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Simple Summary: Spatial epidemiology, integrating traditional epidemiology, geography, statistics,
environmental science, and ecology, provides a comprehensive framework for analyzing the spatial
dimensions of health and disease. This interdisciplinary approach enhances the development of
effective public health strategies and interventions. However, its multifaceted nature can bring
complexities in practical application. Using the case of spatial epidemiology in swine viral diseases
(SVDs), we illustrate the objectives, methodologies, and essential considerations for the application
of spatial epidemiology, which we hope to offer as a comprehensive reference for researchers in
this field.

Abstract: Spatial epidemiology offers a comprehensive framework for analyzing the spatial distri-
bution and transmission of diseases, leveraging advanced technical tools and software, including
Geographic Information Systems (GISs), remote sensing technology, statistical and mathematical
software, and spatial analysis tools. Despite its increasing application to swine viral diseases (SVDs),
certain challenges arise from its interdisciplinary nature. To support novices, frontline veterinarians,
and public health policymakers in navigating its complexities, we provide a comprehensive overview
of the common applications of spatial epidemiology in SVD. These applications are classified into four
categories based on their objectives: visualizing and elucidating spatiotemporal distribution patterns,
identifying risk factors, risk mapping, and tracing the spatiotemporal evolution of pathogens. We
further elucidate the technical methods, software, and considerations necessary to accomplish these
objectives. Additionally, we address critical issues such as the ecological fallacy and hypothesis
generation in geographic correlation analysis. Finally, we explore the future prospects of spatial
epidemiology in SVD within the One Health framework, offering a valuable reference for researchers
engaged in the spatial analysis of SVD and other epidemics.

Keywords: spatial epidemiology; geographical distribution; risk identification; mapping; swine
viral disease

1. Introduction

Spatial epidemiology encompasses the description and analysis of geographic vari-
ations in disease concerning demographic, environmental, behavioral, socioeconomic,
genetic, and infectious risk factors [1]. It integrates place and location into study designs
and models, employing spatial approaches to investigate the distribution and determinants
of epidemics. Consequently, it typically relies on Geographic Information Systems (GISs)
and spatial statistics. GIS maps offer visualization tools for exploring the spatiotemporal
distribution of disease outcomes, associated social factors, and environmental exposures.
Analytical methods, such as estimating disease risks and identifying spatial disease clusters,
provide a detailed statistical perspective on the spatial distribution of diseases. Spatial and
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spatiotemporal models aid in understanding, measuring, and analyzing disease syndemics,
as well as the social, biological, and structural factors associated with them across space
and time [2].

Initially, spatial epidemiology was primarily applied to vector-borne diseases [3],
as their spatial distribution is often constrained by the geographical range of vectors or
reservoir hosts, as well as their habitat preferences. Given that the geographic distribution of
vectors or hosts is often expressed in ecological landscapes, it is also referred to as landscape
epidemiology [3]. Additionally, it intersects with the research topics and methodologies
of medical (or health) geography [4]. Here, we contend that spatial epidemiology focuses
on understanding how the distribution of disease or health outcomes varies spatially and
the factors contributing to this variation. It entails analyzing geographical patterns of
disease incidence, prevalence, or mortality to uncover underlying causes, risk factors, and
potential interventions.

The role of spatial epidemiology in disease prevention and control has been summa-
rized as visualization (disease mapping), detection of clusters/hotspots, and identification
of risk factors (geographical correlation studies) [1,5]. It has been widely applied to vector-
borne diseases, zoonoses, and emerging infectious diseases [5–11]. In this article, we
provide a comprehensive review of the application of spatial epidemiology to swine viral
diseases, highlighting commonly used spatial analysis methods and their roles in disease
control. These applications are categorized into four primary objectives: visualizing and
elucidating spatiotemporal distribution patterns, identifying risk factors, risk mapping,
and tracing the spatiotemporal evolution of pathogens. We elucidate the technical methods,
software, and considerations necessary to accomplish these objectives. Additionally, we
discuss key issues such as the theoretical basis of geographical correlation analysis, alter-
native interpretations of ecological fallacies, and conclude by offering perspectives on the
future direction of spatial epidemiology in this field.

2. Visualizing and Elucidating Spatiotemporal Distribution Patterns
2.1. Disease Mapping

Here, disease mapping specifically refers to using observed data to visually display
historical or current health or disease conditions, including mapping point locations of
cases, incidence rates by area, standardized rates, and other related information [12]. This
form of representing health or disease distribution is more intuitive compared to numbers,
tables, and text, and it helps to identify subtle distribution patterns. For example, Vinod
Kumar Singh et al. [13] mapped the temporal and spatial distribution of the CSF virus
genotype circulating to present the current status of CSF in India.

