robert-Granié, C.; Foucras, G.; et al. Transcriptomic analysis of milk somatic cells in mastitis resistant and susceptible sheep upon challenge with Staphylococcus epidermidis and Staphylococcus aureus. BMC Genom. 2011, 12, 208. [Google Scholar] [CrossRef] [PubMed]
- Pawlowski, K.; Pires, J.; Faulconnier, Y.; Chambon, C.; Germon, P.; Boby, C.; Leroux, C.; Pawłowski, K.; Pires, J.A.A. Mammary gland transcriptome and proteome modifications by nutrient restriction in early lactation Holstein cows challenged with intramammary lipopolysaccharide. Int. J. Mol. Sci. 2019, 20, 1156. [Google Scholar] [CrossRef] [PubMed]
- Abbasi Moshaii, B.; Rahimi-Mianji, G.; Nejati-Javaremi, A.; Hossein Moradi, M.; Konig, S. Genomic scan for selection signatures associated with mastitis in German Holstein cattle. Iran. J. Anim. Sci. 2017, 48, 453–461. [Google Scholar]
- Moore, A.R.; Willoughby, D.A. The role of cAMP regulatipn in controlling inflammation. Clin. Exp. Immunol. 1995, 101, 387. [Google Scholar] [CrossRef]
- Smith, S.J.; Brookes-Fazakerley, S.; Donnelly, L.E.; Barnes, P.J.; Barnette, M.S.; Giembycz, M.A. Ubiquitous expression of phosphodiesterase 7A in human proinflammatory and immune cells. Am. J. Physiol. Lung. Cell Mol. Physiol. 2003, 284, 279–289. [Google Scholar] [CrossRef]
- Toriseva, M.; Laato, M.; Carpén, O.; Ruohonen, S.T.; Savontaus, E.; Inada, M.; Krane, S.M.; Kähäri, V.M. MMP-13 Regulates Growth of Wound Granulation Tissue and Modulates Gene Expression Signatures Involved in Inflammation, Proteolysis, and Cell Viability. PLoS ONE 2012, 7, e42596. [Google Scholar] [CrossRef]
- Miao, Z.; Ding, Y.; Bi, Y.; Chen, M.; Cao, X.; Wang, F. Staphylococcus aureus on the effect of expression of MMPs/TIMPs and uPA system in bovine mammary fibroblasts. J. Microbiol. Immunol. Infect. 2021, 54, 411–419. [Google Scholar] [CrossRef]
- Guo, Y.F.; Xu, N.N.; Sun, W.; Zhao, Y.; Li, C.Y.; Guo, M.Y. Luteolin reduces inflammation in Staphylococcus aureus-induced mastitis by inhibiting NF-κB activation and MMPs expression. Oncotarget 2017, 8, 28481. [Google Scholar] [CrossRef]
- Senbanjo, L.T.; Chellaiah, M.A. CD44: A multifunctional cell surface adhesion receptor is a regulator of progression and metastasis of cancer cells. Front. Cell Dev. Biol. 2017, 5, 252198. [Google Scholar] [CrossRef] [PubMed]
- Gonen, E.; Nedvetzki, S.; Naor, D.; Shpigel, N.Y. CD44 is highly expressed on milk neutrophils in bovine mastitis and plays a role in their adhesion to matrix and mammary epithelium. Vet. Res. 2008, 39, 1. [Google Scholar] [CrossRef] [PubMed]
- Swain, D. Surface expression of CD11b, CD62L, CD44 receptors on blood and milk neutrophils during subclinical and clinical mastitis in Sahiwal cows. Indian J. Anim. Sci. 2016, 86, 250–255. [Google Scholar] [CrossRef]
- Persichilli, C.; Senczuk, G.; Mastrangelo, S.; Marusi, M.; van Kaam, J.T.; Finocchiaro, R.; Di Civita, M.; Cassandro, M.; Pilla, F. Exploring genome-wide differentiation and signatures of selection in Italian and North American Holstein populations. J. Dairy Sci. 2023, 106, 5537–5553. [Google Scholar] [CrossRef] [PubMed]
- Windig, J.J.; Ouweltjes, W.; ten Napel, J.; de Jong, G.; Veerkamp, R.F.; De Haas, Y. Combining somatic cell count traits for optimal selection against mastitis. J. Dairy Sci. 2010, 93, 1690–1701. [Google Scholar] [CrossRef]
- Hong, E.P.; Park, J.W. Sample Size and Statistical Power Calculation in Genetic Association Studies. Genom. Inf. 2012, 10, 117. [Google Scholar] [CrossRef]
