Diversity of Marek’s Disease Virus Strains in Infections in Backyard and Ornamental Birds
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Clinical Cases and Molecular Detection of Oncogenic Viruses
- Case 1: A 12-week-old backyard hen from a flock of 40 birds exhibited symptoms of apathy, anorexia, and facial cyanosis. Upon examination, multiple visceral tumors, polyneuritis, splenomegaly, hepatomegaly, and thymic atrophy were observed. The flock experienced a morbidity rate of 50% and a mortality rate of 10%.
- Case 2: A 3-month-old Indian Giant hen from a flock of 160 birds exhibited symptoms of apathy, anorexia, and paralysis. Upon examination, splenomegaly and hepatomegaly were observed. The flock experienced a mortality rate of 23%, primarily due to sudden deaths.
- Case 3: A 2-year-old red junglefowl rooster (Gallus gallus bankiva) from a flock of 100 birds exhibited symptoms of apathy, anorexia, and paralysis. Upon examination, splenomegaly, hepatomegaly, and multiple visceral tumors were observed. Each bird in this flock was individually housed. Only two roosters were affected, with morbidity and mortality rates of 2% each.
- Case 4: A 35-week-old backyard hen was found dead without exhibiting any obvious signs in the preceding days. Upon examination, visceral tumors were observed. The bird had been vaccinated with a dose of HVT on its first day of life. This was the only affected bird in the flock (the total number of birds in the flock was not recorded).
- Case 5: A 4-year-old female Indian peafowl (Pavo cristatus) exhibited symptoms of apathy, anorexia, paralysis, and facial cyanosis. A complete blood count suggested myelophthisis of lymphoid cells and revealed normocytic, normochromic anemia, along with a leukogram that showed leukocytosis, heterophilia, lymphocytosis, eosinophilia, and monocytosis, with 7% atypical lymphocytes, 5% large lymphocytes, and some heterophils with accentuated toxic granulation. The platelet count was normal. A radiographic examination revealed osteopenia and bone density loss, mainly in the pelvic region. Among the three Indian peafowl housed together, this was the only one that showed clinical signs. The bird died a few days after examination.
- Case 6: A one-year-old Silkie rooster exhibited neurological symptoms, including altered proprioception and intermittent imbalance. Among the three Silkie chickens housed together, this was the only one that showed clinical signs. The bird made a full recovery two weeks after examination.
- Case 7: A backyard rooster exhibited symptoms of apathy and paralysis. This was the only affected bird in the flock (the total number of birds in the flock was not recorded). The bird made a full recovery a few weeks after the examination.
Case | ID | Host | Comon Name | Year | City/Country | Sample | MD Form |
---|---|---|---|---|---|---|---|
1 | USP-386 | Gallus gallus domesticus | Creole Hen | 2010 | São Paulo/Brazil | Liver + Spleen | Visceral |
2 | USP-1171 | Gallus gallus domesticus | Indian Giant | 2018 | São Paulo/Brazil | Liver + Spleen + Sciatic nerves | Neural |
3 | USP-1540 | Gallus gallus bankiva | Red Junglefowl | 2019 | Lima/Peru | Spleen A | Visceral |
4 | USP-1790 | Gallus gallus domesticus | Creole Hen | 2020 | São Paulo/Brazil | Liver + Lungs | Visceral |
5 | USP-1873 | Pavo cristatus | Indian Peafowl | 2020 | São Paulo/Brazil | Blood A | Neural |
6 | USP-2429 | Gallus gallus domesticus | Silkie Chicken | 2022 | São Paulo/Brazil | Feathers | Neural |
7 | USP-2583 | Gallus gallus domesticus | Creole Hen | 2022 | São Paulo/Brazil | Feathers | Neural |
2.2. Meq Gene Sequencing
2.3. Phylogenetic Analysis
2.4. Selection Pressure Analysis
3. Results
3.1. Molecular Detection of Oncogenic Viruses
3.2. Sequence and Phylogenetic Analysis of Meq Gene
3.3. Selection Pressure Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nair, V.; Gimeno, I.; Dunn, J.; Zavala, G.; Williams, S.M.; Reece, R.L.; Hafner, S. Neoplastic Diseases. In Diseases of Poultry; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2020; pp. 548–715. ISBN 978-1-119-37119-9. [Google Scholar]
- Souci, L.; Denesvre, C. Interactions between Avian Viruses and Skin in Farm Birds. Vet. Res. 2024, 55, 54. [Google Scholar] [CrossRef] [PubMed]
- ICTV. Current ICTV Taxonomy Release|ICTV. Available online: https://ictv.global/taxonomy (accessed on 30 July 2024).
