Efficacy and Growth Performance between Two Different Ionophore Coccidiostats (Narasin and Salinomycin) in Broiler Chickens after Challenge with Eimeria spp.
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical and Study Approvals
2.2. Experimental Design, Housing, and Management of Birds
2.3. Basal Diet and Feed Additives
2.4. Applied Experimental Challenges
Health Tracking System (HTSi)
2.5. Efficacy and Performance Parameters
2.6. Disposition of Birds
2.7. Statistical Analysis
3. Results
3.1. Feed Analysis
3.2. Gut Health and Intestinal Integrity (I2)
3.3. Growth Performance of Birds
3.4. Slaughter Analysis
3.5. Lesion Scores
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Williams, R.B. A compartmentalised model for the estimation of the cost of coccidiosis to the world’s chicken production industry. Int. J. Parasitol. 1999, 29, 1209–1229. [Google Scholar] [CrossRef] [PubMed]
- Blake, D.P.; Tomley, F.M. Securing poultry production from the ever-present Eimeria challenge. Trends Parasitol. 2014, 30, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Kadykalo, S.; Roberts, T.; Thompson, M.; Wilson, J.; Lang, M.; Espeisse, O. The value of anticoccidials for sustainable global poultry production. Int. J. Antimicrob. Agents 2018, 51, 304–310. [Google Scholar] [CrossRef]
- Lawal, J.R.; Jajere, S.M.; Geidam, Y.A.; Bello, A.M.; Wakil, Y.; Mustapha, M. Antibiotic Residues in Edible Poultry Tissues and Products in Nigeria. Int. J. Anim. Vet. Adv. 2015, 7, 55–61. [Google Scholar] [CrossRef]
- Chapman, H.D. Origins of coccidiosis research in the fowl--the first fifty years. Avian Dis. 2003, 47, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Pinard-Van Der Laan, M.H.; Monvoisin, J.L.; Pery, P.; Hamet, N.; Thomas, M. Comparison of outbred lines of chickens for resistance to experimental infection with coccidiosis (Eimeria tenella). Poult. Sci. 1998, 77, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Belli, S.I.; Smith, N.C.; Ferguson, D.J. The coccidian oocyst: A tough nut to crack! Trends Parasitol. 2006, 22, 416–423. [Google Scholar] [CrossRef] [PubMed]
- De Gussem, M. Coccidiosis in poultry: Review on diagnosis, control, prevention and interaction with overall gut health. In Proceedings of the 16th European Symposium on Poultry Nutrition, Strasbourg, France, 26–30 August 2007. [Google Scholar]
- Chengat Prakashbabu, B.; Thenmozhi, V.; Limon, G.; Kundu, K.; Kumar, S.; Garg, R.; Clark, E.L.; Srinivasa Rao, A.S.R.; Raj, D.G.; Raman, M.; et al. Eimeria species occurrence varies between geographic regions and poultry production systems and may influence parasite genetic diversity. Vet. Parasitol. 2017, 233, 62–72. [Google Scholar] [CrossRef]
- Peek, H.W.; Landman, W.J. Coccidiosis in poultry: Anticoccidial products, vaccines and other prevention strategies. Vet. Q. 2011, 31, 143–161. [Google Scholar] [CrossRef] [PubMed]
- Parker, C.D.; Lister, S.A.; Gittins, J. Impact assessment of the reduction or removal of ionophores used for controlling coccidiosis in the UK broiler industry. Vet. Rec. 2021, 189, e513. [Google Scholar] [CrossRef] [PubMed]
- FAO. Gateway to Poultry Production and Products. Available online: https://www.fao.org/poultry-production-products/production/en/ (accessed on 26 May 2023).
