Fermented Rapeseed Meal as a Dietary Intervention to Improve Mineral Utilization and Bone Health in Weaned Piglets
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Fecal Collection and Digestibility Study
2.3. Blood Sample Collection
2.4. Bone Collection and Mechanical Testing
2.5. Determination of Macro- and Microelement Content in Feces and Bones
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pluske, J.R.; Turpin, D.L.; Kim, J.-C. Gastrointestinal tract (gut) health in the young pig. Anim. Nutr. 2018, 4, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Gresse, R.; Chaucheyras-Durand, F.; Fleury, M.A.; Van De Wiele, T.; Forano, E.; Blanquet-Diot, S. Gut Microbiota Dysbiosis in Postweaning Piglets: Understanding the Keys to Health. Trends Microbiol. 2017, 25, 851–873. [Google Scholar] [CrossRef]
- Heaney, R.P.; Layman, D.K. Amount and type of protein influences bone health. Am. J. Clin. Nutr. 2008, 87, 1567S–1570S. [Google Scholar] [CrossRef] [PubMed]
- Clarke, B. Normal Bone Anatomy and Physiology. Clin. J. Am. Soc. Nephrol. 2008, 3, S131–S139. [Google Scholar] [CrossRef] [PubMed]
- Grela, E.R.; Muszyński, S.; Czech, A.; Donaldson, J.; Stanisławski, P.; Kapica, M.; Brezvyn, O.; Muzyka, V.; Kotsyumbas, I.; Tomaszewska, E. Influence of Phytase Supplementation at Increasing Doses from 0 to 1500 FTU/kg on Growth Performance, Nutrient Digestibility, and Bone Status in Grower–Finisher Pigs Fed Phosphorus-Deficient Diets. Animals 2020, 10, 847. [Google Scholar] [CrossRef] [PubMed]
- Gerlinger, C.; Oster, M.; Borgelt, L.; Reyer, H.; Muráni, E.; Ponsuksili, S.; Polley, C.; Vollmar, B.; Reichel, M.; Wolf, P.; et al. Physiological and Transcriptional Responses in Weaned Piglets Fed Diets with Varying Phosphorus and Calcium Levels. Nutrients 2019, 11, 436. [Google Scholar] [CrossRef]
- Lee, S.A.; Lagos, L.V.; Bedford, M.R.; Stein, H.H. Quantities of ash, Ca, and P in metacarpals, metatarsals, and tibia are better correlated with total body bone ash in growing pigs than ash, Ca, and P in other bones. J. Anim. Sci. 2021, 99, skab149. [Google Scholar] [CrossRef]
- Upadhaya, S.D.; Kim, I.H. Importance of micronutrients in bone health of monogastric animals and techniques to improve the bioavailability of micronutrient supplements—A review. Asian-Australas. J. Anim. Sci. 2020, 33, 1885–1895. [Google Scholar] [CrossRef]
- Byrne, L.; Murphy, R.A. Relative Bioavailability of Trace Minerals in Production Animal Nutrition: A Review. Animals 2022, 12, 1981. [Google Scholar] [CrossRef]
- Liu, Y.; Espinosa, C.D.; Abelilla, J.J.; Casas, G.A.; Lagos, L.V.; Lee, S.A.; Kwon, W.B.; Mathai, J.K.; Navarro, D.M.D.L.; Jaworski, N.W.; et al. Non-antibiotic feed additives in diets for pigs: A review. Anim. Nutr. 2018, 4, 113–125. [Google Scholar] [CrossRef]
- Grela, E.R.; Czech, A.; Kiesz, M.; Wlazło, Ł.; Nowakowicz-Dębek, B. A fermented rapeseed meal additive: Effects on production performance, nutrient digestibility, colostrum immunoglobulin content and microbial flora in sows. Anim. Nutr. 2019, 5, 373–379. [Google Scholar] [CrossRef]
- Czech, A.; Grela, E.R.; Kiesz, M. Dietary fermented rapeseed or/and soybean meal additives on performance and intestinal health of piglets. Sci. Rep. 2021, 11, 16952. [Google Scholar] [CrossRef] [PubMed]