- Kaleta, E.F.; Docherty, D.E. Avian Herpesviruses. In Infectious Diseases of Wild Birds; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2007; pp. 63–86. ISBN 978-0-470-34466-8. [Google Scholar]
- Osterrieder, N.; Kamil, J.P.; Schumacher, D.; Tischer, B.K.; Trapp, S. Marek’s Disease Virus: From Miasma to Model. Nat. Rev. Microbiol. 2006, 4, 283–294. [Google Scholar] [CrossRef] [PubMed]
- Witter, R.L.; Calnek, B.W.; Buscaglia, C.; Gimeno, I.M.; Schat, K.A. Classification of Marek’s Disease Viruses According to Pathotype: Philosophy and Methodology. Avian Pathol. 2005, 34, 75–90. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.C.D.; Marin, S.Y.; Costa, C.S.; Martins, N.R.S. An Overview on Marek’s Disease Virus Evolution and Evidence for Increased Virulence in Brazil. Braz. J. Poult. Sci. 2019, 21, eRBCA. [Google Scholar] [CrossRef]
- Chacón, R.D.; Sánchez-Llatas, C.J.; L Pajuelo, S.; Diaz Forero, A.J.; Jimenez-Vasquez, V.; Médico, J.A.; Soto-Ugaldi, L.F.; Astolfi-Ferreira, C.S.; Piantino Ferreira, A.J. Molecular Characterization of the Meq Oncogene of Marek’s Disease Virus in Vaccinated Brazilian Poultry Farms Reveals Selective Pressure on Prevalent Strains. Vet. Q. 2024, 44, 1–13. [Google Scholar] [CrossRef]
- López-Osorio, S.; Piedrahita, D.; Espinal-Restrepo, M.A.; Ramírez-Nieto, G.C.; Nair, V.; Williams, S.M.; Baigent, S.; Ventura-Polite, C.; Aranzazu-Taborda, D.A.; Chaparro-Gutiérrez, J.J. Molecular Characterization of Marek’s Disease Virus in a Poultry Layer Farm from Colombia. Poult. Sci. 2017, 96, 1598–1608. [Google Scholar] [CrossRef]
- López-Osorio, S.; Villar, D.; Piedrahita, D.; Ramírez-Nieto, G.; Nair, V.; Baigent, S.; Chaparro-Gutiérrez, J. Molecular Detection of Marek’s Disease Virus in Feather and Blood Samples from Young Laying Hens in Colombia. Acta Virol. 2019, 63, 380–391. [Google Scholar] [CrossRef]
- Chacón, R.D.; Astolfi-Ferreira, C.S.; Guimarães, M.B.; Torres, L.N.; De la Torre, D.I.; de Sá, L.R.M.; Piantino Ferreira, A.J. Detection and Molecular Characterization of a Natural Coinfection of Marek’s Disease Virus and Reticuloendotheliosis Virus in Brazilian Backyard Chicken Flock. Vet. Sci. 2019, 6, 92. [Google Scholar] [CrossRef]
- Mescolini, G.; Lupini, C.; Felice, V.; Guerrini, A.; Silveira, F.; Cecchinato, M.; Catelli, E. Molecular Characterization of the Meq Gene of Marek’s Disease Viruses Detected in Unvaccinated Backyard Chickens Reveals the Circulation of Low- and High-Virulence Strains. Poult. Sci. 2019, 98, 3130–3137. [Google Scholar] [CrossRef]
- Abtin, A.; Molouki, A.; Eshtartabadi, F.; Akhijahani, M.M.; Roohani, K.; Ghalyanchilangeroudi, A.; Lim, S.H.E.; Abdoshah, M.; Shoushtari, A. Phylogenetic Analyses on Marek’s Disease Virus Circulating in Iranian Backyard and Commercial Poultry Indicate Viruses of Different Origin. Braz. J. Microbiol. 2022, 53, 1683–1689. [Google Scholar] [CrossRef]
