Gut Microbiota Diversity of Local Egyptian Cattle Managed in Different Ecosystems
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Farming System
2.3. Feeding Management
2.4. Fecal Sample Collection
2.5. DNA Extraction and Sequencing of 16S rRNA Gene
2.6. Bioinformatics Analysis
3. Results
3.1. Alpha and Beta Diversity
3.2. Fecal Microbial Community Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Food and Agriculture Organisation (FAO). The State of the World’s Land and Water Resources for Food and Agriculture (SOLAW)—Managing Systems at Risk; FAO United Nations: Rome, Italy, 2011. [Google Scholar]
- Agricultural Research and Development Council, Arab Republic of Egypt, Ministry of Agriculture and Land Reclamation. Sustainable Agricultural Development Strategy towards 2030; Ministry of Agriculture and Land Reclamation: Giza, Egypt, 2009. [Google Scholar]
- United Nations, Department of Economic and Social Affairs Population Division. World Population Prospects. Available online: https://population.un.org/wpp (accessed on 23 October 2021).
- Habeeb, A.A.M.; Gad, A.E.; EL-Tarabany, A.A.; Atta, M.A.A. Negative Effects of Heat Stress on Growth and Milk Production of Farm Animals. J. Anim. Husb. Dairy Sci. 2018, 2, 1–12. [Google Scholar]
- Hoffmann, I. Adaptation to Climate Change—Exploring the Potential of Locally Adapted Breeds. Animal 2013, 7 (Suppl. S2), 346–362. [Google Scholar] [CrossRef]
- Goma, A.A.; Phillips, C.J.C. The Impact of Anthropogenic Climate Change on Egyptian Livestock Production. Animals 2021, 11, 3127. [Google Scholar] [CrossRef]
- Mostafa, A.N.; Wheida, A.; El Nazer, M.; Adel, M.; El Leithy, L.; Siour, G.; Coman, A.; Borbon, A.; Magdy, A.W.; Omar, M.; et al. Past (1950–2017) and Future (−2100) Temperature and Precipitation Trends in Egypt. Weather Clim. Extrem. 2019, 26, 100225. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, Y.; Yu, Z.; Xu, Q.; Zheng, N.; Zhao, S.; Huang, G.; Wang, J. Ruminal Microbiota–Host Interaction and Its Effect on Nutrient Metabolism. Anim. Nutr. 2021, 7, 49–55. [Google Scholar] [CrossRef]
- Lan, D.; Ji, W.; Lin, B.; Chen, Y.; Huang, C.; Xiong, X.; Fu, M.; Mipam, T.D.; Ai, Y.; Zeng, B.; et al. Correlations between Gut Microbiota Community Structures of Tibetans and Geography. Sci. Rep. 2017, 7, 16982. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Niu, K.; Rushdi, H.E.; Zhang, M.; Fu, T.; Gao, T.; Yang, L.; Liu, S.; Lin, F. Heat Stress Induces Shifts in the Rumen Bacteria and Metabolome of Buffalo. Animals 2022, 12, 1300. [Google Scholar] [CrossRef]
- Zhang, X.; Cui, K.; Wen, X.; Li, L.; Yu, X.; Li, B.; Lin, H.; He, H.; Wang, F. The Association between Gut Microbiome Diversity and Composition and Heat Tolerance in Cattle. Microorganisms 2022, 10, 1672. [Google Scholar] [CrossRef]
- O’Hara, E.; Neves, A.L.A.; Song, Y.; Guan, L.L. The Role of the Gut Microbiome in Cattle Production and Health: Driver or Passenger? Annu. Rev. Anim. Biosci. 2020, 8, 199–220. [Google Scholar] [CrossRef]
- Khairunisa, B.H.; Heryakusuma, C.; Ike, K.; Mukhopadhyay, B.; Susanti, D. Evolving Understanding of Rumen Methanogen Ecophysiology. Front. Microbiol. 2023, 14, 1296008. [Google Scholar] [CrossRef]
- Huang, S.; Ji, S.; Yan, H.; Hao, Y.; Zhang, J.; Wang, Y.; Cao, Z.; Li, S. The Day-to-Day Stability of the Ruminal and Fecal Microbiota in Lactating Dairy Cows. Microbiologyopen 2020, 9, e990. [Google Scholar] [CrossRef] [PubMed]