- Kart, A.; Bilgili, A. Ionophore Antibiotics: Toxicity, Mode of Action and Neurotoxic Aspect of Carboxylic Ionophores. J. Anim. Vet. Adv. 2008, 7, 748–751. [Google Scholar]
- Noack, S.; Chapman, H.D.; Selzer, P.M. Anticoccidial drugs of the livestock industry. Parasitol. Res. 2019, 118, 2009–2026. [Google Scholar] [CrossRef] [PubMed]
- Chapman, H.D. Use of anticoccidial drugs in broiler chickens in the USA: Analysis for the years 1995 to 1999. Poult. Sci. 2001, 80, 572–580. [Google Scholar] [CrossRef] [PubMed]
- Chapman, H.D. Rotation programmes for coccidiosis control. Int. Poult. Product. 2007, 15, 7–9. [Google Scholar]
- Bentué, M.; Jeffers, T.K. The Role of Narasin in Poultry Health: A Review. In Proceedings of the 14th European Poultry Conference, Stavanger, Norway, 23–27 June 2014. [Google Scholar]
- Oehme, F.W.; Pickrell, J.A. An analysis of the chronic oral toxicity of polyether ionophore antibiotics in animals. Vet. Hum. Toxicol. 1999, 41, 251–257. [Google Scholar]
- Chapman, H.D. Studies on the sensitivity of field isolates of Eimeria maxima to combinations of anticoccidial drugs. Avian Pathol. 1980, 9, 67–76. [Google Scholar] [CrossRef]
- Jeffers, T.K. Anticoccidials: Past to present to future. Feedstuffs 2011, 83, 16–18. [Google Scholar]
- Jeffers, T.K.; Tonkinson, L.V.; Callender, M.E. Anticoccidial Efficacy of Narasin in Battery Cage Trials. Poult. Sci. 1988, 67, 1043–1049. [Google Scholar] [CrossRef]
- Bolder, N.M.; Wagenaar, J.A.; Putirulan, F.F.; Veldman, K.T.; Sommer, M. The effect of flavophospholipol (Flavomycin) and salinomycin sodium (Sacox) on the excretion of Clostridium perfringens, Salmonella enteritidis, and Campylobacter jejuni in broilers after experimental infection. Poult. Sci. 1999, 78, 1681–1689. [Google Scholar] [CrossRef]
- Yvorĕ, P.; Raynaud, J.P.; Conan, L.; Naciri, M. Evaluation of the Efficacy of Salinomycin in the Control of Coccidiosis in Chicks. Poult. Sci. 1980, 59, 2412–2416. [Google Scholar] [CrossRef]
- Ruff, M.D.; Reid, W.M.; Rahn, A.P.; McDougald, L.R. Anticoccidial Activity of Narasin in Broiler Chickens Reared in Floor Pens. Poult. Sci. 1980, 59, 2008–2013. [Google Scholar] [CrossRef] [PubMed]
- Keshavarz, K.; McDougald, L.R. Anticoccidial drugs: Growth and performance depressing effects in young chickens. Poult. Sci. 1982, 61, 699–705. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimnezhad, Y.; Pourreza, J. Effects of Ionophorous Anticoccidial Drugs, Salinomycin and Lasalocid, on the Performance of Broiler Chicks and the Relationship of These Drugs to Supplementary Methionine. Inter. J. Poult. Sci. 2005, 4, 911–916. [Google Scholar] [CrossRef]
- Aviagen. Ross 308 Broiler: Management Manual; Aviagen Ltd.: Midlothian, UK, 2018. [Google Scholar]
- Kozłowski, K.; Vervenne-Zetteler, P.; Konieczka, P.; Szymanski, Ł.; van Vilsteren, A. Yucca schidigera Improves Performance and Lowers Oocyst Counts in Eimeria Challenged Broilers. Animals 2022, 12, 1668. [Google Scholar] [CrossRef]