- Mescolini, G.; Lupini, C.; Di Francesco, A.; Davidson, I.; Felice, V.; Bellinati, L.; Cecchinato, M.; Catelli, E. Marek’s Disease in Genetically Susceptible Cochin Chickens in Italy: A Case Report. Vet. Ital. 2022, 58, 117–124. [Google Scholar] [CrossRef]
- Molouki, A.; Ghalyanchilangeroudi, A.; Abdoshah, M.; Shoushtari, A.; Abtin, A.; Eshtartabadi, F.; Mahmoudzadeh Akhijahani, M.; Ziafatikafi, Z.; Babaeimarzango, S.S.; Allahyari, E.; et al. Report of a New Meq Gene Size: The First Study on Genetic Characterisation of Marek’s Disease Viruses Circulating in Iranian Commercial Layer and Backyard Chicken. Br. Poult. Sci. 2022, 63, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Tulman, E.R.; Afonso, C.L.; Lu, Z.; Zsak, L.; Rock, D.L.; Kutish, G.F. The Genome of a Very Virulent Marek’s Disease Virus. J. Virol. 2000, 74, 7980–7988. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.-S.; Ohashi, K.; Onuma, M. Diversity (Polymorphism) of the Meq Gene in the Attenuated Marek’s Disease Virus (MDV) Serotype 1 and MDV-Transformed Cell Lines. J. Vet. Med. Sci. 2002, 64, 1097–1101. [Google Scholar] [CrossRef]
- Lee, S.I.; Takagi, M.; Ohashi, K.; Sugimoto, C.; Onuma, M. Difference in the Meq Gene between Oncogenic and Attenuated Strains of Marek’s Disease Virus Serotype 1. J. Vet. Med. Sci. 2000, 62, 287–292. [Google Scholar] [CrossRef]
- Shamblin, C.E.; Greene, N.; Arumugaswami, V.; Dienglewicz, R.L.; Parcells, M.S. Comparative Analysis of Marek’s Disease Virus (MDV) Glycoprotein-, Lytic Antigen Pp38- and Transformation Antigen Meq-Encoding Genes: Association of Meq Mutations with MDVs of High Virulence. Vet. Microbiol. 2004, 102, 147–167. [Google Scholar] [CrossRef]
- Renz, K.G.; Cooke, J.; Clarke, N.; Cheetham, B.F.; Hussain, Z.; Fakhrul Islam, A.F.M.; Tannock, G.A.; Walkden-Brown, S.W. Pathotyping of Australian Isolates of Marek’s Disease Virus and Association of Pathogenicity with Meq Gene Polymorphism. Avian Pathol. 2012, 41, 161–176. [Google Scholar] [CrossRef]
- Murata, S.; Chang, K.-S.; Yamamoto, Y.; Okada, T.; Lee, S.-I.; Konnai, S.; Onuma, M.; Osa, Y.; Asakawa, M.; Ohashi, K. Detection of the Virulent Marek’s Disease Virus Genome from Feather Tips of Wild Geese in Japan and the Far East Region of Russia. Arch. Virol. 2007, 152, 1523–1526. [Google Scholar] [CrossRef]
- Murata, S.; Hayashi, Y.; Kato, A.; Isezaki, M.; Takasaki, S.; Onuma, M.; Osa, Y.; Asakawa, M.; Konnai, S.; Ohashi, K. Surveillance of Marek’s Disease Virus in Migratory and Sedentary Birds in Hokkaido, Japan. Vet. J. 2012, 192, 538–540. [Google Scholar] [CrossRef]
- Blume, G.R.; Cardoso, S.P.; Oliveira, M.L.B.; Matiolli, M.P.; Gómez, S.Y.M.; Reis Júnior, J.L.; Sant’Ana, F.J.F.; Martins, N.R.S. Visceral Marek’s Disease in White-Peafowl (Pavo Cristatus). Arq. Bras. Med. Vet. Zootec. 2016, 68, 1602–1608. [Google Scholar] [CrossRef]
- Lian, X.; Ming, X.; Xu, J.; Cheng, W.; Zhang, X.; Chen, H.; Ding, C.; Jung, Y.-S.; Qian, Y. First Molecular Detection and Characterization of Marek’s Disease Virus in Red-Crowned Cranes (Grus Japonensis): A Case Report. BMC Vet. Res. 2018, 14, 122. [Google Scholar] [CrossRef] [PubMed]