It is important to note that when original disease data involve small areas or limited
samples, directly mapping disease incidents based on raw crude rates or relative risks often
lacks stability in depicting the “geographical distribution of diseases” [14]. This approach
may present misleading images of the actual relative risk [15]. Hence, Bayesian disease
mapping [16] emerged, offering the advantage of generating smoothed disease rates or
risks, enabling the creation of maps that better reflect the true relative risk. Among these
methods, the Bayesian hierarchical (BH) model is the most widely used. Thibault Saubusse
et al. [17] mapped the predicted CSF seroprevalence in northeastern France using a spatial
BH model. Clément Calenge et al. [18] mapped the posterior mean probability of first
consumption of the vaccine by non-immunized wild boar against CSF using the BH model,
accounting for population dynamics. Figure 1 is an example of a mapping study of the
prevalences for wildlife PRV infections in the Federal State of Brandenburg [19]. Figure 1a
shows the observed prevalences of the PRV infections of wild boars per municipality or
their exclaves based on aserological survey of the year 1993. Figure 1b shows the smoothed
prevalences for PRV infections, with smoothing to the overall median using the BH model.
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Figure 1. Observed prevalences of the PRV infections of wild boars in the Federal State of Branden-
burg. (a) Estimated median prevalences for PRV infections of wild boars after smoothing using a 
BH model. (b) Figure reproduced from C. Staubach et al. (2002), with permission from Elsevier and 
the Copyright Clearance Center. 
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experience and lack statistical validation. With larger datasets, it becomes crucial to em-
ploy spatial analysis methods to identify and elucidate spatiotemporal patterns. This pro-
cess, known as spatiotemporal pattern recognition or exploratory spatial data analysis [2], 
involves using spatial analysis techniques to discern patterns over time and space. These 
tools may involve both visual representations and statistical inferences to analyze data 
distributions. They are employed to detect spatial patterns, identify outliers and clusters, 
formulate hypotheses for subsequent statistical tests, and guide the development of spa-
tial regression models. Similarly to exploratory data analysis, where understanding the 
underlying data distribution is vital for selecting appropriate statistical tests and formu-
lating models, exploratory spatial data analysis is fundamental to spatial modeling and 
hypothesis testing [2]. 

Based on the spatial data types—namely, point data, line data, and area data (poly-
gons)—we have compiled a summary of commonly employed spatial statistical methods, 
including their advantages, applications, associated software, and relevant case studies 
from the literature (see Table 1). 

Table 1. Commonly used spatiotemporal statistical methods and implementation software. 
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An algorithm proposed 
by the authors Discrete 

Discriminate between en-
demic and non-endemic pat-

terns of case occurrence 
Self-programming M. Lange et al. [21] 

Figure 1. Observed prevalences of the PRV infections of wild boars in the Federal State of Branden-
burg. (a) Estimated median prevalences for PRV infections of wild boars after smoothing using a BH
model. (b) Figure reproduced from C. Staubach et al. (2002), with permission from Elsevier and the
Copyright Clearance Center.

2.2. Spatiotemporal Pattern Recognition

After mapping the disease, initial observations of spatiotemporal characteristics may
be possible with limited data; however, these observations are often based on empirical
experience and lack statistical validation. With larger datasets, it becomes crucial to employ
spatial analysis methods to identify and elucidate spatiotemporal patterns. This process,
known as spatiotemporal pattern recognition or exploratory spatial data analysis [2], in-
volves using spatial analysis techniques to discern patterns over time and space. These
tools may involve both visual representations and statistical inferences to analyze data
distributions. They are employed to detect spatial patterns, identify outliers and clusters,
formulate hypotheses for subsequent statistical tests, and guide the development of spa-
tial regression models. Similarly to exploratory data analysis, where understanding the
underlying data distribution is vital for selecting appropriate statistical tests and formu-
lating models, exploratory spatial data analysis is fundamental to spatial modeling and
hypothesis testing [2].

Based on the spatial data types—namely, point data, line data, and area data (polygons)—
we have compiled a summary of commonly employed spatial statistical methods, including
their advantages, applications, associated software, and relevant case studies from the
literature (see Table 1).
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Table 1. Commonly used spatiotemporal statistical methods and implementation software.

Spatial Data Type/Technology Field Data Type Advantage and Use Software Use in SVD

Point

Mean Center Discrete Identify the geographic center (or the
center of concentration) for a set of features Spatial Statistics Tools (Esri) A.S. Oganesyan et al. [20]

An algorithm proposed by the authors Discrete Discriminate between endemic and
non-endemic patterns of case occurrence Self-programming M. Lange et al. [21]

Ripley’s K (Multi-Distance Spatial
Cluster Analysis) Continuous, discrete

Determine whether cases exhibit
statistically significant clustering or
dispersion over a range of distances

Spatial Statistics Tools (Esri); a macro in
Excel

I. Iglesias et al. [22]; I. Iglesias et al. [23];
Satoshi Ito et al. [24]

Spatial or spatiotemporal clustering
analysis Continuous, discrete Detect spatial or space–time disease

clusters SaTScan™, Matlab 2021a

I. Iglesias et al. [22]; Anastasia A. Glazunova et al.
[25]; I. Iglesias et al. [23]; Satoshi Ito et al. [24];

Steven J. P. Tousignant et al. [26]; SeEun Choe et al.
[27]; Pengfei Zhao et al. [28]

Local Colocation Quotient Continuous, discrete

Measure local patterns of spatial
association (collocated or not) between two

categories of point features using the
colocation quotient statistic.

