
Citation: Zhu, B.; Shao, C.; Xu, W.;

Dai, J.; Fu, G.; Hu, Y. Effects of

Thyroid Powder on Tadpole

(Lithobates catesbeiana) Metamorphosis

and Growth: The Role of Lipid

Metabolism and Gut Microbiota.

Animals 2024, 14, 208. https://

doi.org/10.3390/ani14020208

Academic Editor: Carlos

Alfonso Alvarez-González

Received: 10 December 2023

Revised: 4 January 2024

Accepted: 5 January 2024

Published: 8 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

animals

Article

Effects of Thyroid Powder on Tadpole (Lithobates catesbeiana)
Metamorphosis and Growth: The Role of Lipid Metabolism and
Gut Microbiota
Bo Zhu 1,2, Chuang Shao 1,2, Wenjie Xu 1,2, Jihong Dai 1,2, Guihong Fu 1,2 and Yi Hu 1,2,*

1 Fisheries College, Hunan Agricultural University, Changsha 410128, China; bp.zhu@outlook.com (B.Z.);
13605186516@163.com (C.S.); xwjxqsz@163.com (W.X.); 429022456@hunau.edu.cn (J.D.);
snow03221@163.com (G.F.)

2 Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan
Agricultural University, Changsha 410128, China

* Correspondence: huyi740322@163.com

Simple Summary: The production of artificially farmed bullfrogs in China is limited by the low meta-
morphosis rate of tadpoles. This study investigated the effects of different doses (0 g/kg, 1.5 g/kg,
3 g/kg, 4.5 g/kg, and 6 g/kg) of thyroid powder added to the diets on the metamorphosis and
growth of bullfrog tadpoles. The results showed that 4.5 g/kg of thyroid powder could significantly
increase the metamorphosis rate and weight gain rate of tadpoles, while adding 6 g/kg of thyroid
powder could increase the average weight of tadpoles during metamorphosis. In addition, both doses
of thyroid powder could promote the fat breakdown metabolism of tadpoles and alter the intestinal
microbiota composition (increasing the abundance of beneficial bacteria, especially Akkermansia). In
summary, appropriate doses of thyroid powder could promote the metamorphosis and growth of
tadpoles, and might be used to solve the problem of the low metamorphosis rate of bullfrogs.

Abstract: A low metamorphosis rate of amphibian larvae, commonly known as tadpoles, limits
the farming production of bullfrogs (Lithobates catesbeiana). This study aimed to examine the effects
of processed thyroid powder as a feed additive on tadpole metamorphosis, lipid metabolism, and
gut microbiota. Five groups of tadpoles were fed with diets containing 0 g/kg (TH0), 1.5 g/kg
(TH1.5), 3 g/kg (TH3), 4.5 g/kg (TH4.5), and 6 g/kg (TH6) thyroid powder for 70 days. The results
showed that TH increased the average weight of tadpoles during metamorphosis, with the TH6
group having the highest values. The TH4.5 group had the highest metamorphosis rate (p < 0.05).
Biochemical tests and Oil Red O staining showed that the lipid (triglyceride) content in the liver
decreased after TH supplementation, especially at doses higher than 1.5 g/kg. RT-qPCR revealed that
TH at doses higher than 4.5 g/kg significantly up-regulated the transcriptional expression of the pparα,
accb, fas, fadd6, acadl, and lcat genes, which are related to lipid metabolism (p < 0.05). These results
showed that TH seems to simultaneously promote the synthesis and decomposition of lipid and
fatty acids, but ultimately show a decrease in lipids. As for the gut microbiota, it is noteworthy that
Verrucomicrobia increased significantly in the TH4.5 and TH6 groups, and the Akkermansia (classified
as Verrucomicrobia) was the corresponding genus, which is related to lipid metabolism. Specifically,
the metabolic pathways of the gut microbiota were mainly enriched in metabolic-related functions
(such as lipid metabolism), and there were significant differences in metabolic and immune pathways
between the TH4.5 and TH0 groups (p < 0.05). In summary, TH may enhance lipid metabolism by
modulating the gut microbiota (especially Akkermansia), thereby promoting the growth of tadpoles.
Consequently, a supplementation of 4.5 g/kg or 6 g/kg of TH is recommended for promoting the
metamorphosis and growth of tadpoles.
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1. Introduction

Bullfrogs (Lithobates catesbeiana), native to America, are a fast-growing amphibian
species with high nutritional value, used as an important food source in China [1,2].
Tadpoles are the larvae of frogs, and metamorphosis is the process of their transformation
into frogs. The current low metamorphosis rate limits the development of the farming of
bullfrogs. This is especially true with the shift of the main bullfrog-producing areas to high
latitudes in China and falling temperatures. Some bullfrog farms in Hunan province in
China were surveyed, and the results showed that the comprehensive metamorphosis rate
of tadpoles was only 30~50%, meaning that a low proportion of tadpoles hatched from eggs
became froglets. Tadpole metamorphosis is impacted by factors such as temperature [3],
the light/dark cycle [4], food availability, and predation [5]. However, there is no effective
scientific and economic solution to this problem. Increasing the metamorphosis rate of
tadpoles can directly promote industrial development.