- Wilson, L.A.; Lewis, M.; Baigent, S.J.; Abate, V.; Dolega, B.A.; Morrison, L.R.; Poulos, C.; Walker, D. Marek’s Disease in an Indian Peafowl (Pavo Cristatus) with Clinical Ocular Disease and Paraparesis. J. Comp. Pathol. 2022, 195, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Gimeno, I.M.; Dunn, J.R.; Cortes, A.L.; El-Gohary, A.E.-G.; Silva, R.F. Detection and Differentiation of CVI988 (Rispens Vaccine) from Other Serotype 1 Marek’s Disease Viruses. Avian Dis. 2014, 58, 232–243. [Google Scholar] [CrossRef] [PubMed]
- Gopal, S.; Manoharan, P.; Kathaperumal, K.; Chidambaram, B.; Divya, K.C. Differential Detection of Avian Oncogenic Viruses in Poultry Layer Farms and Turkeys by Use of Multiplex PCR. J. Clin. Microbiol. 2012, 50, 2668–2673. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Rozewicki, J.; Yamada, K.D. MAFFT Online Service: Multiple Sequence Alignment, Interactive Sequence Choice and Visualization. Brief. Bioinform. 2019, 20, 1160–1166. [Google Scholar] [CrossRef]
- Darriba, D.; Posada, D.; Kozlov, A.M.; Stamatakis, A.; Morel, B.; Flouri, T. ModelTest-NG: A New and Scalable Tool for the Selection of DNA and Protein Evolutionary Models. Mol. Biol. Evol. 2020, 37, 291–294. [Google Scholar] [CrossRef]
- Kozlov, A.M.; Darriba, D.; Flouri, T.; Morel, B.; Stamatakis, A. RAxML-NG: A Fast, Scalable and User-Friendly Tool for Maximum Likelihood Phylogenetic Inference. Bioinformatics 2019, 35, 4453–4455. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v6: Recent Updates to the Phylogenetic Tree Display and Annotation Tool. Nucleic Acids Res. 2024, 52, W78–W82. [Google Scholar] [CrossRef]
- Weaver, S.; Shank, S.D.; Spielman, S.J.; Li, M.; Muse, S.V.; Kosakovsky Pond, S.L. Datamonkey 2.0: A Modern Web Application for Characterizing Selective and Other Evolutionary Processes. Mol. Biol. Evol. 2018, 35, 773–777. [Google Scholar] [CrossRef]
- Ongor, H.; Timurkaan, N.; Abayli, H.; Karabulut, B.; Kalender, H.; Tonbak, S.; Eroksuz, H.; Çetinkaya, B. First Report of Serotype-1 Marek’s Disease Virus (MDV-1) with Oncogenic Form in Backyard Turkeys in Turkey: A Molecular Analysis Study. BMC Vet. Res. 2022, 18, 30. [Google Scholar] [CrossRef]
- Viet Thu, H.T.; Trang, H.N.; Phuoc Chien, N.T.; Ngu, N.T.; Hien, N.D. Occurrence of Marek’s Disease in Backyard Chicken Flocks in Vietnam. Avian Dis. 2022, 66, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Weiss, R.A.; Biggs, P.M. Leukosis and Marek’s Disease Viruses of Feral Red Jungle Flow and Domestic Fowl in Malaya. J. Natl. Cancer Inst. 1972, 49, 1713–1725. [Google Scholar] [CrossRef] [PubMed]