- Williamson, J.R.; Callaway, T.R.; Lourenco, J.M.; Ryman, V.E. Characterization of Rumen, Fecal, and Milk Microbiota in Lactating Dairy Cows. Front. Microbiol. 2022, 13, 984119. [Google Scholar] [CrossRef]
- Liu, L.; Wu, P.; Guo, A.; Yang, Y.; Chen, F.; Zhang, Q. Research Progress on the Regulation of Production Traits by Gastrointestinal Microbiota in Dairy Cows. Front. Vet. Sci. 2023, 10, 1206346. [Google Scholar] [CrossRef]
- Zhou, X.; Ma, Y.; Yang, C.; Zhao, Z.; Ding, Y.; Zhang, Y.; Wang, P.; Zhao, L.; Li, C.; Su, Z.; et al. Rumen and Fecal Microbiota Characteristics of Qinchuan Cattle with Divergent Residual Feed Intake. Microorganisms 2023, 11, 358. [Google Scholar] [CrossRef] [PubMed]
- Mott, A.C.; Schneider, D.; Hünerberg, M.; Hummel, J.; Tetens, J. Bovine Rumen Microbiome: Impact of DNA Extraction Methods and Comparison of Non-Invasive Sampling Sites. Ruminants 2022, 2, 112–132. [Google Scholar] [CrossRef]
- Mader, T.L.; Davis, M.S.; Brown-Brandl, T. Environmental Factors Influencing Heat Stress in Feedlot Cattle. J. Anim. Sci. 2006, 84, 712–719. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Dairy Cattle, 7th ed.; Subcommittee on Dairy Cattle Nutrition, Committee on Animal Nutrition, Board on Agriculture and Natural Resources, National Research Council, National Academy Press: Washington, DC, USA, 2001. [Google Scholar]
- Osman, M.A.; Alary, V.; Khalil, M.; Elbeltagy, A.; Tourrand, J.-F.; Moulin, C.-H. Adaptability and Suitability of Local Cattle Breeds in Egypt: Farmers and Actors’ Perceptions and Practices of the Cattle Value Chain. Rev. D’élevage Médecine Vétérinaire Pays Trop. 2017, 69, 95. [Google Scholar] [CrossRef]
- Walters, W.; Hyde, E.R.; Berg-Lyons, D.; Ackermann, G.; Humphrey, G.; Parada, A.; Gilbert, J.A.; Jansson, J.K.; Caporaso, J.G.; Fuhrman, J.A.; et al. Improved Bacterial 16S RRNA Gene (V4 and V4-5) and Fungal Internal Transcribed Spacer Marker Gene Primers for Microbial Community Surveys. mSystems 2016, 1, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Hartinger, T.; Edwards, J.E.; Gómez Expósito, R.; Smidt, H.; ter Braak, C.J.F.; Gresner, N.; Südekum, K.H. Differently Pre-Treated Alfalfa Silages Affect the In Vitro Ruminal Microbiota Composition. Front. Microbiol. 2019, 10, 2761. [Google Scholar] [CrossRef]
- Hou, J.X.; An, X.P.; Song, Y.X.; Wang, J.G.; Ma, T.; Han, P.; Fang, F.; Cao, B.Y. Combined Effects of Four SNPs within Goat PRLR Gene on Milk Production Traits. Gene 2013, 529, 276–281. [Google Scholar] [CrossRef]
- Ramiro-Garcia, J.; Hermes, G.D.A.; Giatsis, C.; Sipkema, D.; Zoetendal, E.G.; Schaap, P.J.; Smidt, H. NG-Tax, a Highly Accurate and Validated Pipeline for Analysis of 16S RRNA Amplicons from Complex Biomes. F1000Research 2018, 5, 1791. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2014. [Google Scholar]
- McMurdie, P.J.; Holmes, S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [PubMed]
- MacPherson, A.J.; Harris, N.L. Interactions between Commensal Intestinal Bacteria and the Immune System. Nat. Rev. Immunol. 2004, 4, 478–485. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Li, X.; Atwill, E.R.; Aly, S.S.; Williams, D.R.; Su, Z. Dynamic Changes in Fecal Bacterial Microbiota of Dairy Cattle across the Production Line. BMC Microbiol. 2022, 22, 132. [Google Scholar] [CrossRef]