- Czech, A.; Wlazło, Ł.; Łukaszewicz, M.; Florek, M.; Nowakowicz-Dębek, B. Fermented rapeseed meal enhances the digestibility of protein and macro- and microminerals and improves the performance of weaner pigs. Anim. Feed Sci. Technol. 2023, 300, 115656. [Google Scholar] [CrossRef]
- Taranu, I.; Pistol, G.C.; Anghel, A.C.; Marin, D.; Bulgaru, C. Yeast-Fermented Rapeseed Meal Extract Is Able to Reduce Inflammation and Oxidative Stress Caused by Escherichia coli Lipopolysaccharides and to Replace ZnO in Caco-2/HTX29 Co-Culture Cells. Int. J. Mol. Sci. 2022, 23, 11640. [Google Scholar] [CrossRef] [PubMed]
- Czech, A.; Nowakowicz-Debek, B.; Łukaszewicz, M.; Florek, M.; Ossowski, M.; Wlazło, Ł. Effect of fermented rapeseed meal in the mixture for growing pigs on the gastrointestinal tract, antioxidant status, and immune response. Sci. Rep. 2022, 12, 15764. [Google Scholar] [CrossRef]
- Shi, C.; He, J.; Wang, J.; Yu, J.; Yu, B.; Mao, X.; Zheng, P.; Huang, Z.; Chen, D. Effects of Aspergillus niger fermented rapeseed meal on nutrient digestibility, growth performance and serum parameters in growing pigs. Anim. Sci. J. 2016, 87, 557–563. [Google Scholar] [CrossRef]
- Xu, X.; Ma, L.; Fan, S.; Ma, W.; Zhang, X. Effects of fermented Caragana korshinskii feed on meat quality characteristics in different muscles of Tan sheep. Ital. J. Anim. Sci. 2020, 19, 1036–1045. [Google Scholar] [CrossRef]
- Lian, X.; Shi, M.; Liang, Y.; Lin, Q.; Zhang, L. The Effects of Unconventional Feed Fermentation on Intestinal Oxidative Stress in Animals. Antioxidants 2024, 13, 305. [Google Scholar] [CrossRef]
- Hong, K.-J.; Lee, C.-H.; Kim, S.W. Aspergillus oryzae GB-107 Fermentation Improves Nutritional Quality of Food Soybeans and Feed Soybean Meals. J. Med. Food 2004, 7, 430–435. [Google Scholar] [CrossRef]
- Shuai, C.; Chen, D.; Yu, B.; Luo, Y.; Zheng, P.; Huang, Z.; Yu, J.; Mao, X.; Yan, H.; He, J. Effect of fermented rapeseed meal on growth performance, nutrient digestibility, and intestinal health in growing pigs. Anim. Nutr. 2023, 15, 420–429. [Google Scholar] [CrossRef]
- Tomaszewska, E.; Muszyński, S.; Dobrowolski, P.; Kamiński, D.; Czech, A.; Grela, E.R.; Wiącek, D.; Tomczyk-Warunek, A. Dried fermented post-extraction rapeseed meal given to sows as an alternative protein source for soybean meal during pregnancy improves bone development of their offspring. Livest. Sci. 2019, 224, 60–68. [Google Scholar] [CrossRef]
- Muszyński, S.; Dajnowska, A.; Arciszewski, M.B.; Rudyk, H.; Śliwa, J.; Krakowiak, D.; Piech, M.; Nowakowicz-Dębek, B.; Czech, A. Effect of Fermented Rapeseed Meal in Feeds for Growing Piglets on Bone Morphological Traits, Mechanical Properties, and Bone Metabolism. Animals 2023, 13, 1080. [Google Scholar] [CrossRef] [PubMed]
- Satessa, G.D.; Tamez-Hidalgo, P.; Kjærulff, S.; Vargas-Bello-Pérez, E.; Dhakal, R.; Nielsen, M.O. Effects of Increasing Doses of Lactobacillus Pre-Fermented Rapeseed Product with or without Inclusion of Macroalgae Product on Weaner Piglet Performance and Intestinal Development. Animals 2020, 10, 559. [Google Scholar] [CrossRef] [PubMed]