- Cho, B.R.; Kenzy, S.G. Virologic and Serologic Studies of Zoo Birds for Marek’s Disease Virus Infection. Infect. Immun. 1975, 11, 809–814. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.A.; Kitagawa, H.; Ono, M.; Iwanaga, R.; Kodama, H.; Mikami, T. Isolation of Serotype 2 Marek’s Disease Virus from Birds Belonging to Genus Gallus in Japan. Avian Dis. 1990, 34, 336–344. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Qu, Y.; Wang, T.; Wang, G.; Wang, F.; Liu, S. Skin Involvement in Lymphomas Caused by Marek’s Disease Virus Infection in Silkie Chickens. J. Vet. Diagn. Investig. 2014, 26, 302–307. [Google Scholar] [CrossRef]
- Fiddaman, S.R.; Dimopoulos, E.A.; Lebrasseur, O.; du Plessis, L.; Vrancken, B.; Charlton, S.; Haruda, A.F.; Tabbada, K.; Flammer, P.G.; Dascalu, S.; et al. Ancient Chicken Remains Reveal the Origins of Virulence in Marek’s Disease Virus. Science 2023, 382, 1276–1281. [Google Scholar] [CrossRef]
- Sun, G.-R.; Zhang, Y.-P.; Zhou, L.-Y.; Lv, H.-C.; Zhang, F.; Li, K.; Gao, Y.-L.; Qi, X.-L.; Cui, H.-Y.; Wang, Y.-Q.; et al. Co-Infection with Marek’s Disease Virus and Reticuloendotheliosis Virus Increases Illness Severity and Reduces Marek’s Disease Vaccine Efficacy. Viruses 2017, 9, 158. [Google Scholar] [CrossRef]
- Du, X.; Zhou, D.; Zhou, J.; Xue, J.; Cheng, Z. Marek’s Disease Virus and Reticuloendotheliosis Virus Coinfection Enhances Viral Replication and Alters Cellular Protein Profiles. Front. Vet. Sci. 2022, 9, 854007. [Google Scholar] [CrossRef]
- Caleiro, G.S.; Nunes, C.F.; Urbano, P.R.; Kirchgatter, K.; de Araujo, J.; Durigon, E.L.; Thomazelli, L.M.; Stewart, B.M.; Edwards, D.C.; Romano, C.M. Detection of Reticuloendotheliosis Virus in Muscovy Ducks, Wild Turkeys, and Chickens in Brazil. J. Wildl. Dis. 2020, 56, 631–635. [Google Scholar] [CrossRef]
- Chacón, R.D.; Astolfi-Ferreira, C.S.; De la Torre, D.I.; de Sá, L.R.M.; Piantino Ferreira, A.J. An Atypical Clinicopathological Manifestation of Fowlpox Virus Associated with Reticuloendotheliosis Virus in Commercial Laying Hen Flocks in Brazil. Transbound. Emerg. Dis. 2020, 67, 2923–2935. [Google Scholar] [CrossRef]
- Chacón, R.D.; Sedano-Herrera, B.; Alfaro-Espinoza, E.R.; Quispe, W.U.; Liñan-Torres, A.; De la Torre, D.; de Oliveira, A.; Astolfi-Ferreira, C.S.; Ferreira, A.J.P. Complete Genome Characterization of Reticuloendotheliosis Virus Detected in Chickens with Multiple Viral Coinfections. Viruses 2022, 14, 798. [Google Scholar] [CrossRef]
- Motai, Y.; Murata, S.; Sato, J.; Nishi, A.; Maekawa, N.; Okagawa, T.; Konnai, S.; Ohashi, K. Characterization of a Very Short Meq Protein Isoform in a Marek’s Disease Virus Strain in Japan. Vet. Sci. 2024, 11, 43. [Google Scholar] [CrossRef] [PubMed]
- Conradie, A.M.; Bertzbach, L.D.; Bhandari, N.; Parcells, M.; Kaufer, B.B. A Common Live-Attenuated Avian Herpesvirus Vaccine Expresses a Very Potent Oncogene. mSphere 2019, 4, e00658-19. [Google Scholar] [CrossRef] [PubMed]
- Sato, J.; Murata, S.; Yang, Z.; Kaufer, B.B.; Fujisawa, S.; Seo, H.; Maekawa, N.; Okagawa, T.; Konnai, S.; Osterrieder, N.; et al. Effect of Insertion and Deletion in the Meq Protein Encoded by Highly Oncogenic Marek’s Disease Virus on Transactivation Activity and Virulence. Viruses 2022, 14, 382. [Google Scholar] [CrossRef]
