Chlorogenic Acid Plays an Important Role in Improving the Growth and Antioxidant Status and Weakening the Inflammatory Response of Largemouth Bass (Micropterus salmoides)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Diet Formulation
2.2. Feeding Procedure
2.3. Sample Collection
2.4. Laboratory Trial Analysis
2.5. Real-Time Quantitative PCR Analysis
2.6. Data Analysis
3. Results
3.1. Growth Performance
3.2. Whole-Body Composition
3.3. Plasma Parameters
3.4. Hepatic Antioxidant Parameters
3.5. Hepatic Gene Expression
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- The State of World Fisheries and Aquaculture 2022; FAO: Rome, Italy, 2022; ISBN 978-92-5-136364-5.
- Hoseinifar, S.H.; Sun, Y.-Z.; Caipang, C.M. Short-Chain Fatty Acids as Feed Supplements for Sustainable Aquaculture: An Updated View. Aquac. Res. 2017, 48, 1380–1391. [Google Scholar] [CrossRef]
- Dawood, M.A.O.; Koshio, S. Recent Advances in the Role of Probiotics and Prebiotics in Carp Aquaculture: A Review. Aquaculture 2016, 454, 243–251. [Google Scholar] [CrossRef]
- Tang, Y.; Lou, X.; Yang, G.; Tian, L.; Wang, Y.; Huang, X. Occurrence and Human Health Risk Assessment of Antibiotics in Cultured Fish from 19 Provinces in China. Front. Cell. Infect. Microbiol. 2022, 12, 964283. [Google Scholar] [CrossRef] [PubMed]
- Azuma, K.; Ippoushi, K.; Nakayama, M.; Ito, H.; Higashio, H.; Terao, J. Absorption of Chlorogenic Acid and Caffeic Acid in Rats after Oral Administration. J. Agric. Food Chem. 2000, 48, 5496–5500. [Google Scholar] [CrossRef] [PubMed]
- Ghafarifarsani, H.; Nedaei, S.; Hoseinifar, S.H.; Van Doan, H. Effect of Different Levels of Chlorogenic Acid on Growth Performance, Immunological Responses, Antioxidant Defense, and Disease Resistance of Rainbow Trout (Oncorhynchus mykiss) Juveniles. Aquacult. Nutr. 2023, 3679002. [Google Scholar] [CrossRef]
- Jin, X.; Su, M.; Liang, Y.; Li, Y. Effects of Chlorogenic Acid on Growth, Metabolism, Antioxidation, Immunity, and Intestinal Flora of Crucian Carp (Carassius auratus). Front. Microbiol. 2023, 13, 1084500. [Google Scholar] [CrossRef]
- Li, S.; Bian, H.; Liu, Z.; Wang, Y.; Dai, J.; He, W.; Liao, X.; Liu, R.; Luo, J. Chlorogenic Acid Protects MSCs against Oxidative Stress by Altering FOXO Family Genes and Activating Intrinsic Pathway. Eur. J. Pharmacol. 2012, 674, 65–72. [Google Scholar] [CrossRef]
- Bao, L.; Li, J.; Zha, D.; Zhang, L.; Gao, P.; Yao, T.; Wu, X. Chlorogenic Acid Prevents Diabetic Nephropathy by Inhibiting Oxidative Stress and Inflammation through Modulation of the Nrf2/HO-1 and NF-ĸB Pathways. Int. Immunopharmacol. 2018, 54, 245–253. [Google Scholar] [CrossRef]
- Sato, Y.; Itagaki, S.; Kurokawa, T.; Ogura, J.; Kobayashi, M.; Hirano, T.; Sugawara, M.; Iseki, K. In Vitro and in Vivo Antioxidant Properties of Chlorogenic Acid and Caffeic Acid. Int. J. Pharm. 2011, 403, 136–138. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Z.; Shi, Y.; Xia, L.; Hu, Y.; Zhong, L. Protective Effects of Chlorogenic Acid on Growth, Intestinal Inflammation, Hepatic Antioxidant Capacity, Muscle Development and Skin Color in Channel Catfish Ictalurus Punctatus Fed an Oxidized Fish Oil Diet. Fish Shellfish Immunol. 2023, 134, 108511. [Google Scholar] [CrossRef]