Spatial Analyst Tools (ERSI) Anastasia A. Glazunova et al. [25]

Spatial Autocorrelation (Moran’s I) Measure spatial autocorrelation Spatial Statistics Tools (Esri) I. Iglesias et al. [23]

Direction analysis Continuous, discrete Determine whether the object tends to be
in a systematic, directional spread ClusterSeer software (Biomedware) Shao, Qihui et al. [29]

Kernel density (Area also used)

Calculate a magnitude-per-unit area from
point or polyline features using a kernel

function to fit a smoothly tapered surface
to each point or polyline

ArcGIS (ESRI, Redlands, USA); R
(programming language)

Osvaldo Fonseca et al. [30]; Satoshi Ito et al. [24];
Beatriz Martínez-López et al. [31]; Nicolai Denzin
et al. [32]; O. Berke et al. [33]; Nicolai Denzin et al.

[34]

Directional Distribution (Standard
Deviational Ellipse)

Provide the orientation and shape of a
distribution, as well as its location, and
dispersion or concentration of the data

ArcGIS (ESRI, Redlands, USA) Osvaldo Fonseca et al. [30]; Satoshi Ito et al. [24]

Line

Least Cost Path Continuous, discrete
Find the shortest path between starting
points and ending points across a cost

surface
Spatial Analyst Tools (ERSI) Fekede, R. J. et al. [35]

Network analysis
Shortest path length, clustering coefficient
et al., applied to the analysis of livestock

transport
R V.3.6.3, gephi v0.9.2 Alfredo Acosta et al. [36]

Area

Hot Spot Analysis (Getis-Ord Gi*) Identify statistically significant hot spots
and cold spots Spatial Statistics Tools (Esri) Xin Pei et al. [37]

Spatial Autocorrelation (Moran’s I) Measure spatial autocorrelation Spatial Statistics Tools (Esri) Xin Pei et al. [37]; Xiao Lu et al. [38]
Cluster and Outlier Analysis (Anselin

Local Moran’s I)
Identify statistically significant hot spots,

cold spots, and spatial outliers Spatial Statistics Tools (Esri) Xin Pei et al. [37]; Xiao Lu et al. [38]

Spatial or spatiotemporal clustering
analysis Continuous, discrete Detect spatial or space–time disease

clusters SaTScan™, Matlab

Xin Pei et al. [37]; Pengfei Zhao et al. [39]; Xiao Lu
et al. [38]; Nicolai Denzin et al. [32]; A. Allepuz et al.
[40]; Lambert, M. E. et al. [41]; Thanapongtharm, W.

et al. [42]; Huong, V.T.L. et al. [43]
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In spatial epidemiology, the Mean Center tool is utilized to identify the geographic
center, or center of concentration, of a set of outbreak points. This analysis is often a prelim-
inary step for tracking the movement of the center over time. The design of time segments
is critical when employing the Mean Center tool, as it directly influences the interpretation
of the results. Improperly defined time segments—whether too granular, too broad, or
neglecting key periods—can obscure the spatiotemporal transmission characteristics of
the epidemic. In cases where the number of center points is relatively small and there is a
discernible spatial movement trend, the temporal shift of the outbreak center can often be
visually assessed. For example, using the Mean Center tool within the ArcView Geographic
Information System software, researchers determined the shift in the epidemic center of
ASF in the Russian Federation from 2007 to 2012. This analysis revealed a trend of diffuse
ASF transmission in regions adjacent to the primary and secondary epidemic zones [20].

Furthermore, directional analysis tools may be necessary to assess systematic patterns
in outbreak spread. The direction test [44] helps determine whether outbreaks exhibit a
systematic directional spread. In cases where the direction of spread is not immediately
apparent, the outbreak sequence is often divided into time segments (e.g., weeks or months).
Initially, a Mean Center analysis identifies outbreak centers for each time segment. Subse-
quently, directional analysis evaluates whether these centers display statistically significant
directional patterns. For instance, Shao Qihui et al. [29] employed the direction test to
investigate whether the monthly outbreak centers of ASF in Vietnam, identified using the
Mean Center tool, exhibited directional spread.

The colocation quotient statistic is utilized to investigate potential associations be-
tween ASF outbreaks in domestic pigs and wild boars, such as determining whether an
outbreak in domestic pigs is linked to infections in nearby wild boars [25]. Beyond the
standard epidemiological spatial analysis tools available in existing software, there are
also specialized spatial analysis methods developed for specific analytical purposes. For
instance, M. Lange et al. [21] devised an algorithm to differentiate between endemic and
non-endemic patterns of case occurrence, which was employed to assess whether ASF had
become endemic in the wild boar population in southern Russia, based on space–time
correlation hypotheses.

When dealing with data involving line-type observations, such as livestock transporta-
tion routes, network analysis becomes pertinent. Alfredo Acosta et al. [36] constructed
a directed network using pig premises—including farms, traders, industrial zones, and
markets—as nodes. They analyzed this network by computing various metrics such as
betweenness, closeness, clustering coefficient, degree, density, diameter, average shortest
path, and the giant weakly and strongly connected components. This analysis aimed to
uncover spatial characteristics of the swine network, identify trading communities within
it, and assess the network’s role in the spread of CSF using the k-statistic.

Statistical analyses of outbreaks are frequently performed by administrative units
(e.g., community, town, city, state) to identify hotspot areas, with spatiotemporal scan
statistics and clustering being commonly employed methods. For example, SaTScan
software was used to detect spatial–temporal clusters of high PRRSV seroprevalence in
China from 2017 to 2021 [39]. Similarly, Daniella N. Schettino et al. [45] utilized SaTScan to
identify clusters indicative of the predicted risk for ASF introduction into Kazakhstan.