- Konieczka, P.; Sandvang, D.; Kinsner, M.; Szkopek, D.; Szyryńska, N.; Jankowski, J. Bacillus-based probiotics affect gut barrier integrity in different ways in chickens subjected to optimal or challenge conditions. Vet. Microbiol. 2022, 265, 109323. [Google Scholar] [CrossRef] [PubMed]
- Kasab-Bachi, H.; Arruda, A.G.; Roberts, T.E.; Wilson, J.B. The use of large databases to inform the development of an intestinal scoring system for the poultry industry. Prev. Vet. Med. 2017, 146, 130–135. [Google Scholar] [CrossRef]
- Johnson, J.; Reid, W.M. Anticoccidial drugs: Lesion scoring techniques in battery and floor-pen experiments with chickens. Exp. Parasitol. 1970, 28, 30–36. [Google Scholar] [CrossRef]
- Gottardo, E.T.; Prokoski, K.; Horn, D.; Viott, A.D.; Santos, T.C.; Fernandes, J.I.M. Regeneration of the intestinal mucosa in Eimeria and E. coli challenged broilers supplemented with amino acids. Poult. Sci. 2016, 95, 1056–1065. [Google Scholar] [CrossRef]
- Su, S.; Miska, K.B.; Fetterer, R.H.; Jenkins, M.C.; Wong, E.A. Expression of digestive enzymes and nutrient transporters in Eimeria-challenged broilers. Experim. Parasitol. 2015, 150, 13–21. [Google Scholar] [CrossRef]
- Morris, B.C.; Danforth, H.D.; Caldwell, D.J.; Pierson, F.W.; McElroy, A.P. Intestinal Mucosal Mast Cell Immune Response and Pathogenesis of Two Eimeria acervulina Isolates in Broiler Chickens. Poult. Sci. 2004, 83, 1667–1674. [Google Scholar] [CrossRef]
- Adams, C.; Vahl, H.A.; Veldman, A. Interaction between nutrition and Eimeria acervulina infection in broiler chickens: Development of an experimental infection model. Br. J. Nutr. 1996, 75, 867–873. [Google Scholar] [CrossRef] [PubMed]
- Van der Sluis, W. Clostridial enteritis is an often underestimated problem. World’s Poult. Sci. J. 2000, 16, 42–43. [Google Scholar]
- Chen, Y.; Aorigele, C.; Yan, F.; Li, Y.; Cheng, P.; Qi, Z. Effect of production system on welfare traits, growth performance and meat quality of ducks. S. Afr. J. Anim. Sci. 2015, 45, 173–179. [Google Scholar] [CrossRef]
- Bozkurt, M.; Ege, G.; Aysul, N.; Akşit, H.; Tüzün, A.E.; Küçükyılmaz, K.; Borum, A.E.; Uygun, M.; Akşit, D.; Aypak, S.; et al. Effect of anticoccidial monensin with oregano essential oil on broilers experimentally challenged with mixed Eimeria spp. Poult. Sci. 2016, 95, 1858–1868. [Google Scholar] [CrossRef] [PubMed]
- Abdelhady, A.Y.; El-Safty, S.A.; Hashim, M.; Ibrahim, M.A.; Mohammed, F.F.; Elbaz, A.M.; Abdel-Moneim, A.-M.E. Comparative evaluation of single or combined anticoccidials on performance, antioxidant status, immune response, and intestinal architecture of broiler chickens challenged with mixed Eimeria species. Poult. Sci. 2021, 100, 101162. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Lv, Z.Z.; An, S.; Xing, K.; Wang, Z.G.; Lv, M.B.; Choct, M.; Guo, Y.M.; Zhou, G.L. Effects of rearing system and narasin on growth performance, gastrointestinal development, and gut microbiota of broilers. Poult. Sci. 2021, 100, 100840. [Google Scholar] [CrossRef]