- Shi, H.; Dong, L.; Jiang, J.; Zhao, J.; Zhao, G.; Dang, X.; Lu, X.; Jia, M. Chlorogenic Acid Reduces Liver Inflammation and Fibrosis through Inhibition of Toll-like Receptor 4 Signaling Pathway. Toxicology 2013, 303, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Hemmerle, H.; Burger, H.-J.; Below, P.; Schubert, G.; Rippel, R.; Schindler, P.W.; Paulus, E.; Herling, A.W. ChemInform Abstract: Chlorogenic Acid and Synthetic Chlorogenic Acid Derivatives: Novel Inhibitors of Hepatic Glucose-6-phosphate Translocase. ChemInform 1997, 28, chin.199718118. [Google Scholar] [CrossRef]
- Horwitz, W.; Association of Official Analytical Chemists (Eds.) Official Methods of Analysis of the Association of Official Analytical Chemists, 13th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1980; ISBN 978-0-935584-14-1. [Google Scholar]
- Liang, H.; Mokrani, A.; Ji, K.; Ge, X.; Ren, M.; Xie, J.; Liu, B.; Xi, B.; Zhou, Q. Dietary Leucine Modulates Growth Performance, Nrf2 Antioxidant Signaling Pathway and Immune Response of Juvenile Blunt Snout Bream (Megalobrama amblycephala). Fish Shellfish Immunol. 2018, 73, 57–65. [Google Scholar] [CrossRef]
- Ren, M. Role of Dietary Isoleucine Supplementation in Facilitating Growth Performance and Muscle Growth in Juvenile Largemouth Bass (Micropterus salmoides). Aquacult. Rep. 2023, 33, 101783. [Google Scholar] [CrossRef]
- Gu, J.; Liang, H.; Ge, X.; Xia, D.; Pan, L.; Mi, H.; Ren, M. A Study of the Potential Effect of Yellow Mealworm (Tenebrio molitor) Substitution for Fish Meal on Growth, Immune and Antioxidant Capacity in Juvenile Largemouth Bass (Micropterus salmoides). Fish Shellfish Immunol. 2022, 120, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Ren, M.; Zhang, L.; Mi, H.; Yu, H.; Huang, D.; Gu, J.; Teng, T. Excessive Replacement of Fish Meal by Soy Protein Concentrate Resulted in Inhibition of Growth, Nutrient Metabolism, Antioxidant Capacity, Immune Capacity, and Intestinal Development in Juvenile Largemouth Bass (Micropterus salmoides). Antioxidants 2024, 13, 809. [Google Scholar] [CrossRef]
- Yang, P.; Wang, W.; Chi, S.; Mai, K.; Song, F.; Wang, L. Effects of Dietary Lysine on Regulating GH-IGF System, Intermediate Metabolism and Immune Response in Largemouth Bass (Micropterus salmoides). Aquacult. Rep. 2020, 17, 100323. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Li, J.; Duan, Y.-F.; Niu, J.; Wang, J.; Huang, Z.; Lin, H.-Z. Effects of Dietary Chlorogenic Acid on Growth Performance, Antioxidant Capacity of White Shrimp Litopenaeus vannamei under Normal Condition and Combined Stress of Low-Salinity and Nitrite. Fish Shellfish Immunol. 2015, 43, 337–345. [Google Scholar] [CrossRef]
- Clayton, G. Herbs and Plant Extracts as Growth Enhancers. Feed. Manag. 1999, 50, 29–32. [Google Scholar]