In many instances, a combination of spatial analysis methods is employed to elucidate
the spatiotemporal characteristics of a disease. For example, the maximum spatial asso-
ciation radius of ASF cases can be determined using Ripley’s K function. This radius is
then used as the maximum extension for the spatial window in space–time scan statistics,
which assists in identifying and delineating spatiotemporal clusters of ASF in wild boars
in the Russian Federation from 2007 to 2013. Subsequently, the mean reproductive ratio
(R0) for each spatiotemporal cluster was estimated [22]. To delineate the spatiotemporal
distribution pattern of ASF in Sardinia, I. Iglesias et al. [23] employed a range of spatial
analysis methods, including spatial autocorrelation and spatiotemporal clustering. Figure 2
is an example of a combination using directional analysis and spatiotemporal scan statistics
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to uncover the dynamics of spatial diffusion and spatiotemporal aggregation characteristics
of ASF in Vietnam by [29]. Figure 2A shows the monthly outbreak centers and average
spread direction of the ASF in Vietnam, February 2019–March 2022. Figure 2B shows the
spatiotemporal high-risk clusters of the ASF in three phases.
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Qihui et al. (2022), licensed under an open access Creative Commons CC BY 4.0 license.

3. Risk Factors Identification

Identifying risk factors involves elucidating the variables that influence the spatial
or spatiotemporal structure, distribution, and transmission patterns of health-related con-
ditions. This process is often achieved through geographic correlation studies [1]. We
have summarized and listed the geographic analysis methods commonly used in SVD, as
outlined in Table 2.
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Table 2. Commonly used geographic correlation study methods and some indicative examples.

Methods Use Research Subjects Geographic Environmental Factors
Included Identified Risk Factors Use in SVD Software

Statistical
model Cross-correlation analysis Risk factors

identification CSF outbreaks
Climate variables (rainfall, wind speed,

temperature, vapor pressure, and relative
humidity).

Low relative humidity and high
wind speed Xiao Lu et al. [38] SPSS

Multivariable logistic
regression

PRRSV serological status
of pig farms

Farm size, geographic location, before or
after the ASF outbreaks, and PRV

purification
Pig farms Pengfei Zhao et al. [39] R

Logistic mixed effect
regression models PRV exposure Land cover Agriculture; open-canopy pine,

prairie, and scrub habitats Hernández, F.A. et al. [46] R

Multivariable exact logistic
regression model PRRSV occurrence Swine sites and trucking companies Area spread (within three km) and

truck network Arruda, A.G. et al. [47] SAS

Generalized mixed-effects
model ASF case probability

Wild boar density, forest cover, built-up
area, road density, population density, and

proximity to previous infections

Wild boar density, near previous
ASF incidents and forested areas Podgorski, T. et al. [48] R

Bayesian hierarchical models ASF occurrence
Wild boar density, densityof pig farms,

road length (a proxy for human activity),
and habitat availability

Wild boar density, road length (a
proxy for human activity), and

habitat availability
Depner, K. et al. [49] R

A mixed-effects Poisson
regression model ASF incidence rates

The number of pig farms, the number of
pigs per commune, and human population

density by commune
Pig density, pig farm density Hien, N.D. et al. [50] R

Generalized Linear Logistic
Regression ASF outbreaks

Human and pig population, wild
boarpopulation, settlements and

smallholder farm distribution, legal
movements of pigs and pork products,

road networks, and forest areas

The importation of live pigs from
ASF-affected regions, the density
of smallholder farms, the volume

of pork products’ importation
from affected regions, the overall
pig population, and the presence

of a common border with an
ASF-affected region

Glazunova, A.A. et al.
[25] R

A generalized linear mixed
model Wild boar emergence

Animal emergence, altitude, slope, road
density, human density, distance from

water sources, wild boar distribution index,
wild boar density, and capture pressure

index

The appearance of raccoons,
raccoon dogs, and crows as well as

road density and wild boar
distribution index

Ito, S. et al. [51] R

Bayesian spatial mixed
multivariable logistic

regression model

Probability of CSF
occurrence

The number of farms, the number of pigs,
pig movement, human demography,

socioeconomic factors (household
consumption, level of poverty),

environmental factors (water sources,
altitude, roads, and land cover)

Small family farms, high numbers
of outgoing pig shipments and low

levels of personal consumption

Martínez-López, B. et al.
[52] WinBUGS

Zero-inflated generalized
linear mixed-effects models CSF infection risk

Municipality-level factors (season, habitat
suitability, and the proportion of infected

adjacent municipalities) and
individual-level factors (age, sex, the

proportion of infected cases, whether the
wild boar was assigned to was vaccinated,
and the cumulative number of time steps it

was vaccinated)

The proportion of infected
adjacent municipalities, age,

month, and the proportion of
infected cases

Scherer, C et al. [53] R (package
“glmmTMB”)
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Table 2. Cont.