- Wajid, S.J.; Katz, M.E.; Renz, K.G.; Walkden-Brown, S.W. Prevalence of Marek’s Disease Virus in Different Chicken Populations in Iraq and Indicative Virulence Based on Sequence Variation in the ecoRI-q (Meq) Gene. Avian Dis. 2013, 57, 562–568. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-P.; Lv, H.-C.; Bao, K.-Y.; Gao, Y.-L.; Gao, H.-L.; le Qi, X.-; Cui, H.-Y.; Wang, Y.-Q.; Li, K.; Gao, L.; et al. Molecular and Pathogenicity Characterization of Gallid Herpesvirus 2 Newly Isolated in China from 2009 to 2013. Virus Genes 2016, 52, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Murata, S.; Hashiguchi, T.; Hayashi, Y.; Yamamoto, Y.; Matsuyama-Kato, A.; Takasaki, S.; Isezaki, M.; Onuma, M.; Konnai, S.; Ohashi, K. Characterization of Meq Proteins from Field Isolates of Marek’s Disease Virus in Japan. Infect. Genet. Evol. 2013, 16, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Padhi, A.; Parcells, M.S. Positive Selection Drives Rapid Evolution of the Meq Oncogene of Marek’s Disease Virus. PLoS ONE 2016, 11, e0162180. [Google Scholar] [CrossRef]
- Brown, A.C.; Smith, L.P.; Kgosana, L.; Baigent, S.J.; Nair, V.; Allday, M.J. Homodimerization of the Meq Viral Oncoprotein Is Necessary for Induction of T-Cell Lymphoma by Marek’s Disease Virus. J. Virol. 2009, 83, 11142–11151. [Google Scholar] [CrossRef]
- Lee, L.F.; Liu, J.-L.; Cui, X.-P.; Kung, H.-J. Marek’s Disease Virus Latent Protein MEQ: Delineation of an Epitope in the BR1 Domain Involved in Nuclear Localization. Virus Genes. 2003, 27, 211–218. [Google Scholar] [CrossRef]
- Sun, B.; Wang, Y.; Wang, Z.; Lu, S.; Xia, C. Structural and Immunological Identification and Antiviral Infection Experiment of the Dominant Cytotoxic T Lymphocyte Epitopes of the Oncogenic Marek’s Disease Virus. bioRxiv 2021. [Google Scholar] [CrossRef]
- Chacón, J.L.; Chacón, R.D.; Sánchez-Llatas, C.J.; Morín, J.G.; Astolfi-Ferreira, C.S.; Piantino Ferreira, A.J. Antigenic and Molecular Characterization of Isolates of the Brazilian Genotype BR-I (GI-11) of Infectious Bronchitis Virus Supports Its Recognition as BR-I Serotype. Avian Pathol. 2023, 52, 323–338. [Google Scholar] [CrossRef] [PubMed]
- Chacón, R.D.; Sánchez-Llatas, C.J.; Diaz Forero, A.J.; Guimarães, M.B.; Pajuelo, S.L.; Astolfi-Ferreira, C.S.; Ferreira, A.J.P. Evolutionary Analysis of a Parrot Bornavirus 2 Detected in a Sulphur-Crested Cockatoo (Cacatua Galerita) Suggests a South American Ancestor. Animals 2023, 14, 47. [Google Scholar] [CrossRef] [PubMed]
- Cecchinato, M.; Comin, A.; Bonfanti, L.; Terregino, C.; Monne, I.; Lorenzetto, M.; Marangona, S. Epidemiology and Control of Low Pathogenicity Avian Influenza Infections in Rural Poultry in Italy. Avian Dis. 2011, 55, 13–20. [Google Scholar] [CrossRef]
Case | ID | MDV | ALV | REV |
---|---|---|---|---|
1 | USP-386 | + | − | + |
2 | USP-1171 | + | − | − |
3 | USP-1540 | + | − | − |
4 | USP-1790 | + | − | − |
5 | USP-1873 | + | − | − |
6 | USP-2429 | + | − | − |