- Paulillo, A.C.; Chieri, A.B.; Ariki, J.; Ferreira, R.D.; Panobianco, M.A. Anticoccidialagents (monensian, salinomycin andd halofuginone) in broiler rations. Ars. Vet. 1986, 2, 5–12. [Google Scholar]
- Rizvi, F.; Din Anjum, A. Effect of salinomycin on broiler health. Vet. Arh. 1999, 69, 39–47. [Google Scholar]
- Kaldhusdal, M.; Hetland, H.; Gjevre, A.G. Non-soluble fibres and narasin reduce spontaneous gizzard erosion and ulceration in broiler chickens. Avian Pathol. 2012, 41, 227–234. [Google Scholar] [CrossRef]
Feed Composition | Starter (0−24 Days) | Grower (25−42 Days) |
---|---|---|
Wheat | 45.00 | 55.00 |
Soybean meal | 25.50 | 21.50 |
Corn | 20.04 | 10.80 |
Rapeseed meal | 3.00 | 5.00 |
Soya oil | 2.74 | 4.63 |
NaCl | 0.33 | 0.34 |
Limestone | 1.26 | 1.17 |
Mono calcium phosphate | 0.97 | 0.65 |
Methionine | 0.32 | 0.23 |
L-Lysine | 0.38 | 0.21 |
L-Threonine | 0.08 | 0.09 |
Ronozyme® P | 0.01 | 0.01 |
Ronozyme® WX | 0.02 | 0.02 |
Choline chloride | 0.10 | 0.10 |
Vit-Min-premix | 0.25 | 0.25 |
ME, kcal/kg | 2950 | 3050 |
Crude protein | 21.00 | 20.00 |
Lysine | 1.30 | 1.10 |
Methionine | 0.62 | 0.52 |
Methionine + Cystine | 1.00 | 0.90 |
Threonine | 0.83 | 0.80 |
Calcium | 0.85 | 0.75 |
Available phosphorus | 0.33 | 0.27 |
Sodium | 0.15 | 0.15 |
Treatment Group | Product and Coccidiostats | 0–24 Days | 25–42 Days |
---|---|---|---|
T1 | Maxiban®/Monteban® | Maxiban® 100 ppm | Monteban® 70 ppm |
T2 | Maxiban®/Sacox® | Maxiban® 100 ppm | Sacox® 70 ppm |
Diet | DM | CP | EE | CA | CF |
---|---|---|---|---|---|
Starter (0−21 d) | 89.9 | 21.10 | 5.58 | 4.64 | 3.26 |
Grower (22−42 d) | 90.0 | 20.16 | 6.69 | 4.53 | 3.05 |
Treatment | Coccidiostat Content (mg/kg) |
---|---|
T1 (0−21 d) T1 (22−42 d) | Maxiban® (narasin-51 and nicarbazin-43) Monteban® (narasin-68) |
T2 (0−21 d) T2 (22−42 d) | Maxiban® (narasin-49 and nicarbazin-50) Sacox® (salinomycin-74) |
Intestinal Integrity Lesions | Treatment (Mean d21 and d28) | p-Value | |
---|---|---|---|
T1 | T2 | ||
I2 | 95.07 | 95.09 | 0.979 |
Cecal Foamy Material | 0.19 y | 0.38 x | 0.098 |
Cellular Sloughing | 0.09 | 0.13 | 0.694 |
Feed Passage | 0.09 | 0.13 | 0.694 |
Hyperemia | 0.00 | 0.03 | 0.321 |
Mucus Content | 0.41 b | 0.66 a | 0.046 |
Thin Intestinal Walls | 0.25 y | 0.47 x | 0.070 |
Watery Content | 0.25 | 0.22 | 0.772 |
Specification | Treatment | SEM | p-Value | |
---|---|---|---|---|
T1 | T2 | |||
BW, g | ||||
Day 1 | 0.039 | 0.039 | 0.001 | 0.212 |
Day 21 | 0.813 | 0.818 | 0.012 | 0.685 |
Day 35 | 2.174 a | 2.083 b | 0.252 | 0.017 |
Day 42 | 2.937 x | 2.858 y | 0.217 | 0.077 |
DWG, g | ||||
Days 0−21 | 36.9 | 37.1 | 0.601 | 0.679 |
Days 0−35 | 61.0 a | 58.4 b | 7.220 | 0.017 |
Days 0−42 | 69.0 x | 67.1 y | 5.171 | 0.077 |