Methods Use Research Subjects Geographic Environmental Factors
Included Identified Risk Factors Use in SVD Software

Bayesian spatiotemporal
hierarchical mode PRRSV outbreaks

Environmental variables (weekly enhanced
vegetation index, yearly averages of

aboveground biomass density, canopy
height, and land surface elevation; land

surface temperature, and relative
humidity), between-farm movement data
(network metrics) and on-farm biosecurity
features (site entries, perimeter buffer area

access points, lines of separation access
points, pig capacity, and farm density)

The animal movement network
metric, out-degree, the number of
lines of separation access points,
number of days the temperature
was between T [4 ◦C,10 ◦C], and

relative humidity <20%

Sanchez, F. et al. [54] R

Mathematical
methods

Spatially explicit,
individual-based (SEIB)

model

Transmission process
simulation and

intervention
effectiveness

evaluation (scenario
simulations)

The persistence of ASFV
Social structure of wild boar populations,
dispersal between grid cells (a landscape

unit)
Pepin, K.M. et al. [55] Matlab

Be-FAST (Monte Carlo
approach)

The dynamic spread of
CSFV

Proximity to infected pig farms,
farmworker mobility, vehicular movements,
pig and pig product transportation, climate

variables, and weather patterns

Ivorra, B. et al. [56] Matlab

North American Animal
Disease Spread Model

(NAADSM)

The between-farm spread
of PRRSV Animal movement, truck sharing Thakur, K.K. et al. [57] NAADSM

The SEIR model in a gridded
landscape

The spatial dynamics of
CSF outbreaks The attraction of pig herds to water sources Milne, G. et al. [58]

InterSprea (Monte Carlo
approach)

The risk of introduction
and spread of PRRSV

Pork importation, consumption patterns of
pigmeat in households

Stevenson, M.A. et al.
[59]

InterSpread
Plus

Machine
learning

The Extreme Gradient
Boosting (XGBoost) machine

learning model

Risk factor
identification and

risk prediction

The probability of PEDV
infection

Animal movements, current PEDV status of
farms, environmental factors (such as

average temperature and humidity), and
land use characteristics (including hog

density and land use proportions)

Paploski, I.A.D. et al. [60] Python

Boosted regression trees (BRT) PRRSV outbreaks Pig farm, human population density and
the number of farms with breeding sows

Thanapongtharm, W.
et al. [42] R



Animals 2024, 14, 2814 9 of 18

Environmental factors associated with SVD are extensively analyzed using statistical
methods. Among traditional methods, logistic regression [46,47,61] is widely employed.
For instance, multivariable logistic regression analysis was used to analyze the risk factors
such as farm size, geographic location, before or after the ASF outbreaks and PRV purifi-
cation associated with the PRRSV serological status of pig farms [39]. Cross-correlation
analysis has examined the relationship between climate variables (rainfall, wind speed,
temperature, vapor pressure, and relative humidity) and CSF outbreaks in China from
2005 to 2018, revealing that low relative humidity and high wind speed are significant
meteorological factors associated with CSF outbreaks [38]. However, epidemiological
data for SVD often exhibit non-independence in both spatial and temporal dimensions,
rendering conventional statistical methods like ordinary linear regression unsuitable for
hierarchical data. Instead, multilevel statistical models, such as Hierarchical Linear Models,
Random Coefficient Models, Variance Component Models, and Mixed-Effects Models,
are necessary [62]. Some indicative approaches, such as the Generalized Linear Logis-
tic Regression [25], the generalized mixed-effects model [48,51], Bayesian hierarchical
models [49,54,63], Bayesian spatial mixed multivariable logistic regression [52], and the
mixed-effects Poisson regression model [50,53], have been widely used in SVD. For ex-
ample, Generalized Linear Logistic Regression was used to explored socioeconomic and
environmental factors influencing ASF outbreaks in the Russian Federation from 2007 to
2020 [25]. Additionally, in this study, Moran’s I was employed to assess spatial autocorre-
lation in both the response variable and residuals, ensuring that the model accounted for
spatial dependencies.

The spatial factors incorporated into SVD statistical models (Table 2) may vary depend-
ing on the spatial scale, the understanding of the disease epidemiology, the quantity and
quality of available data, and the background and experience of the modelers. The identi-
fied risk factors can be categorized into two main types: natural geographic factors and
human geographic factors. Specifically, natural geographic risk factors include aspects of
climate, such as humidity and wind speed, as well as temperature [38,54]. They also encom-
pass landscape and habitat features, including agriculture, forestry, and open-canopy pine,
prairie, and scrub habitats [46,48,64]. Additionally, wildlife risk factors such as wild boar
density and the appearance of raccoons, raccoon dogs, and crows are identified [48,49,51].
Human geographic risk factors can be divided into several categories. Farm and animal
density factors include pig density and pig farm density [39,50]. Transport and network
factors cover truck networks and animal movement networks [47,54]. Relationships with
infected areas involve proximity to previous SVD incidents, the importation of live pigs
from SVD-affected regions, the volume of pork products imported from affected regions,
and the presence of a common border with an SVD-affected region [25,48]. Lastly, the
individual level factors include age and personal consumption [52,53].