- Wang, L.; Bi, C.; Cai, H.; Liu, B.; Zhong, X.; Deng, X.; Wang, T.; Xiang, H.; Niu, X.; Wang, D. The Therapeutic Effect of Chlorogenic Acid against Staphylococcus Aureus Infection through Sortase A Inhibition. Front. Microbiol. 2015, 6, 1031. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, W.; Li, Q.; Li, Y.; Yan, Y.; Huang, F.; Wu, X.; Zhou, Q.; Shu, X.; Ruan, Z. Dietary Chlorogenic Acid Regulates Gut Microbiota, Serum-Free Amino Acids and Colonic Serotonin Levels in Growing Pigs. Int. J. Food Sci. Nutr. 2018, 69, 566–573. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.X.; Su, X.S.; Zhan, K.; Zhao, G.Q. The Protective Effect of Chlorogenic Acid on Bovine Mammary Epithelial Cells and Neutrophil Function. J. Dairy Sci. 2018, 101, 10089–10097. [Google Scholar] [CrossRef] [PubMed]
- Vukelić, I.; Detel, D.; Pučar, L.B.; Potočnjak, I.; Buljević, S.; Domitrović, R. Chlorogenic Acid Ameliorates Experimental Colitis in Mice by Suppressing Signaling Pathways Involved in Inflammatory Response and Apoptosis. Food Chem. Toxicol. 2018, 121, 140–150. [Google Scholar] [CrossRef] [PubMed]
- Liang, N.; Kitts, D. Role of Chlorogenic Acids in Controlling Oxidative and Inflammatory Stress Conditions. Nutrients 2015, 8, 16. [Google Scholar] [CrossRef]
- Sun, W.T.; Li, X.Q.; Xu, H.B.; Chen, J.N.; Xu, X.Y.; Leng, X.J. Effects of Dietary Chlorogenic Acid on Growth, Flesh Quality and Serum Biochemical Indices of Grass Carp (Ctenopharyngodon idella). Aquac. Nutr. 2017, 23, 1254–1263. [Google Scholar] [CrossRef]
- Li, F.; Liu, L.; Chen, X.; Zhang, B.; Li, F. Dietary Copper Supplementation Increases Growth Performance by Increasing Feed Intake, Digestibility, and Antioxidant Activity in Rex Rabbits. Biol. Trace Elem. Res. 2021, 199, 4614–4623. [Google Scholar] [CrossRef]
- Sugawara, N.; Li, D.; Sugawara, C.; Miyake, H. Response of Hepatic Function to Hepatic Copper Deposition in Rats Fed a Diet Containing Copper. Biol. Trace Elem. Res. 1995, 49, 161–169. [Google Scholar] [CrossRef]
- Zhu, H.; Jiang, W.; Liu, C.; Wang, C.; Hu, B.; Guo, Y.; Cheng, Y.; Qian, H. Ameliorative Effects of Chlorogenic Acid on Alcoholic Liver Injury in Mice via Gut Microbiota Informatics. Eur. J. Pharmacol. 2022, 928, 175096. [Google Scholar] [CrossRef]
- Naveed, M.; Hejazi, V.; Abbas, M.; Kamboh, A.A.; Khan, G.J.; Shumzaid, M.; Ahmad, F.; Babazadeh, D.; FangFang, X.; Modarresi-Ghazani, F.; et al. Chlorogenic Acid (CGA): A Pharmacological Review and Call for Further Research. Biomed. Pharmacother. 2018, 97, 67–74. [Google Scholar] [CrossRef]
- Dungubat, E.; Watabe, S.; Togashi-Kumagai, A.; Watanabe, M.; Kobayashi, Y.; Harada, N.; Yamaji, R.; Fukusato, T.; Lodon, G.; Sevjid, B.; et al. Effects of Caffeine and Chlorogenic Acid on Nonalcoholic Steatohepatitis in Mice Induced by Choline-Deficient, L-Amino Acid-Defined, High-Fat Diet. Nutrients 2020, 12, 3886. [Google Scholar] [CrossRef]
- Olthof, M.R.; Hollman, P.C.; Katan, M.B. Chlorogenic Acid and Caffeic Acid Are Absorbed in Humans. J. Nutr. 2001, 131, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Lafay, S.; Gil-Izquierdo, A.; Manach, C.; Morand, C.; Besson, C.; Scalbert, A. Chlorogenic Acid Is Absorbed in Its Intact Form in the Stomach of Rats. J. Nutr. 2006, 136, 1192–1197. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Li, Q.; Shen, L.; Guo, K.; Zhou, X. Chlorogenic Acid Improves Glucose Tolerance, Lipid Metabolism, Inflammation and Microbiota Composition in Diabetic Db/Db Mice. Front. Endocrinol. 2022, 13, 1042044. [Google Scholar] [CrossRef]