7 | USP-2583 | + | − | − |
meq Domain ➔ | BR | ZIP | TAD | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Amino Acid Site A ➔ | 71 | 77 | 80 | 110 | 115 | 119 | 139 | 151 | 153 | 176 | 180 | 182 | 194 | 216 | 217 | 277 | 283 | 320 | 326 | 337 | |||
Strain | Pathotype | Size B (aa) | PRRs N(N°) | A | E | Y | C | A | C | A | T | P | P | T | E | P | P | P | L | A | I | T | G |
814 | att | 398 | 7 | S | K | D | * | * | * | T | * | * | * | * | * | - | * | * | * | * | * | * | * |
CVI988 | att | 398 | 7 | S | * | D | * | V | * | T | * | * | * | * | * | - | * | * | * | * | * | I | * |
CU-2 | mMDV | 398 | 7 | S | * | D | * | V | * | T | * | * | * | * | * | - | * | * | * | * | * | * | * |
BC-1 | vMDV | 398 | 7 | S | A | D | * | * | * | T | * | * | * | * | * | - | * | * | * | * | * | * | * |
FT158 | vMDV | 398 | 5 | S | A | A | * | * | * | T | * | * | * | * | * | - | * | A | * | * | * | * | * |
MPF57 | vMDV | 398 | 5 | S | A | A | * | * | * | T | * | * | * | * | * | - | * | A | * | * | * | * | * |
02LAR | vMDV | 398 | 5 | S | A | D | * | * | * | T | * | * | * | * | * | - | * | A | * | * | * | * | * |
JM/102W | vMDV | 399 | 7 | * | * | D | * | V | * | T | * | * | * | * | * | * | S | * | * | * | * | * | * |
04CRE | vMDV | 398 | 5 | S | A | D | * | * | * | T | * | * | * | * | * | - | * | A | * | * | * | * | * |
GA | vMDV | 339 | 5 | * | K | D | * | V | * | T | * | * | * | * | * | * | * | * | * | * | * | * | * |
571 | vMDV | 339 | 4 | * | * | * | * | * | * | T | * | * | H | * | * | * | * | * | * | * | * | * | * |
617A | vMDV | 339 | 4 | * | * | * | * | V | R | T | * | * | * | * | * | * | * | A | * | * | * | * | * |
Woodlans1 | vvMDV | 398 | 5 | S | A | A | * | * | * | T | * | * | * | * | * | - | * | A | * | * | * | * | * |
Md5 | vvMDV | 339 | 4 | * | K | D | * | V | * | T | * | * | * | * | * | * | * | A | * | V | T | * | * |
549 | vvMDV | 339 | 2 | * | K | D | * | V | R | T | * | Q | A | A | * | * | * | A | * | * | * | * | * |
595 | vvMDV | 339 | 2 | * | K | D | * | V | R | T | * | Q | A | A | * | * | * | A | * | * | * | * | * |
643P | vvMDV | 339 | 2 | * | K | D | * | V | R | T | * | Q | A | A | * | * | * | A | F | * | * | * | * |
RB-1B | vvMDV | 339 | 5 | * | K | D | * | V | * | T | * | * | * | * | * | * | * | * | * | * | * | * | * |
W | vv+MDV | 339 | 4 | * | K | D | * | V | * | T | * | * | * | * | * | * | * | A | * | V | T | * | * |
New | vv+MDV | 339 | 2 | * | K | D | * | V | R | T | * | Q | A | * | * | * | * | A | * | V | T | * | * |
X | vv+MDV | 339 | 2 | * | K | D | * | V | R | T | * | Q | A | A | * | * | * | A | * | * | * | * | * |
648A | vv+MDV | 339 | 2 | * | K | D | * | V | R | T | * | Q | A | A | * | * | * | A | P | * | * | * | * |
USP-386 | 339 | 5 | * | * | * | * | * | * | T | * | * | * | * | * | * | * | * | * | * | * | * | * | |
USP-1171 | 298 | 2 | * | * | * | S | V | * | T | I | * | A | A | - | - | - | - | * | * | * | * | * | |
USP-1540 | 398 | 7 | S | * | D | * | V | * | T | * | * | * | * | * | - | * | * | * | * | * | * | * | |