In spatial epidemiology, mathematical models incorporate spatial attributes such as in-
dividual locations and contact structures between individuals [65]. This allows for the study
of outcome distributions under various scenarios, including the promotion of vaccination,
improvement of health systems, modification of social structure and behavior, and imple-
mentation of health interventions. For example, the spatially explicit, individual-based
(SEIB) model, which integrates information on population distribution, movement, and en-
vironmental structure, has been extensively applied in various scenarios of SVD [55,66–69].
An SEIB model for ASFV was developed to estimate the impact of carcass-based transmis-
sion on the persistence of ASFV in European wild boar [55]. This study utilized a landscape
divided into 5 km × 5 km grid cells, covering a total area of 6000 square kilometers. The
model accounted for variations in the social structure of wild boar populations within each
grid cell, as well as their dispersal between cells. Martin Lange et al. [67] used the SEIB
model to evaluate the effectiveness of various spatiotemporal vaccination strategies for CSF.
The model accounts for both regional scale dynamics and individual infection processes.
Other typical mathematical models applied in SVD include Be-FAST [56], the North Amer-
ican Animal Disease Spread Model (NAADSM) [57], the spatial simulation in a gridded
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landscape based on cellular automata and susceptible–exposed–infected–recovered (SEIR)
model [58], and the Monte Carlo simulation method. These models focus on simulating the
transmission dynamics of SVD (Table 2). For instance, the Monte Carlo simulation method
has been employed to model the daily transmission of FMDV [70–72], CSF [31,73–85] and
PRRSV [86] between farms (or wild pig herds), as well as the effects of control measures,
including vaccination [71,87]. The rate of infection for each livestock farm is typically
modeled using a spatial transmission kernel [87–91], which illustrates how the infection
risk between susceptible and infected farms varies with distance. This kernel illustrates the
influence of spatial heterogeneity on the rate of epidemic spread. Since all transmission and
control mechanisms are spatially defined based on farm locations, this is termed a spatial,
dynamic, and stochastic epidemiological model, known as Interspersal models [59,92].

Recently, artificial intelligence (AI) has been applied to predict SVD. The Extreme
Gradient Boosting (XGBoost) machine learning model, combined with Synthetic Minority
Over-sampling Technique, was used to generate weekly PEDV predictions for sow farms
in the U.S., considering recent animal movements, current PEDV status of farms, environ-
mental factors (such as average temperature and humidity), and land use characteristics
(including hog density and land use proportions) [60]. Boosted regression trees (BRT) [42]
were utilized to relate the presence or absence of PRRS outbreaks at the sub-district level
to demographic characteristics of pig farming and other spatial epidemiological variables,
such as human population density and the number of farms with breeding sows.

4. Risk Mapping

Identifying risk factors is crucial for implementing targeted control measures and for
assessing disease risks across a given area. Geographic correlation analysis, which accounts
for both direct and indirect factors, enables comprehensive risk assessments and predictions
throughout the area of interest based on revealed geographic risk factors [93–95]. Therefore,
after statistical models are commonly used to identify risk factors, risk mapping is often
carried out. For example, Weerapong Thanapongtharm et al. [42] utilized autologistic
multiple regressions and boosted regression trees (BRT) to quantify the relationship between
PRRS presence and various risk factors, subsequently mapping the predicted probability of
PRRS occurrence in Thailand. Anastasia A. Glazunova et al. [25] mapped the predicted
probability of having an ASF outbreak in domestic pigs within the Samara oblast (Russian
Federation), based on socioeconomic and environmental factors revealed by Generalized
Linear Logistic Regression. Additionally, some methods are used to directly perform
risk mapping. For example, William A de Glanville et al. [96] predicted the continental
distribution of suitability for ASF persistence in domestic pig populations in Africa, using
spatial multi-criteria decision analysis, a method for determining the suitability of ASF
based on risk factors obtained through a literature review. Additionally, the maximum
entropy model has been extensively used to generate risk maps for SVD outbreaks, such as
predicting suitable areas for ASF in wild boars across northern Eurasia [35] and mapping
PRRS outbreak risks in swine farms in the Midwest region of the U.S. [97].

Similarly, after using mathematical methods to simulate the spatial transmission of
SVD, risk mapping can also be further developed. For example, Beatriz Martínez-López and
colleagues [31] utilized real pig farm distribution data in Bulgaria and employed Be-FAST
to simulate the daily spread of CSFV within specific farms and the transmission of CSFV
between farms. This model integrated a discrete-time stochastic Susceptible-Infectious (SI)
framework, accounting for spatial location, the demographics of farms, and their contact
patterns. They ultimately mapped the spatial distribution of CSFV in Bulgaria using the
Kernel density function. Similarly, the dynamic transmission process of CSFV within and
between pig farms was simulated by Be-FAST, with the results used to map the risk of
CSFV introduction through spatial interpolation in the Segovia province in Spain [56]. At
the prefectural level, either a distance-related gravity model or a neighborhood model
for CSF has been developed for the entirety of Japan [94]. This model considered factors
such as seasonality, agricultural damage data, county area, and forest area related to pig



Animals 2024, 14, 2814 11 of 18

population size and density. It then calculated and mapped the infection risk for both pig
and wild boar populations in each prefecture. This infection risk assessment was employed
to determine the geographic scope of pig farm vaccination, aiding in the formulation of
recommended vaccination policies.