- Shimoda, H.; Seki, E.; Aitani, M. Inhibitory Effect of Green Coffee Bean Extract on Fat Accumulation and Body Weight Gain in Mice. BMC Complement. Altern. Med. 2006, 6, 9. [Google Scholar] [CrossRef]
- Rodriguez De Sotillo, D.V.; Hadley, M. Chlorogenic Acid Modifies Plasma and Liver Concentrations of: Cholesterol, Triacylglycerol, and Minerals in (Fa/Fa) Zucker Rats. J. Nutr. Biochem. 2002, 13, 717–726. [Google Scholar] [CrossRef]
- Marrocco, I.; Altieri, F.; Peluso, I. Measurement and Clinical Significance of Biomarkers of Oxidative Stress in Humans. Oxid. Med. Cell. Longev. 2017, 2017, 6501046. [Google Scholar] [CrossRef] [PubMed]
- Buege, J.A.; Aust, S.D. [30] Microsomal Lipid Peroxidation. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1978; Volume 52, pp. 302–310. ISBN 978-0-12-181952-1. [Google Scholar]
- Wang, B.; Feng, L.; Chen, G.-F.; Jiang, W.-D.; Liu, Y.; Kuang, S.-Y.; Jiang, J.; Tang, L.; Wu, P.; Tang, W.-N.; et al. Jian Carp (Cyprinus carpio Var. Jian) Intestinal Immune Responses, Antioxidant Status and Tight Junction Protein mRNA Expression Are Modulated via Nrf2 and PKC in Response to Dietary Arginine Deficiency. Fish Shellfish Immunol. 2016, 51, 116–124. [Google Scholar] [CrossRef]
- Fontagné-Dicharry, S.; Lataillade, E.; Surget, A.; Larroquet, L.; Cluzeaud, M.; Kaushik, S. Antioxidant Defense System Is Altered by Dietary Oxidized Lipid in First-Feeding Rainbow Trout (Oncorhynchus mykiss). Aquaculture 2014, 424–425, 220–227. [Google Scholar] [CrossRef]
- Yang, Q.; Liang, H.; Mokrani, A.; Ji, K.; Yu, H.; Ge, X.; Ren, M.; Xie, J.; Pan, L.; Sun, A. Dietary Histidine Affects Intestinal Antioxidant Enzyme Activities, Antioxidant Gene Expressions and Inflammatory Factors in Juvenile Blunt Snout Bream (Megalobrama amblycephala). Aquacult. Nutr. 2019, 25, 249–259. [Google Scholar] [CrossRef]
- Kono, Y.; Kobayashi, K.; Tagawa, S.; Adachi, K.; Ueda, A.; Sawa, Y.; Shibata, H. Antioxidant Activity of Polyphenolics in Diets. Biochim. Biophys. Acta (BBA)—Gen. Subj. 1997, 1335, 335–342. [Google Scholar] [CrossRef]
- Timme-Laragy, A.R.; Karchner, S.I.; Franks, D.G.; Jenny, M.J.; Harbeitner, R.C.; Goldstone, J.V.; McArthur, A.G.; Hahn, M.E. Nrf2b, Novel Zebrafish Paralog of Oxidant-Responsive Transcription Factor NF-E2-Related Factor 2 (NRF2). J. Biol. Chem. 2012, 287, 4609–4627. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Shen, Z.; Xiao, H.; Liu, X.; Ai, Y.; Zhang, Y. Effects of heat stress on Keap1-Nrf2-ARE signal pathway of liver in dairy cows. J. Nanjing Agric. Univ. 2017, 40, 151–156. [Google Scholar]
- Huang, D.; Gu, J.; Xue, C.; Zhang, L.; Chen, X.; Wang, Y.; Liang, H.; Ren, M. Different Starch Sources Affect the Growth Performance and Hepatic Health Status of Largemouth Bass (Micropterus salmoides) in a High-Temperature Environment. Animals 2023, 13, 3808. [Google Scholar] [CrossRef] [PubMed]