Days 22−35 | 97.2 a | 90.3 b | 19.189 | 0.011 |
Days 36−42 | 111.0 | 111.0 | 0.026 | 0.996 |
DFI, g | ||||
Days 0−21 | 46.7 | 47.4 | 2.022 | 0.126 |
Days 0−35 | 94.5 | 92.7 | 4.967 | 0.127 |
Days 0−42 | 122.4 x | 119.4 y | 8.556 | 0.078 |
Days 22−35 | 148.5 a | 143.0 b | 15.715 | 0.022 |
Days 36−42 | 257.3 | 256.2 | 3.094 | 0.727 |
FCR, kg/kg | ||||
Days 0−21 | 1.267 | 1.280 | 0.037 | 0.397 |
Days 0−35 | 1.454 | 1.461 | 0.019 | 0.588 |
Days 0−42 | 1.681 | 1.683 | 0.006 | 0.845 |
Days 22−35 | 1.581 | 1.595 | 0.039 | 0.605 |
Days 36−42 | 2.350 | 2.324 | 0.071 | 0.434 |
EPEF | 410.1 | 402.0 | 22.073 | 0.271 |
Liveability, % | 99.4 | 99.4 | 0.000 | 1.000 |
Specification | Treatment * | SEM | p-Value | |
---|---|---|---|---|
T1 | T2 | |||
BWbs, kg | 2.976 x | 2.881 y | 0.270 | 0.061 |
CW, kg | 2.163 a | 2.083 b | 0.225 | 0.046 |
DP, % | 72.7 x | 71.8 y | 2.567 | 0.062 |
Breast muscle, % | 20.1 | 19.7 | 1.038 | 0.293 |
Heart, % | 0.44 | 0.42 | 0.057 | 0.149 |
Gizzard, % | 0.79 | 0.82 | 0.092 | 0.184 |
Liver, % | 1.95 | 2.01 | 0.160 | 0.402 |
Lesion Score 1 | ||||||
---|---|---|---|---|---|---|
Eimeria Strain | Day of HTSi | Treatment 2 | 0 | 1 | 2 | 3 |
E. acervulina | Day 21 | T1 | 14 | 2 | 0 | 0 |
T2 | 15 | 1 | 0 | 0 | ||
Day 28 | T1 | 16 | 0 | 0 | 0 | |
T2 | 14 | 2 | 0 | 0 | ||
E. maxima | Day 21 | T1 | 5 | 11 | 0 | 0 |
T2 | 10 | 6 | 0 | 0 | ||
Day 28 | T1 | 8 | 7 | 0 | 1 | |
T2 | 13 | 2 | 0 | 1 | ||
E. tenella | Day 21 | T1 | 16 | 0 | 0 | 0 |
T2 | 16 | 0 | 0 | 0 | ||
Day 28 | T1 | 16 | 0 | 0 | 0 | |
T2 | 16 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rogala-Hnatowska, M.; Gould, G.; Mehrotra, S.; Drażbo, A.; Konieczka, P.; Ramasami, P.; Kozłowski, K. Efficacy and Growth Performance between Two Different Ionophore Coccidiostats (Narasin and Salinomycin) in Broiler Chickens after Challenge with Eimeria spp. Animals 2024, 14, 2750. https://doi.org/10.3390/ani14182750
Rogala-Hnatowska M, Gould G, Mehrotra S, Drażbo A, Konieczka P, Ramasami P, Kozłowski K. Efficacy and Growth Performance between Two Different Ionophore Coccidiostats (Narasin and Salinomycin) in Broiler Chickens after Challenge with Eimeria spp. Animals. 2024; 14(18):2750. https://doi.org/10.3390/ani14182750
Chicago/Turabian StyleRogala-Hnatowska, Monika, George Gould, Shubhi Mehrotra, Aleksandra Drażbo, Paweł Konieczka, Prakash Ramasami, and Krzysztof Kozłowski. 2024. "Efficacy and Growth Performance between Two Different Ionophore Coccidiostats (Narasin and Salinomycin) in Broiler Chickens after Challenge with Eimeria spp." Animals 14, no. 18: 2750. https://doi.org/10.3390/ani14182750
APA StyleRogala-Hnatowska, M., Gould, G., Mehrotra, S., Drażbo, A., Konieczka, P., Ramasami, P., & Kozłowski, K. (2024). Efficacy and Growth Performance between Two Different Ionophore Coccidiostats (Narasin and Salinomycin) in Broiler Chickens after Challenge with Eimeria spp. Animals, 14(18), 2750. https://doi.org/10.3390/ani14182750