- Dill-Mcfarland, K.A.; Breaker, J.D.; Suen, G. Microbial Succession in the Gastrointestinal Tract of Dairy Cows from 2 Weeks to First Lactation. Sci. Rep. 2017, 7, 40864. [Google Scholar] [CrossRef]
- Dill-McFarland, K.A.; Weimer, P.J.; Breaker, J.D.; Suen, G. Diet Influences Early Microbiota Development in Dairy Calves without Long-Term Impacts on Milk Production. Appl. Environ. Microbiol. 2019, 85, e02141-18. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Gao, Y.; Yin, S.; Zhang, S.; Wang, L.; Qu, Y. Effect of Acidified Milk Feeding on the Intake, Average Daily Gain and Fecal Microbiological Diversity of Holsten Dairy Calves. Asian-Australas. J. Anim. Sci. 2020, 33, 1265–1272. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Kim, J.; Kuehn, L.A.; Bono, J.L.; Berry, E.D.; Kalchayanand, N.; Freetly, H.C.; Benson, A.K.; Wells, J.E. Investigation of Bacterial Diversity in the Feces of Cattle Fed Different Diets. J. Anim. Sci. 2014, 92, 683–694. [Google Scholar] [CrossRef]
- Wanapat, M.; Foiklang, S.; Sukjai, S.; Tamkhonburi, P.; Gunun, N.; Gunun, P.; Phesatcha, K.; Norrapoke, T.; Kang, S. Feeding Tropical Dairy Cattle with Local Protein and Energy Sources for Sustainable Production. J. Appl. Anim. Res. 2018, 46, 232–236. [Google Scholar] [CrossRef]
- Fernando, S.C.; Purvis, H.T.; Najar, F.Z.; Sukharnikov, L.O.; Krehbiel, C.R.; Nagaraja, T.G.; Roe, B.A.; De Silva, U. Rumen Microbial Population Dynamics during Adaptation to a High-Grain Diet. Appl. Environ. Microbiol. 2010, 76, 7482–7490. [Google Scholar] [CrossRef]
- Corrêa, P.S.; Jimenez, C.R.; Mendes, L.W.; Rymer, C.; Ray, P.; Gerdes, L.; da Silva, V.O.; De Nadai Fernandes, E.A.; Abdalla, A.L.; Louvandini, H. Taxonomy and Functional Diversity in the Fecal Microbiome of Beef Cattle Reared in Brazilian Traditional and Semi-Intensive Production Systems. Front. Microbiol. 2021, 12, 768480. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Álvarez, C.; García-Oliva, F.; Cruz-Ortega, R.; Romero, M.F.; Barajas, H.R.; Piñero, D.; Alcaraz, L.D. Squash Root Microbiome Transplants and Metagenomic Inspection for in Situ Arid Adaptations. Sci. Total Environ. 2022, 805, 150136. [Google Scholar] [CrossRef] [PubMed]
- Hook, S.E.; Wright, A.D.G.; McBride, B.W. Methanogens: Methane Producers of the Rumen and Mitigation Strategies. Archaea 2010, 2010, 945785. [Google Scholar] [CrossRef]
- Kaminsky, R.A.; Reid, P.M.; Altermann, E.; Kenters, N.; Kelly, W.J.; Noel, S.J.; Attwood, G.T.; Janssen, P.H. Rumen Lachnospiraceae Isolate NK3A20 Exhibits Metabolic Flexibility in Response to Substrate and Coculture with a Methanogen. Appl. Environ. Microbiol. 2023, 89, e00634-23. [Google Scholar] [CrossRef]
- Henderson, G.; Cox, F.; Ganesh, S.; Jonker, A.; Young, W.; Janssen, P.H.; Abecia, L.; Angarita, E.; Aravena, P.; Arenas, G.N.; et al. Rumen Microbial Community Composition Varies with Diet and Host, but a Core Microbiome Is Found across a Wide Geographical Range. Sci. Rep. 2015, 5, 14567. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, G.; Li, Y.; Zhang, Y. Effects of High Forage/Concentrate Diet on Volatile Fatty Acid Production and the Microorganisms Involved in VFA Production in Cow Rumen. Animals 2020, 10, 223. [Google Scholar] [CrossRef]
- Ghoneim, E.; El Kaschab, S.; Omar, S.; Omran, M.F. Comparative Study Among Different Dairy Production Systems in Egypt. Menoufia J. Anim. Poult. Fish Prod. 2018, 2, 39–56. [Google Scholar] [CrossRef]