- Witte, J.S. Genome-Wide Association Studies and Beyond. Annu. Rev. Public Health 2010, 31, 9. [Google Scholar] [CrossRef]
Chr. | Size (Mb) | Number of SNP | SNP Density (SNP/Mb) | Mean Distance ± SD b (Kb) |
---|---|---|---|---|
NULL | - | 83 | - | - |
1 | 158.53 | 2532 | 15.97 | 62.45 ± 60.32 |
2 | 136.23 | 2054 | 15.08 | 66.46 ± 68.81 |
3 | 121.01 | 2002 | 16.54 | 61.39 ± 70.7 |
4 | 120 | 1902 | 15.85 | 63.45 ± 55.88 |
5 | 120.09 | 1688 | 14.06 | 71.77 ± 73.77 |
6 | 117.81 | 1944 | 16.5 | 62.35 ± 81.38 |
7 | 110.68 | 1644 | 14.85 | 68.39 ± 76.54 |
8 | 113.32 | 1800 | 15.88 | 62.86 ± 55.08 |
9 | 105.45 | 1606 | 15.23 | 65.71 ± 67.11 |
10 | 103.31 | 1585 | 15.34 | 65.75 ± 102.79 |
11 | 106.98 | 1704 | 15.93 | 62.91 ± 58.9 |
12 | 87.22 | 1265 | 14.5 | 71.86 ± 117.62 |
13 | 83.47 | 1340 | 16.05 | 62.45 ± 56.94 |
14 | 82.4 | 1341 | 16.27 | 62.05 ± 59.99 |
15 | 85.01 | 1344 | 15.81 | 62.99 ± 67.81 |
16 | 81.01 | 1286 | 15.87 | 62.75 ± 77.98 |
17 | 73.17 | 1217 | 16.63 | 61.58 ± 65.78 |
18 | 65.82 | 1039 | 15.79 | 63.52 ± 77.78 |
19 | 63.45 | 1161 | 18.3 | 54.78 ± 54.44 |
20 | 71.97 | 1241 | 17.24 | 57.74 ± 55.56 |
21 | 69.86 | 1118 | 16 | 61.6 ± 58.43 |
22 | 60.77 | 966 | 15.9 | 63.44 ± 58.64 |
23 | 52.5 | 894 | 17.03 | 58.68 ± 62.61 |
24 | 62.32 | 948 | 15.21 | 65.58 ± 57.27 |
25 | 42.35 | 769 | 18.16 | 55.62 ± 44.6 |
26 | 51.99 | 811 | 15.6 | 62.91 ± 55.52 |
27 | 45.61 | 749 | 16.42 | 60.63 ± 72.18 |
28 | 45.94 | 734 | 15.98 | 62.84 ± 53.96 |
29 | 51.1 | 817 | 15.99 | 62.55 ± 74.74 |
X | 139.01 | 323 | 2.32 | 459.62 ± 498.24 |
Overall | 2628.38 | 39907 | 15.18 | - |
Trait | Mean | Sd | Cv | Max | Min |
---|---|---|---|---|---|
Lm_scs1 | 2.49 | 1.07 | 0.43 | 5.8 | 0.48 |
Lm_scs2 | 2.87 | 1.31 | 0.53 | 7.63 | 0.1 |
Scsmax1 | 4.51 | 1.67 | 0.37 | 9.97 | 1.4 |
Scsmax2 | 4.99 | 1.9 | 0.42 | 9.9 | 0.53 |
Top31 | 3.68 | 1.32 | 0.36 | 8.02 | 1.15 |
Top32 | 4.17 | 1.57 | 0.43 | 8.53 | 0.53 |
SNP | Chr: Position | MAF | Alleles | Effect | −log10 (p-Value) | Model | Candidate Gene | Distance from SNP (bp) |
---|---|---|---|---|---|---|---|---|
BovineHD4100011443 (rs41734577) | 14:29,888,019 | 0.26 | A/G | −0.47 | 6.3 | BLINK | ARMC1, PDE7A | 112,031, 216,431 |
Hapmap48135-BTA-96568 (rs41591269) | 15:5,170,124 | 0.23 | A/G | 0.49 | 6.2 | BLINK | MMP13 | 500,747 |
ARS-BFGL-NGS-39003 (rs110351063) | 15:66,127,887 | 0.45 | G/A | 0.46 | 7.5 | BLINK | CD44 | 390,425 |
ARS-BFGL-NGS-22211 (rs42598849) | 22:43,274,058 | 0.27 | G/A | 0.50 | 7.6 6.1 | BLINK, FarmCPU | DNASE1L3 | 156,525 |
ARS-BFGL-NGS-34508 (rs109387887) | 29:2,522,803 | 0.19 | A/G | −0.59 | 8 7.2 | BLINK, FarmCPU | SLC36A4 | 779,417 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashja, A.; Zorc, M.; Dovc, P. Genome-Wide Association Study for Milk Somatic Cell Score in Holstein Friesian Cows in Slovenia. Animals 2024, 14, 2713. https://doi.org/10.3390/ani14182713
Ashja A, Zorc M, Dovc P. Genome-Wide Association Study for Milk Somatic Cell Score in Holstein Friesian Cows in Slovenia. Animals. 2024; 14(18):2713. https://doi.org/10.3390/ani14182713
Chicago/Turabian StyleAshja, Ali, Minja Zorc, and Peter Dovc. 2024. "Genome-Wide Association Study for Milk Somatic Cell Score in Holstein Friesian Cows in Slovenia" Animals 14, no. 18: 2713. https://doi.org/10.3390/ani14182713
APA StyleAshja, A., Zorc, M., & Dovc, P. (2024). Genome-Wide Association Study for Milk Somatic Cell Score in Holstein Friesian Cows in Slovenia. Animals, 14(18), 2713. https://doi.org/10.3390/ani14182713