USP-1790 | 398 | 7 | S | * | V | * | * | * | T | * | * | * | * | * | - | * | * | * | * | * | * | E | |
USP-1873 | 398 | 7 | S | * | D | * | V | * | T | * | * | * | * | * | - | * | * | * | * | * | * | * | |
USP-2429 | 339 | 3 | * | * | * | S | V | * | T | I | * | A | A | D | * | * | A | * | * | * | * | * | |
USP-1015 (G. I) | 338 | 3 | * | K | D | * | * | * | T | * | L | * | * | * | - | * | * | * | * | * | * | * | |
USP-1284 (G. II) | 339 | 5 | * | * | * | * | * | * | T | * | * | * | * | * | * | * | * | * | * | * | * | * | |
USP-1328 (G. III) | 339 | 4 | * | K | D | * | * | * | T | * | L | * | * | * | * | * | * | * | * | * | * | * | |
USP-1879 (G. IV) | 398 | 7 | S | * | D | * | V | * | T | * | * | * | * | * | - | * | * | * | * | * | I | * |
Positive Selection | Negative Selection | |||||||
---|---|---|---|---|---|---|---|---|
Codon Position | FUBAR A Probability α < β | SLAC B P-[dN/dS > 1] | FEL B p Value | MEME B p Value | Codon Position | FUBAR A Probability α > β | SLAC B P-[dN/dS < 1] | FEL B p Value |
3 | 0.00 | 49 | 0.999 | 0.00137 | 0.0013 | |||
71 | 0.966 | 0.0448 | 0.06 | 51 | 0.0311 | |||
77 | 0.968 | 55 | 0.0561 | |||||
80 | 0.952 | 76 | 0.0741 | |||||
88 | 0.987 | 0.0239 | 0.02 | 81 | 0.0932 | |||
101 | 0.905 | 106 | 0.0922 | |||||
110 | 0.971 | 0.0827 | 0.07 | 114 | 0.923 | 0.0904 | ||
139 | 0.920 | 135 | 0.0419 | |||||
151 | 0.907 | 0.0849 | 182 | 0.966 | 0.0343 | 0.0329 | ||
176 | 0.999 | 0.0177 | 0.0013 | 0.00 | 208 | 0.970 | 0.0370 | 0.0176 |
180 | 0.963 | 0.0589 | 0.08 | 225 | 0.0778 | |||
194 | 0.928 | 0.0724 | 0.09 | 253 | 0.975 | 0.0370 | 0.0080 | |
203 | 0.03 | 269 | 0.995 | 0.0153 | 0.0031 | |||
205 | 0.00 | 298 | 0.997 | 0.00691 | 0.0009 | |||
217 | 0.995 | 0.0878 | 0.0118 | 0.00 | 333 | 0.0659 | ||
277 | 0.08 | |||||||
285 | 0.01 | |||||||
329 | 0.00 | |||||||
339 | 0.927 | 0.0714 | 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chacón, R.D.; Sánchez-Llatas, C.J.; Astolfi-Ferreira, C.S.; Raso, T.F.; Piantino Ferreira, A.J. Diversity of Marek’s Disease Virus Strains in Infections in Backyard and Ornamental Birds. Animals 2024, 14, 2867. https://doi.org/10.3390/ani14192867
Chacón RD, Sánchez-Llatas CJ, Astolfi-Ferreira CS, Raso TF, Piantino Ferreira AJ. Diversity of Marek’s Disease Virus Strains in Infections in Backyard and Ornamental Birds. Animals. 2024; 14(19):2867. https://doi.org/10.3390/ani14192867
Chicago/Turabian StyleChacón, Ruy D., Christian J. Sánchez-Llatas, Claudete S. Astolfi-Ferreira, Tânia Freitas Raso, and Antonio J. Piantino Ferreira. 2024. "Diversity of Marek’s Disease Virus Strains in Infections in Backyard and Ornamental Birds" Animals 14, no. 19: 2867. https://doi.org/10.3390/ani14192867
APA StyleChacón, R. D., Sánchez-Llatas, C. J., Astolfi-Ferreira, C. S., Raso, T. F., & Piantino Ferreira, A. J. (2024). Diversity of Marek’s Disease Virus Strains in Infections in Backyard and Ornamental Birds. Animals, 14(19), 2867. https://doi.org/10.3390/ani14192867