- Czech, A.; Woś, K.; Muszyński, S.; Tomaszewska, E. Enhancing nutrient digestibility and antioxidant efficacy in piglets: The impact of fermented rapeseed meal supplementation on biochemical parameters and oxidative stress markers. Ann. Anim. Sci. 2024; in press. [Google Scholar] [CrossRef]
- Prawirodigdo, S.; Gannon, N.J.; Leury, B.J.; Dunshea, F.R. Acid-insoluble ash is a better indigestible marker than chromic oxide to measure apparent total tract digestibility in pigs. Anim. Nutr. 2021, 7, 64–71. [Google Scholar] [CrossRef]
- Brestenský, M.; Nitrayová, S.; Heger, J.; Patráš, P. Chromic oxide and acid-insoluble ash as markers in digestibility studies with growing pigs and sows. J. Anim. Physiol. Anim. Nutr. 2017, 101, 46–52. [Google Scholar] [CrossRef]
- Kong, C.; Adeola, O. Evaluation of Amino Acid and Energy Utilization in Feedstuff for Swine and Poultry Diets. Asian-Australas. J. Anim. Sci. 2014, 27, 917–925. [Google Scholar] [CrossRef]
- Muszyński, S.; Kwiecień, M.; Tomaszewska, E.; Świetlicka, I.; Dobrowolski, P.; Kasperek, K.; Jeżewska-Witkowska, G. Effect of caponization on performance and quality characteristics of long bones in Polbar chickens. Poult. Sci. 2017, 96, 491–500. [Google Scholar] [CrossRef]
- Osiak-Wicha, C.; Tomaszewska, E.; Muszyński, S.; Dobrowolski, P.; Andres, K.; Schwarz, T.; Świetlicki, M.; Mielnik-Błaszczak, M.; Arciszewski, M.B. Developmental changes in tibia and humerus of goose: Morphometric, densitometric, and mechanical analysis. Animal 2023, 17, 100960. [Google Scholar] [CrossRef]
- Latimer, G.W.; AOAC International (Eds.) Official Methods of Analysis of AOAC International, 20th ed.; AOAC International: Gaithersburg, MD, USA, 2016; ISBN 978-0-935584-87-5. [Google Scholar]
- Gołębiewska, K.; Fraś, A.; Gołębiewski, D. Rapeseed meal as a feed component in monogastric animal nutrition—A review. Ann. Anim. Sci. 2022, 22, 1163–1183. [Google Scholar] [CrossRef]
- Koo, B.; Bustamante-García, D.; Nyachoti, C.M. Energy content and nutrient digestibility of diets containing Lactobacillus-fermented barley or wheat fed to weaned pigs. J. Anim. Sci. 2018, 96, 4802–4811. [Google Scholar] [CrossRef]
- Chen, F.; Wang, H.; Chen, J.; Liu, Y.; Wen, W.; Li, Y.; Huang, X. Lactobacillus delbrueckii Ameliorates Intestinal Integrity and Antioxidant Ability in Weaned Piglets after a Lipopolysaccharide Challenge. Oxid. Med. Cell. Longev. 2020, 2020, 6028606. [Google Scholar] [CrossRef] [PubMed]
- Augustyniak, A.; Czyżewska-Dors, E.; Pomorska-Mól, M. Immune status of piglets during the first week of life: Current knowledge, significance and assessment—A review. Ann. Anim. Sci. 2023, 23, 391–403. [Google Scholar] [CrossRef]
- Yan, H.; Jin, J.Q.; Yang, P.; Yu, B.; He, J.; Mao, X.B.; Yu, J.; Chen, D.W. Fermented soybean meal increases nutrient digestibility via the improvement of intestinal function, anti-oxidative capacity and immune function of weaned pigs. Animal 2022, 16, 100557. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Wang, Y.; Li, A.; Wang, Z.; Zhang, X.; Yun, T.; Qiu, L.; Yin, Y. Effects of fermented rapeseed meal on antioxidant functions, serum biochemical parameters and intestinal morphology in broilers. Food Agric. Immunol. 2016, 27, 182–193. [Google Scholar] [CrossRef]