When direct or indirect geographic spatial data are unavailable for the identified risk
factors, spatial interpolation can be employed for risk mapping. For instance, Satoshi Ito
et al. [51] utilized two spatial interpolation methods—inverse distance weighted (IDW)
and Kriging—to create a probability map illustrating wild boar occurrence across Gifu
Prefecture, Japan. While the study initially used generalized linear mixed models to identify
factors associated with wild boar emergence (such as raccoons, raccoon dogs, and road
density), accurately extrapolating these factors across the entire area using geographic
correlation analysis is challenging probably due to the lack of spatial data on raccoon and
raccoon dog distributions. It is crucial to note that spatial interpolation is unsuitable for
non-continuous (discrete or unevenly distributed) health or disease elements, such as ASF
outbreaks linked to farm locations and their culling or vaccination measures. Therefore,
caution should be exercised when applying spatial interpolation in such contexts.

5. The Geographical Distribution of Pathogens and Their Spatiotemporal Genetic
Evolutionary History

Spatial analysis extends into molecular epidemiology, integrating with genomics
and genetics to examine the geographical distribution of pathogen lineages and their
spatiotemporal genetic evolution. This approach, known as phylogenetic, phylodynamic,
or phylogeographic analysis, presents the evolutionary patterns of pathogens in a more
intuitive map form [98–102]. For swine viruses, current efforts primarily focus on mapping
displays. However, as data volumes increase, the potential of spatial analysis in uncovering
the spatiotemporal evolution of these pathogens merits further exploration.

6. Discussion

Epidemiological research at the geographic spatial scale can be significantly influenced
by data availability and methodological approaches, such as information loss, sampling
biases, cartographic confounding, and the modifiable areal unit problem [2]. These factors
can lead to biased or questionable research results and interpretations. For instance,
while maps are powerful tools for communicating spatial information, the method of
disease mapping is contingent upon the objectives of the cartographers, which in turn
affects the information accessible to readers. Variations in mapping techniques, such
as differing spatial scales, resolutions, or color schemes, can produce different visual
effects and potentially mislead interpretations [1,12]. Furthermore, the combined use of
different spatial analysis methods is often employed to reveal spatiotemporal distribution or
transmission patterns of diseases systematically. However, selecting multiple similar spatial
analysis methods for spatiotemporal pattern recognition does not necessarily enhance the
understanding of disease transmission patterns. Instead, it may result in inconsistent
findings due to differences in statistical approaches or a lack of deep comprehension of the
methodological assumptions. The expertise of cartographers or spatial analysts is crucial in
these processes, posing a particular challenge for grassroots veterinarians.

Geographic correlation studies in spatial epidemiology are often regarded as hypothesis-
generating [1], typically serving as an exploratory phase due to their limited support from
established theories. These studies are usually conducted in the early stages to identify
potential causes or patterns of disease, with the aim of guiding subsequent experimental
research. However, it is important to recognize that geographic correlation analysis is
not devoid of theoretical underpinnings. Insights can be drawn from fundamental geo-
graphic principles such as Tobler’s First Law of Geography [103,104], the Law of Spatial
Heterogeneity [104–106], and Zhu’s Geographic Similarity [107].

Tobler’s First Law of Geography asserts that “everything is related to everything
else, but near things are more related than distant things,” emphasizing the concept of
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spatial autocorrelation. This principle highlights that spatial phenomena exhibit stronger
relationships when they are geographically closer, and it forms the foundation for spatial au-
tocorrelation analysis and spatial interpolation, often represented mathematically through
semivariance functions and distance decay functions. The Law of Spatial Heterogeneity,
which states that “geographic variables exhibit uncontrolled variance,” underscores the
variability and differences inherent in spatial phenomena—spatial heterogeneity merits
further investigation. This heterogeneity is frequently modeled using techniques such as
window Kriging and categorical Kriging. Zhu’s Concept of Geographic Similarity posits
that “the more similar geographic configurations of two points (areas), the more similar the
values (processes) of the target variable at these two points (areas).” This principle provides
the theoretical foundation for spatial extrapolation, a critical aspect of spatial epidemiology
that involves mapping disease risk by extending epidemiological patterns from isolated
observations to entire regions.

Although geographic laws may not possess the precise mathematical definitions found
in the physical sciences, they offer a valuable framework for understanding and analyzing
geographic phenomena. These principles have been extensively validated and applied
across various fields including natural ecology, human society, and economics [108–111].
Health, encompassing both human and animal health, is intrinsically a geographical phe-
nomenon. Nonetheless, the application of geographic laws in health research, particularly
epidemiology, has been approached with caution. This caution likely arises from the fo-
cus on living variables rather than non-living entities. In the medical field, establishing
whether a geographic factor (e.g., particulate matter PM2.5) has a genuine impact on health
necessitates experimental research, such as randomized controlled trials, clinical trials, or
laboratory experiments involving cells or animals—these are considered the gold standards
for determining causal relationships.