- Baird, L.; Yamamoto, M. The Molecular Mechanisms Regulating the KEAP1-NRF2 Pathway. Mol. Cell. Biol. 2020, 40, e00099-20. [Google Scholar] [CrossRef] [PubMed]
- McMahon, M.; Itoh, K.; Yamamoto, M.; Hayes, J.D. Keap1-Dependent Proteasomal Degradation of Transcription Factor Nrf2 Contributes to the Negative Regulation of Antioxidant Response Element-Driven Gene Expression. J. Biol. Chem. 2003, 278, 21592–21600. [Google Scholar] [CrossRef]
- Kobayashi, M.; Yamamoto, M. Molecular Mechanisms Activating the Nrf2-Keap1 Pathway of Antioxidant Gene Regulation. Antioxid. Redox Signal. 2005, 7, 385–394. [Google Scholar] [CrossRef]
- Defaix, R.; Lokesh, J.; Frohn, L.; Le Bechec, M.; Pigot, T.; Véron, V.; Surget, A.; Biasutti, S.; Terrier, F.; Skiba-Cassy, S.; et al. Exploring the Effects of Dietary Inulin in Rainbow Trout Fed a High-Starch, 100% Plant-Based Diet. J. Anim. Sci. Biotechnol. 2024, 15, 6. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.-C. NF-κB Signaling in Inflammation. Signal Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef] [PubMed]
- Bhandarkar, N.S.; Brown, L.; Panchal, S.K. Chlorogenic Acid Attenuates High-Carbohydrate, High-Fat Diet–Induced Cardiovascular, Liver, and Metabolic Changes in Rats. Nutr. Res. 2019, 62, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.; Guo, Q.; Wei, M.; Huang, Z.; Shi, L.; Sheng, Y.; Ji, L. Chlorogenic Acid Alleviates Acetaminophen-Induced Liver Injury in Mice via Regulating Nrf2-Mediated HSP60-Initiated Liver Inflammation. Eur. J. Pharmacol. 2020, 883, 173286. [Google Scholar] [CrossRef]
Ingredients (g/kg) | Level (%) | Ingredients (g/kg) | Level (%) |
---|---|---|---|
Fish meal 1 | 30.00 | Fish oil | 6.66 |
Chicken meal 1 | 5.00 | Cassava starch | 5.00 |
Soy concentrated protein 1 | 8.00 | Choline chloride | 0.50 |
Soybean meal 1 | 11.00 | Vitamin premix 2 | 1.00 |
Rapeseed meal 1 | 7.20 | Mineral premix 2 | 1.00 |
Blood meal 1 | 5.00 | Monocalcium phosphate | 3.46 |
Corn gluten meal 1 | 7.70 | Vitamin C | 0.05 |
Wheat gluten 1 | 3.00 | L-lysine 3 | 0.28 |
Wheat meal | 5.00 | L-methionine 3 | 0.15 |
Analyzed proximate composition (dry matter) | |||
Crude protein (%) | 47.50 ± 0.08 | ||
Crude lipid (%) | 10.86 ± 0.08 | ||
Gross energy (KJ/g) | 20.23 ± 0.23 |
Target Gene | Forward (5′-3′) | Reverse (5′-3′) | GenBank |
---|---|---|---|
β-actin | GGTGTGATGGTTGGTATGG | CTCGTTGTAGAAGGTGTGAT | MH018565.1 |
GPx | GAAGGTGGATGTGAATGGA | CCAACCAGGAACTTCTCAA | MK614713.1 |
SOD | TGGCAAGAACAAGAACCACA | CCTCTGATTTCTCCTGTCACC | [17] |
CAT | CTATGGCTCTCACACCTTC | TCCTCTACTGGCAGATTCT | MK614708.1 |
Nrf2 | CCACACGTGACTCTGATTTCTC | TCCTCCATGACCTTGAAGCAT | [18] |
Keap1 | CGTACGTCCAGGCCTTACTC | TGACGGAAATAACCCCCTGC | XP_018520553.1 |
NF-κB | CCACTCAGGTGTTGGAGCTT | TCCAGAGCACGACACACTTC | XP_027136364. |
RelA | GCTGGTGTCTGGTTCATT | GCCTCCTCTTCCATCTCT | [19] |
IL-8 | GAGGGTACATGTCTGGGGGA | CCTTGAAGGTTTGTTCTTCATCGT | XM_038713529.1 |
TLR2 | TCGCTGTTCACCAATCTG | TAGTTCTCCTCTCCATCTGT | MN807054 |
Parameters | CGA Addition Levels | ||||
---|---|---|---|---|---|