- Rizzoli, R.; Biver, E. Are Probiotics the New Calcium and Vitamin D for Bone Health? Curr. Osteoporos. Rep. 2020, 18, 273–284. [Google Scholar] [CrossRef]
- Winiarska-Mieczan, A.; Kwiecień, M.; Jachimowicz-Rogowska, K.; Muszyński, S.; Tomaszewska, E. Bioactive compounds, antibiotics and heavy metals: Effects on the intestinal structure and microbiome of monogastric animals—A non-systematic review. Ann. Anim. Sci. 2023, 23, 289–313. [Google Scholar] [CrossRef]
- Ali, M.S.; Lee, E.-B.; Hsu, W.H.; Suk, K.; Sayem, S.A.J.; Ullah, H.M.A.; Lee, S.-J.; Park, S.-C. Probiotics and Postbiotics as an Alternative to Antibiotics: An Emphasis on Pigs. Pathogens 2023, 12, 874. [Google Scholar] [CrossRef]
- Verni, M.; Rizzello, C.G.; Coda, R. Fermentation Biotechnology Applied to Cereal Industry By-Products: Nutritional and Functional Insights. Front. Nutr. 2019, 6, 42. [Google Scholar] [CrossRef]
- Konkol, D.; Popiela, E.; Opaliński, S.; Lipińska, A.; Tymoszewski, A.; Krasowska, A.; Łukaszewicz, M.; Korczyński, M. Effects of fermented rapeseed meal on performance, intestinal morphology, the viscosity of intestinal content, phosphorus availability, and egg quality of laying hens. Poult. Sci. 2024, 103, 103256. [Google Scholar] [CrossRef]
- Shi, C.; He, J.; Yu, J.; Yu, B.; Mao, X.; Zheng, P.; Huang, Z.; Chen, D. Amino acid, phosphorus, and energy digestibility of Aspergillus niger fermented rapeseed meal fed to growing pigs1. J. Anim. Sci. 2015, 93, 2916–2925. [Google Scholar] [CrossRef]
- Lopez, Y.; Gordon, D.T.; Fields, M.L. Release of Phosphorus from Phytate by Natural Lactic Acid Fermentation. J. Food Sci. 1983, 48, 953–954. [Google Scholar] [CrossRef]
- Lucas, S.; Omata, Y.; Hofmann, J.; Böttcher, M.; Iljazovic, A.; Sarter, K.; Albrecht, O.; Schulz, O.; Krishnacoumar, B.; Krönke, G.; et al. Short-chain fatty acids regulate systemic bone mass and protect from pathological bone loss. Nat. Commun. 2018, 9, 55. [Google Scholar] [CrossRef] [PubMed]
- Czech, A.; Grela, E.R.; Nowakowicz-Dębek, B.; Wlazło, Ł. The effects of a fermented rapeseed meal or/and soybean meal additive on the blood lipid profile and immune parameters of piglets and on minerals in their blood and bone. PLoS ONE 2021, 16, e0253744. [Google Scholar] [CrossRef]
- Xu, F.Z.; Zeng, X.G.; Ding, X.L. Effects of Replacing Soybean Meal with Fermented Rapeseed Meal on Performance, Serum Biochemical Variables and Intestinal Morphology of Broilers. Asian-Australas. J. Anim. Sci. 2012, 25, 1734–1741. [Google Scholar] [CrossRef] [PubMed]
- Pupa, P.; Apiwatsiri, P.; Sirichokchatchawan, W.; Pirarat, N.; Maison, T.; Koontanatechanon, A.; Prapasarakul, N. Use of Lactobacillus plantarum (strains 22F and 25F) and Pediococcus acidilactici (strain 72N) as replacements for antibiotic-growth promotants in pigs. Sci. Rep. 2021, 11, 12028. [Google Scholar] [CrossRef]
- Bonjour, J.-P. Calcium and Phosphate: A Duet of Ions Playing for Bone Health. J. Am. Coll. Nutr. 2011, 30, 438S–448S. [Google Scholar] [CrossRef]