- Kwon, M.S.; Jo, H.E.; Lee, J.; Choi, K.S.; Yu, D.; Oh, Y.S.; Park, J.; Choi, H.J. Alteration of the Gut Microbiota in Post-Weaned Calves Following Recovery from Bovine Coronavirus-Mediated Diarrhea. J. Anim. Sci. Technol. 2021, 63, 125–136. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H.; LinZhu, L.Z.; Xu, Y.; Liu, N.; Sun, X.; Hu, L.; Huang, H.; Wei, K.; Zhu, R. Dynamic Distribution of Gut Microbiota in Goats at Different Ages and Health States. Front. Microbiol. 2018, 9, 2509. [Google Scholar] [CrossRef]
- Wang, X.; Li, L.; Bian, C.; Bai, M.; Yu, H.; Gao, H.; Zhao, J.; Zhang, C.; Zhao, R. Alterations and Correlations of Gut Microbiota, Fecal, and Serum Metabolome Characteristics in a Rat Model of Alcohol Use Disorder. Front. Microbiol. 2023, 13, 1068825. [Google Scholar] [CrossRef]
- Adak, A.; Khan, M.R. An Insight into Gut Microbiota and Its Functionalities. Cell. Mol. Life Sci. 2019, 76, 473–493. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, M.O.P.; Jank, T.; Aktories, K.; Schulz, G.E. Conformational Changes and Reaction of Clostridial Glycosylating Toxins. J. Mol. Biol. 2008, 377, 1346–1356. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.J.; Wu, E. The Role of Gut Microbiota in Immune Homeostasis and Autoimmunity. Gut Microbes 2012, 3, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Kong, F.; Hua, Y.; Zeng, B.; Ning, R.; Li, Y.; Zhao, J. Gut Microbiota Signatures of Longevity. Curr. Biol. 2016, 26, R832–R833. [Google Scholar] [CrossRef]
Region | Season | Average Ambient Temperature (°C) | Average Relative Humidity (RH %) | THI | ||
---|---|---|---|---|---|---|
Min | Max | Min | Max | |||
Lower | Hot | 22.37 | 38.89 | 26.96 | 66.32 | 83.90 |
Cold | 7.54 | 25.12 | 30.52 | 50.15 | 69.41 | |
Middle | Hot | 20.88 | 36.97 | 49.43 | 66.27 | 87.02 |
Cold | 8.20 | 21.52 | 59.52 | 49.31 | 67.52 | |
Upper | Hot | 21.98 | 35.14 | 55.72 | 68.15 | 86.04 |
Cold | 8.05 | 26.55 | 60.52 | 58.86 | 74.93 | |
Overall | Hot | 21.74 | 37.0 | 44.04 | 66.91 | 85.66 |
Cold | 10.26 | 24.31 | 50.18 | 52.87 | 70.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aboshady, H.M.; Gavriilidou, A.; Ghanem, N.; Radwan, M.A.; Elnahas, A.; Agamy, R.; Fahim, N.H.; Elsawy, M.H.; Shaarawy, A.-M.B.M.; Abdel-Hafeez, A.M.; et al. Gut Microbiota Diversity of Local Egyptian Cattle Managed in Different Ecosystems. Animals 2024, 14, 2752. https://doi.org/10.3390/ani14182752
Aboshady HM, Gavriilidou A, Ghanem N, Radwan MA, Elnahas A, Agamy R, Fahim NH, Elsawy MH, Shaarawy A-MBM, Abdel-Hafeez AM, et al. Gut Microbiota Diversity of Local Egyptian Cattle Managed in Different Ecosystems. Animals. 2024; 14(18):2752. https://doi.org/10.3390/ani14182752
Chicago/Turabian StyleAboshady, Hadeer M., Asimenia Gavriilidou, Nasser Ghanem, Mohamed A. Radwan, Ahmed Elnahas, Rania Agamy, Nadia H. Fahim, Mohamed H. Elsawy, Al-Moataz Bellah M. Shaarawy, Ahmed M. Abdel-Hafeez, and et al. 2024. "Gut Microbiota Diversity of Local Egyptian Cattle Managed in Different Ecosystems" Animals 14, no. 18: 2752. https://doi.org/10.3390/ani14182752
APA StyleAboshady, H. M., Gavriilidou, A., Ghanem, N., Radwan, M. A., Elnahas, A., Agamy, R., Fahim, N. H., Elsawy, M. H., Shaarawy, A. -M. B. M., Abdel-Hafeez, A. M., Kantanen, J., Ginja, C., Makgahlela, M. L., Kugonza, D. R., Gonzalez-Prendes, R., & Crooijmans, R. P. M. A. (2024). Gut Microbiota Diversity of Local Egyptian Cattle Managed in Different Ecosystems. Animals, 14(18), 2752. https://doi.org/10.3390/ani14182752