A significant risk of hypothesis-generating is falling into overly simplistic or mis-
leading causal interpretations, a phenomenon known as the ecological fallacy [2,112].
Geographic correlation studies in epidemiology typically focus on large regions and broad
geographic units—such as landforms, climate zones, land use, culture, economy, politics,
and religion—alongside health group data. These studies aim to analyze population-
level health risks and propose epidemiological hypotheses at the group level, rather than
assessing individual health risks. The ultimate goal is to provide evidence-based recom-
mendations and strategies for macro-level prevention policies, environmental management,
planning, and healthcare resource allocation. However, individual health is influenced
by a myriad of factors, including macro-geographic elements and individual-specific fac-
tors such as genetics, demographics (e.g., gender, age, race, income), and lifestyle. These
individual-level factors may not be fully considered or are only indirectly represented in
large- and medium-scale geographic analyses. Consequently, there is a risk of misinter-
preting associations observed at the group level as applicable to individuals, which can
lead to ecological fallacy. Some experts suggest that to make inferences from group to
individual levels, geographic correlation studies should be conducted on local or small-
scale levels to reduce ecological bias, as the analysis would be closer to the individual
level [1]. Such analyses might ensure relative consistency in the geographic environment—
potentially leveraging Tobler’s First Law of Geography—thereby allowing for a more
nuanced examination of individual-level differences within a consistent environmental
context. Alternatively, on a larger regional scale, selecting individuals with consistent
individual-level characteristics (such as gender, age, and race) for observation can also
be effective. In this scenario, geographic correlation studies may resemble natural cohort
studies, case–control studies, or potential randomized controlled prevention or interven-
tion trials, where the intervention arises naturally from different geographic or cultural
environments rather than being artificially imposed.

To make geographic correlation analysis in spatial epidemiology more convincing, we
propose the following two strategies:
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1. Control for individual-level variables while examining natural or cultural geographic
factors affecting health spatial variation across large regions and scales. This approach
aims to identify health differences and influencing factors among similar individuals
in diverse geographic environments. This method requires the rigorous selection of
individuals and study areas.

2. Leverage the integrative nature of geography to conduct systematic studies on health
influences, comprehensively observing factors across various scales/levels (e.g.,
global, continental, national, climate zones, watersheds, cities, communities, streets,
individuals, etc.). This includes considering individual-level factors such as genetics
and demographics, micro-scale factors like microclimates and community greening,
meso-scale factors such as regional economy and transportation, and macro-scale
factors like climate change, national trade, and ecosystems. This approach challenges
the identification of sensitive levels and factors, data collection, and data processing
capabilities.

The spatial epidemiological methods utilized in the context of swine viral diseases
are broadly applicable across various types of epidemics and have seen widespread
adoption [2,4]. The spatiotemporal pattern recognition techniques referenced in this paper
demonstrate generalizability, with no apparent limitations when applied to other disease
categories. However, given the unique transmission dynamics and pathways of each dis-
ease, the application of tools for risk factor identification necessitates careful consideration
of disease-specific transmission characteristics. This includes the selection of appropriate
influencing factors and the identification of key parameters within the mathematical models
tailored to the particular epidemiological context.

7. Conclusions and Future Perspectives

The primary objectives of the application of spatial epidemiology in SVD encompass
displaying and elucidating spatiotemporal distribution patterns, identifying spatial risk
factors, risk mapping, and tracing the spatiotemporal evolution of pathogens. In this
paper, we categorized various spatial analysis methods based on these objectives and
provided detailed interpretations of their application in SVD. Special attention was given to
considerations for reliable application and critical issues such as hypothesis generation. This
comprehensive approach aims to enhance the broader and more sophisticated application
of spatial epidemiology in the study and management of SVD.

With advancements in technologies such as artificial intelligence and evolving concepts
like One Health, we outline the future directions for spatial epidemiology in the study
of SVD:

1. Syndemics research

Epidemics often result from the interplay of various environmental factors, includ-
ing natural and social influences. Conversely, the integrated environmental context can
influence the coexistence and spread of multiple epidemics, such as the co-infections of
ASFV and CSFV. The study of synergistic effects among multiple epidemics has garnered
significant attention, with spatial epidemiology offering a valuable technical framework
for exploring the complex interactions of these epidemics within different natural and
social contexts.

2. Temporal–spatial tracing research

Traditional epidemiological studies such as cross-sectional studies, case–control stud-
ies, and cohort studies rarely incorporate geographical location information into their study
designs. They often rely on measuring the influence of backgrounds based on residential
environments and static spatiotemporal factors [4].

In the field of non-communicable diseases, spatial lifecourse epidemiology [113] is
gaining increasing attention. This approach aims to leverage advanced spatial and location-
based technologies, such as earth observation, sensors, smartphone apps, and the Internet
of Things (IoT), to investigate how environmental and other spatial factors (e.g., spatial
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accessibility) influence individual behaviors and health outcomes. We propose extending
this concept to the spatial epidemiology of SVD by conducting continuous location-based
monitoring of domestic pigs, farm pigs, and wild boars from the preconception period to
disease endpoints. This would include tracking the transport and trade of pigs, as well
as interactions between local pigs and wildlife. The focus shifts from merely responding
to outbreaks to understanding prior exposures, which aids in identifying causes and
determining the optimal times and locations for interventions.

This approach aligns closely with the One Health [114] philosophy, which recognizes
the interconnectedness and interdependence of the health of humans, domestic and wild an-
imals, plants, and the broader environment, including ecosystems. One Health emphasizes
cross-sectoral, interdisciplinary, and cross-community collaboration at the human–animal–
environment interface. When applying the One Health framework to SVD, research should
focus on understanding the anthropogenic and ecological drivers of virus spillover from
wild hosts to domestic pigs, identifying potential sources of contamination such as feed,
water, vehicles, and personnel, and developing upstream, environment-targeted interven-
tion strategies based on these insights. These efforts are inherently spatial and require the
integration of spatial epidemiology techniques.
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