- Sobol, M.; Skiba, G.; Raj, S.; Kowalczyk, P.; Kramkowski, K.; Świątkiewicz, M.; Grela, E.R. Chemical body composition and bone growth of young pigs as affected by deficiency, adequate and excess of dietary phosphorus supply. Ann. Anim. Sci. 2022, 22, 1363–1372. [Google Scholar] [CrossRef]
- Lagos, L.V.; Lee, S.A.; Fondevila, G.; Walk, C.L.; Murphy, M.R.; Loor, J.J.; Stein, H.H. Influence of the concentration of dietary digestible calcium on growth performance, bone mineralization, plasma calcium, and abundance of genes involved in intestinal absorption of calcium in pigs from 11 to 22 kg fed diets with different concentrations of digestible phosphorus. J. Anim. Sci. Biotechnol. 2019, 10, 47. [Google Scholar] [CrossRef]
- Sobol, M.; Skiba, G.; Kowalczyk, P.; Świątkiewicz, M.; Grela, E.R. Markers of bone turnover and biomechanical properties of the third metacarpal bone of growing pigs subjected to the different dietary phosphorus and calcium content. Ann. Anim. Sci. 2024, 24, 479–490. [Google Scholar] [CrossRef]
- Murshed, M. Mechanism of Bone Mineralization. Cold Spring Harb. Perspect. Med. 2018, 8, a031229. [Google Scholar] [CrossRef]
- Flis, M.; Gugała, D.; Muszyński, S.; Dobrowolski, P.; Kwiecień, M.; Grela, E.R.; Tomaszewska, E. The Influence of the Partial Replacing of Inorganic Salts of Calcium, Zinc, Iron, and Copper with Amino Acid Complexes on Bone Development in Male Pheasants from Aviary Breeding. Animals 2019, 9, 237. [Google Scholar] [CrossRef]
- Osredkar, J.; Sustar, N. Copper and Zinc, Biological Role and Significance of Copper/Zinc Imbalance. J. Clin. Toxicol. s 2011, 3, 0495. [Google Scholar] [CrossRef]
- Tadano, S.; Giri, B. X-ray diffraction as a promising tool to characterize bone nanocomposites. Sci. Technol. Adv. Mater. 2011, 12, 064708. [Google Scholar] [CrossRef] [PubMed]
- Bhowmik, R.; Katti, K.S.; Katti, D.R. Mechanics of molecular collagen is influenced by hydroxyapatite in natural bone. J. Mater. Sci. 2007, 42, 8795–8803. [Google Scholar] [CrossRef]
- Boskey, A.L.; Wright, T.M.; Blank, R.D. Collagen and Bone Strength. J. Bone Miner. Res. 1999, 14, 330–335. [Google Scholar] [CrossRef]
- Molenda, M.; Kolmas, J. The Role of Zinc in Bone Tissue Health and Regeneration—A Review. Biol. Trace Elem. Res. 2023, 201, 5640–5651. [Google Scholar] [CrossRef]
- Li, P.; Wu, G. Roles of dietary glycine, proline, and hydroxyproline in collagen synthesis and animal growth. Amino Acids 2018, 50, 29–38. [Google Scholar] [CrossRef]
- Almer, J.D.; Stock, S.R. Internal strains and stresses measured in cortical bone via high-energy X-ray diffraction. J. Struct. Biol. 2005, 152, 14–27. [Google Scholar] [CrossRef]
- Akkus, O.; Adar, F.; Schaffler, M.B. Age-related changes in physicochemical properties of mineral crystals are related to impaired mechanical function of cortical bone. Bone 2004, 34, 443–453. [Google Scholar] [CrossRef]
- Ghadimi, E.; Eimar, H.; Marelli, B.; Nazhat, S.N.; Asgharian, M.; Vali, H.; Tamimi, F. Trace elements can influence the physical properties of tooth enamel. SpringerPlus 2013, 2, 499. [Google Scholar] [CrossRef]
- Jäger, I.; Fratzl, P. Mineralized Collagen Fibrils: A Mechanical Model with a Staggered Arrangement of Mineral Particles. Biophys. J. 2000, 79, 1737–1746. [Google Scholar] [CrossRef] [PubMed]