0 mg/kg | 60 mg/kg | 120 mg/kg | 180 mg/kg | 240 mg/kg | |
IBW (g) | 3.25 ± 0.01 | 3.24 ± 0.01 | 3.24 ± 0.01 | 3.24 ± 0.01 | 3.26 ± 0.01 |
FBW (g) | 21.82 ± 2.40 b | 25.26 ± 0.37 ab | 25.80 ± 1.50 ab | 28.10 ± 1.18 a | 27.60 ± 1.05 a |
WGR (%) | 570.38 ± 75.15 b | 680.34 ± 12.52 ab | 700.29 ± 49.01 ab | 767.96 ± 36.88 a | 746.53 ± 32.95 a |
SGR (%/day) | 3.39 ± 0.20 b | 3.67 ± 0.03 ab | 3.71 ± 0.11 ab | 3.86 ± 0.08 a | 3.81 ± 0.07 a |
FCR | 1.46 ± 0.07 a | 1.31 ± 0.01 b | 1.20 ± 0.02 bc | 1.16 ± 0.02 c | 1.18 ± 0.05 c |
Parameters | CGA Addition Levels | ||||
---|---|---|---|---|---|
0 mg/kg | 60 mg/kg | 120 mg/kg | 180 mg/kg | 240 mg/kg | |
Moisture (%) | 72.47 ± 0.22 | 72.32 ± 0.10 | 72.48 ± 0.27 | 72.18 ± 0.03 | 72.41 ± 0.12 |
Crude protein (%) | 16.30 ± 0.21 | 16.95 ± 0.30 | 16.61 ± 0.09 | 17.06 ± 0.37 | 17.03 ± 0.44 |
Crude lipid (%) | 7.48 ± 0.38 | 6.87 ± 0.51 | 7.40 ± 0.30 | 7.06 ± 0.19 | 7.31 ± 0.58 |
Ash (%) | 3.80 ± 0.07 | 3.59 ± 0.02 | 3.86 ± 0.14 | 3.93 ± 0.14 | 3.82 ± 0.09 |
Parameters | CGA Addition Levels | ||||
---|---|---|---|---|---|
0 mg/kg | 60 mg/kg | 120 mg/kg | 180 mg/kg | 240 mg/kg | |
TC (mmol/L) | 8.37 ± 0.39 a | 7.57 ± 0.22 ab | 7.53 ± 0.35 ab | 7.04 ± 0.30 b | 7.85 ± 0.38 ab |
TP (g/L) | 33.23 ± 1.17 | 31.69 ± 0.98 | 31.59 ± 1.05 | 30.68 ± 1.18 | 33.21 ± 1.67 |
TG (mmol/L) | 7.19 ± 0.68 a | 7.36 ± 0.60 a | 6.27 ± 0.50 ab | 5.37 ± 0.29 b | 6.84 ± 0.67 ab |
AST (U/L) | 15.64 ± 1.14 | 16.80 ± 3.98 | 13.66 ± 3.20 | 12.54 ± 2.16 | 11.23 ± 6.41 |
ALT (U/L) | 1.73 ± 0.45 | 1.46 ± 0.37 | 1.56 ± 0.45 | 1.20 ± 0.33 | 1.34 ± 0.52 |
ALB (g/L) | 9.98 ± 0.41 ab | 9.92 ± 0.40 ab | 9.83 ± 0.40 ab | 9.90 ± 0.42 b | 10.46 ± 0.48 a |
GLU (mmol/L) | 5.80 ± 0.61 c | 5.99 ± 0.45 c | 5.88 ± 0.42 c | 8.79 ± 0.52 a | 7.53 ± 0.48 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, Z.; Mi, H.; Ren, M.; Huang, D.; Aboseif, A.M.; Liang, H.; Zhang, L. Chlorogenic Acid Plays an Important Role in Improving the Growth and Antioxidant Status and Weakening the Inflammatory Response of Largemouth Bass (Micropterus salmoides). Animals 2024, 14, 2871. https://doi.org/10.3390/ani14192871
Xia Z, Mi H, Ren M, Huang D, Aboseif AM, Liang H, Zhang L. Chlorogenic Acid Plays an Important Role in Improving the Growth and Antioxidant Status and Weakening the Inflammatory Response of Largemouth Bass (Micropterus salmoides). Animals. 2024; 14(19):2871. https://doi.org/10.3390/ani14192871
Chicago/Turabian StyleXia, Zetian, Haifeng Mi, Mingchun Ren, Dongyu Huang, Ahmed Mohamed Aboseif, Hualiang Liang, and Lu Zhang. 2024. "Chlorogenic Acid Plays an Important Role in Improving the Growth and Antioxidant Status and Weakening the Inflammatory Response of Largemouth Bass (Micropterus salmoides)" Animals 14, no. 19: 2871. https://doi.org/10.3390/ani14192871
APA StyleXia, Z., Mi, H., Ren, M., Huang, D., Aboseif, A. M., Liang, H., & Zhang, L. (2024). Chlorogenic Acid Plays an Important Role in Improving the Growth and Antioxidant Status and Weakening the Inflammatory Response of Largemouth Bass (Micropterus salmoides). Animals, 14(19), 2871. https://doi.org/10.3390/ani14192871