- Ruppel, M.E.; Miller, L.M.; Burr, D.B. The effect of the microscopic and nanoscale structure on bone fragility. Osteoporos. Int. 2008, 19, 1251–1265. [Google Scholar] [CrossRef] [PubMed]
- Rudyk, H.; Tomaszewska, E.; Kotsyumbas, I.; Muszyński, S.; Tomczyk-Warunek, A.; Szymańczyk, S.; Dobrowolski, P.; Wiącek, D.; Kamiński, D.; Brezvyn, O. Bone Homeostasis in Experimental Fumonisins Intoxication of Rats. Ann. Anim. Sci. 2019, 19, 403–419. [Google Scholar] [CrossRef]
- Blicharski, T.; Tomaszewska, E.; Dobrowolski, P.; Hułas-Stasiak, M.; Muszyński, S. A metabolite of leucine (β-hydroxy-β-methylbutyrate) given to sows during pregnancy alters bone development of their newborn offspring by hormonal modulation. PLoS ONE 2017, 12, e0179693. [Google Scholar] [CrossRef] [PubMed]
- Świetlicka, I.; Muszyński, S.; Prein, C.; Clausen-Schaumann, H.; Aszodi, A.; Arciszewski, M.B.; Blicharski, T.; Gagoś, M.; Świetlicki, M.; Dobrowolski, P.; et al. Fourier Transform Infrared Microspectroscopy Combined with Principal Component Analysis and Artificial Neural Networks for the Study of the Effect of β-Hydroxy-β-Methylbutyrate (HMB) Supplementation on Articular Cartilage. Int. J. Mol. Sci. 2021, 22, 9189. [Google Scholar] [CrossRef]
Item/Diet 1 | NC | PC | FR-8 | FR-12 | FR-15 | FR-25 |
---|---|---|---|---|---|---|
Fermented rapeseed meal | 0 | 0 | 8 | 12 | 15 | 25 |
Barley | 35 | 35 | 35 | 35 | 35 | 35 |
Wheat | 33.69 | 33.24 | 29.69 | 26.97 | 26.08 | 19.36 |
Soybean meal | 13 | 13.2 | 3.9 | 4.0 | 2.4 | 0 |
Potato protein | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 |
Fishmeal | 3 | 3 | 3 | 3 | 3 | 1.4 |
Whey powder | 3 | 3 | 4.25 | 4.25 | 4.25 | 4.25 |
Whole milk powder | 5 | 5 | 5 | 5 | 5 | 5 |
Vegetable oil | 0.7 | 0.7 | 4.25 | 2.87 | 2.93 | 3.7 |
L-Lys (98.5%) | 0.74 | 0.73 | 0.7 | 0.76 | 0.76 | 0.3 |
DL-Met (99%) | 0.22 | 0.22 | 0.21 | 0.2 | 0.2 | 0.2 |
L-Thr (93.5%) | 0.3 | 0.3 | 0.3 | 0.29 | 0.29 | 0.3 |
L-Trp (98%) | 0.12 | 0.12 | 0.15 | 0.15 | 0.15 | 0.16 |
Monocalcium phosphate | 0.91 | 0.92 | 1.02 | 0.94 | 0.38 | 0.78 |
Sodium chloride | 0.25 | 0.25 | 0.31 | 0.35 | 0.34 | 0.33 |
Calcium formate | 0.4 | 0.4 | 0.7 | 0.7 | 0.7 | 0.7 |
Sodium bicarbonate | 0.15 | 0.15 | 0.0 | 0.0 | 0.0 | 0.0 |
Iron fumarate 31% | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
Piger dry aroma | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
EP premix 2 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Sucram | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 |
Medicinal ZnO | 0.0 | 0.25 | 0.0 | 0.0 | 0.0 | 0.0 |
Calculated values | ||||||
ME (MJ/kg) | 13.9 | 13.4 | 14.2 | 14.1 | 13.5 | 13.9 |
Analyzed valuesA | ||||||
Dry matter (g/kg) | 87.96 | 88.33 | 87.87 | 87.99 | 88.42 | 88.07 |
Crude ash (g/kg) | 5.69 | 6.01 | 5.72 | 5.88 | 6.08 | 5.87 |
Crude protein (g/kg) | 19.13 | 19.08 | 18.66 | 18.62 | 18.49 | 18.64 |
Crude fat (g/kg) | 5.64 | 5.66 | 6.89 | 7.01 | 6.97 | 7.37 |
Crude fiber (g/kg) | 4.01 | 3.99 | 3.38 | 3.62 | 3.79 | 4.32 |
Calcium (g/kg) | 6.44 | 6.37 | 7.05 | 7.14 | 7.38 | 7.57 |
Phosphorus (g/kg) | 6.25 | 6.23 | 6.58 | 6.57 | 6.59 | 6.58 |
Magnesium (g/kg) | 1.20 | 1.23 | 1.28 | 1.29 | 1.32 | 1.40 |
Copper (mg/kg) | 125.3 | 125.9 | 130.1 | 132.2 | 131.6 | 133.4 |
Zinc (mg/kg) | 21.0 | 156.3 | 22.6 | 23.4 | 23.6 | 24.8 |
Iron (mg/kg) | 180.4 | 181.3 | 183.6 | 184.3 | 184.9 | 185.3 |
Treatment 1 | Phosphorus | Calcium | Magnesium | Copper | Iron | Zinc |
---|---|---|---|---|---|---|
PC 2 | 46.05 c | 36.74 b | 59.91 b | 40.96 b | 17.70 c | 30.51 b |
NC 3 | 46.12 bc | 36.00 b | 58.07 b | 28.17 c | 12.61 d | 18.83 c |
FR-8 | 45.45 bc | 38.29 ab | 61.75 ab | 41.75 b | 21.62 b | 32.13 b |
FR-12 | 50.91 ab | 40.57 a | 64.40 a | 45.56 a | 24.10 ab | 35.33 a |
FR-15 | 50.56 ab | 41.57 a | 64.81 a | 44.06 a | 26.09 a | 36.29 a |
FR-25 | 52.55 a | 40.96 a | 64.77 a | 45.06 a | 28.72 a | 36.97 a |
SEM 4 | 0.637 | 0.464 | 0.548 | 1.053 | 0.938 | 1.071 |
p-value | ||||||
TRT 5 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
FR 6 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Linear 7 | 0.020 | 0.633 | 0.328 | <0.001 | 0.048 | <0.001 |
Quadratic 8 | 0.987 | 0.013 | 0.001 | <0.001 | <0.001 | <0.001 |
Treatment 1 | Bone Weight, g | Bone Length, mm | Seedor Index, g/cm | MRWT, -- | CI, % | CSA, mm2 | Ix, Mm4 | BMD, g/cm2 | BMC, g |
---|---|---|---|---|---|---|---|---|---|
PC 2 | 27.6 | 87.8 | 3.19 | 0.937 | 47.3 | 73.2 | 500 | 0.421 | 5.20 |
NC 3 | 23.1 | 84.8 | 2.71 | 1.023 | 48.1 | 62.9 | 396 | 0.398 | 5.67 |
FR-8 | 25.9 | 87.5 | 3.00 | 0.898 | 46.3 | 74.6 | 563 | 0.408 | 5.77 |
FR-12 | 26.9 | 88.0 | 3.11 | 1.122 | 51.6 | 73.1 | 458 | 0.422 | 5.92 |
FR-15 | 27.9 | 87.7 | 3.20 | 0.947 | 48.1 | 78.3 | 638 | 0.377 | 5.53 |
FR-25 | 24.6 | 85.8 | 2.88 | 0.897 | 46.4 | 70.3 | 532 | 0.369 | 5.42 |
SEM 4 | 2.31 | 2.84 | 0.311 | 0.1056 | 2.51 | 5.42 | 57.2 | 0.023 | 0.502 |
p-value | |||||||||
TRT 5 | 0.664 | 0.956 | 0.854 | 0.679 | 0.701 | 0.485 | 0.086 | 0.469 | 0.934 |
FR 6 | 0.461 | 0.897 | 0.702 | 0.529 | 0.550 | 0.376 | 0.072 | 0.206 | 0.970 |
Linear 7 | 0.533 | 0.826 | 0.596 | 0.493 | 0.743 | 0.353 | 0.111 | 0.140 | 0.734 |
Quadratic 8 | 0.096 | 0.333 | 0.202 | 0.662 | 0.440 | 0.101 | 0.145 | 0.231 | 0.650 |
Treatment 1 | Structural Properties | Material Properties | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Yield Load, N | Elastic Work, mJ | Fracture Load, N | Work to Fracture, mJ | Stiffness, N/mm | Young’s Modulus, MPa | Elastic Strain, % | Yield Stress, MPa | Fracture Strain, % | Fracture Stress, MPa | |
PC 2 | 496 ab | 599 ab | 622 ab | 1198 a | 240 a | 485 | 9.71 | 41.3 | 15.6 | 51.2 a |
NC 3 | 480 a | 448 a | 634 ab | 1316 a | 269 ab | 684 | 7.45 | 50.0 | 12.9 | 66.0 ab |
FR-8 | 568 ab | 671 b | 710 ab | 1457 a | 392 c | 557 | 8.02 | 43.5 | 16.5 | 53.7 a |
FR-12 | 699 b | 696 b | 950 c | 2331 b | 382 bc | 798 | 8.21 | 62.1 | 15.3 | 83.4 b |
FR-15 | 623 ab | 737 b | 832 bc | 2086 b | 317 abc | 530 | 9.07 | 44.2 | 16.8 | 60.2 ab |
FR-25 | 449 a | 464 a | 591 a | 2005 b | 253 ab | 566 | 7.91 | 41.8 | 16.7 | 51.0 a |
SEM 4 | 47.8 | 57.0 | 51.0 | 115.1 | 30.0 | 107.4 | 0.812 | 5.92 | 1.17 | 5.56 |
p-value | ||||||||||
TRT 5 | 0.007 | 0.003 | <0.001 | <0.001 | 0.003 | 0.346 | 0.403 | 0.143 | 0.189 | 0.002 |
FR 6 | 0.009 | 0.004 | <0.001 | <0.001 | 0.015 | 0.370 | 0.633 | 0.167 | 0.178 | 0.005 |
Linear 7 | 0.725 | 0.871 | 0.785 | <0.001 | 0.366 | 0.455 | 0.535 | 0.398 | 0.0.54 | 0.141 |
Quadratic 8 | <0.001 | <0.001 | <0.001 | 0.003 | 0.002 | 0.867 | 0.268 | 0.384 | 0.266 | 0.046 |
Treatment 1 | Crude ash, % | Phosphorus, g/kg | Calcium, g/kg | Magnesium, g/kg | Copper, mg/kg | Iron, mg/kg | Zinc, mg/kg |
---|---|---|---|---|---|---|---|
PC 2 | 42.85 ab | 74.17 ab | 169.7 b | 6.37 c | 0.335 ab | 16.43 b | 115.2 c |
NC 3 | 41.23 b | 70.42 c | 164.5 c | 6.06 d | 0.343 ab | 16.31 b | 113.9 c |
FR-8 | 41.38 b | 72.97 bc | 166.6 bc | 6.38 c | 0.345 ab | 16.59 ab | 115.8 c |
FR-12 | 42.58 b | 72.53 bc | 169.1 bc | 6.59 b | 0.313 b | 16.60 ab | 118.1 b |
FR-15 | 43.20 a | 76.96 a | 175.8 a | 6.85 a | 0.357 a | 17.13 a | 122.9 a |
FR-25 | 42.09 ab | 74.21 ab | 169.1 bc | 6.37 c | 0.324 b | 16.42 b | 115.2 c |
SEM 4 | 0.218 | 0.425 | 0.673 | 0.044 | 0.004 | 0.067 | 0.540 |
p-value | |||||||
TRT 5 | 0.033 | <0.001 | <0.001 | <0.001 | 0.004 | <0.001 | <0.001 |
FR 6 | 0.029 | <0.001 | <0.001 | <0.001 | 0.002 | 0.003 | <0.001 |
Linear 7 | 0.836 | 0.070 | 0.023 | <0.001 | 0.081 | 0.026 | <0.001 |
Quadratic 8 | 0.066 | 0.008 | <0.001 | <0.001 | 0.671 | 0.003 | <0.001 |
Treatment 1 | Phosphorus, mmol/L | Calcium, mmol/L | Magnesium, mmol/L | Copper, μmol/L | Iron, μmol/L | Zinc, μmol/L |
---|---|---|---|---|---|---|
PC 2 | 1.72 c | 2.53 ab | 1.19 | 16.34 c | 20.29 b | 11.83 a |
NC 3 | 1.84 c | 2.64 ab | 1.26 | 18.44 bc | 22.28 b | 8.16 b |
FR-8 | 2.54 b | 2.83 a | 1.32 | 20.52 ab | 27.45 a | 9.56 b |
FR-12 | 2.82 a | 2.61 ab | 1.38 | 20.27 ab | 30.00 a | 11.61 a |
FR-15 | 2.53 b | 2.30 b | 1.40 | 19.49 ab | 28.92 a | 11.22 a |
FR-25 | 2.69 ab | 2.66 ab | 1.37 | 22.23 a | 31.55 a | 11.62 a |
SEM 4 | 0.075 | 0.038 | 0.024 | 0.432 | 0.811 | 0.285 |
p-value | ||||||
TRT 5 | <0.001 | 0.001 | 0.085 | <0.001 | <0.001 | <0.001 |
FR 6 | <0.001 | 0.001 | 0.488 | 0.031 | <0.001 | 0.010 |
Linear 7 | 0.002 | 0.530 | 0.775 | 0.812 | 0.684 | 0.002 |
Quadratic 8 | <0.001 | 0.191 | 0.331 | 0.709 | 0.069 | 0.131 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czech, A.; Woś, K.; Pachciński, K.; Muszyński, S.; Świetlicki, M.; Tomaszewska, E. Fermented Rapeseed Meal as a Dietary Intervention to Improve Mineral Utilization and Bone Health in Weaned Piglets. Animals 2024, 14, 2727. https://doi.org/10.3390/ani14182727
Czech A, Woś K, Pachciński K, Muszyński S, Świetlicki M, Tomaszewska E. Fermented Rapeseed Meal as a Dietary Intervention to Improve Mineral Utilization and Bone Health in Weaned Piglets. Animals. 2024; 14(18):2727. https://doi.org/10.3390/ani14182727
Chicago/Turabian StyleCzech, Anna, Katarzyna Woś, Karol Pachciński, Siemowit Muszyński, Michał Świetlicki, and Ewa Tomaszewska. 2024. "Fermented Rapeseed Meal as a Dietary Intervention to Improve Mineral Utilization and Bone Health in Weaned Piglets" Animals 14, no. 18: 2727. https://doi.org/10.3390/ani14182727
APA StyleCzech, A., Woś, K., Pachciński, K., Muszyński, S., Świetlicki, M., & Tomaszewska, E. (2024). Fermented Rapeseed Meal as a Dietary Intervention to Improve Mineral Utilization and Bone Health in Weaned Piglets. Animals, 14(18), 2727. https://doi.org/10.3390/ani14182727