Thyroxine is a key hormone that regulates metamorphosis in tadpoles and acts by
binding to nuclear receptors (TRs) that modulate gene expression in various tissues [6,7].
These receptors can activate or repress genes that are involved in metamorphic changes such
as cell death, differentiation, and remodeling [8,9]. For instance, they can regulate the death
of tail and gill cells and stimulate the differentiation of limb and lung cells [10]. However,
the expression of thyroxine is also regulated by temperature, and a lower temperature
inhibits thyroxine-induced metamorphosis, which is also a challenge to bullfrog breeding
in high latitudes [11,12]. In addition, tadpoles enter metamorphosis only when they
accumulate enough nutrients and weight, and a high-quality and sufficient diet could
accelerate this process. Thus, promoting the utilization of food nutrients (lipids, proteins,
etc.) will accelerate tadpole growth and metamorphosis. It is worth noting that thyroxine
has also been shown to regulate lipid metabolism [13]. These facts encourage us to interfere
with thyroxine expression or directly supplement thyroxine to promote food digestion and
tadpole metamorphosis.

To address the above problem, this paper investigated whether adding thyroid (TH)
powder to the feed could promote the metamorphosis of tadpoles. We studied the effects of
TH on the metamorphosis and growth of the bullfrog tadpoles. Our goals were to improve
the metamorphosis rate and growth of tadpoles, promote the development of bullfrog
breeding industry, and provide enough food for humans.

2. Materials and Methods
2.1. Diet Preparation

Thyroid powder (TH) is a processed by-product made from pig thyroid tissue by
air-drying, low-temperature drying (20 ◦C), and pulverizing. In the basal diet (Table 1) for
tadpoles, 0 g/kg, 1.5 g/kg, 3 g/kg, 4.5 g/kg, and 6 g/kg of TH were added to prepare five
diets labeled as TH0, TH1.5, TH3, TH4.5, and TH6, respectively.

Table 1. Formulation and chemical composition of the diet (% air dry basis).

Item TH0 TH1.5 TH3 TH4.5 TH6

Fish meal 15.00 15.00 15.00 15.00 15.00
Chicken powder 20.00 20.00 20.00 20.00 20.00
Soybean meal 10.00 10.00 10.00 10.00 10.00
Soy protein concentrate 18.00 18.00 18.00 18.00 18.00
Rice bran 8.00 8.00 8.00 8.00 8.00
Wheat flour 23.95 23.80 23.65 23.50 23.35
Thyroid powder (TH) 0 0.15 0.30 0.45 0.60
Soybean oil 1.00 1.00 1.00 1.00 1.00
Vitamin and mineral premixes ※ 2.00 2.00 2.00 2.00 2.00
Ca(H2PO4)2 1.50 1.50 1.50 1.50 1.50
Choline chloride 0.50 0.50 0.50 0.50 0.50
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Table 1. Cont.

Item TH0 TH1.5 TH3 TH4.5 TH6

Ethoxyquin 0.02 0.02 0.02 0.02 0.02
Mold inhibitor 0.03 0.03 0.03 0.03 0.03
Proximate composition
Dry matter 92.31 92.31 92.31 92.31 92.31
Crude protein 43.42 43.42 43.42 43.42 43.42
Crude lipid 6.68 6.68 6.68 6.68 6.68
Ash 7.58 7.58 7.58 7.58 7.58

Note: ※ One kilogram of premix contains: vitamin A 900,000 IU, vitamin D3 170,000 IU, vitamin E 7500 mg,
vitamin K3 960 mg, vitamin B1 1200 mg, vitamin B2 1800 mg, vitamin B6 1200 mg, vitamin B12 6.4 mg, vitamin C
15,600 mg, D-calcium pantothenate 4500 mg, niacin 9000 mg, folic acid 520 mg, D-biotin 30 mg, inositol 7000 mg,
magnesium 4500 mg, zinc 3500 mg, manganese 2100 mg, copper 880 mg, iron 5200 mg, cobalt 160 mg, iodine
100 mg, selenium 30 mg, and so on. Rice bran was used to fill up to 1 kg.

The ingredients of each diet were pre-mixed according to the diet formulation and then
processed through grinding, blending, pelleting, drying, and grinding to obtain a powder
that passed through an 80-mesh sieve. The equipment used in the preparation process was
the same as described in our previous publication [14]. The diets were preserved at −20 ◦C
until the end of the feeding trial.

2.2. Trial Animals and Feeding Management

The rearing trial was conducted at a farm in Nanning City, Guangxi Zhuang Au-
tonomous Region. After hatching, the tadpoles were acclimated in canvas pools for one
week before being used in the trial with an initial weight of approximately 0.03 g. A total of
6000 tadpoles were randomly allocated to 5 groups and reared in 15 different mesh cages.
The dimensions of each mesh cage were 0.8 m in length, width, and height, with a tadpole
density of 625 per square meter. The tadpoles were fed with five different types of diets.
The trial lasted for 70 days. During the rearing period, the tadpoles were fed three times
daily (at 7 a.m., 12 p.m., and 5 p.m.) at a rate of 3% to 7% of their body weight per day.
The feeding rate was adjusted weekly based on their feed intake and estimated weight.
In order to account for the specific feeding behavior of larvae, we maintained a constant
amount of food for each group, rather than allowing them free access to food. The average
air temperature during the rearing period was 32.9 ◦C and the average water temperature
was 29.5 ◦C, with dissolved oxygen levels ≥ 4.0 mg/L.

2.3. Sample Collection and Analyses

The Gosner stage is a widely accepted classification system for the embryonic and
larval development of anuran amphibians, including frogs and toads. There are 46 develop-
mental stages of frog embryos and larvae (tadpoles), with metamorphosis occurring from
stage 42 (characterized by the complete development of hind limbs and the emergence of
forelimbs) to stage 46 (marked by the complete absorption of the tadpole’s tail) [15].

On days 59 and 70 of the rearing trial, juvenile frogs and tadpoles (with fully de-
veloped limbs but incomplete tail resorption, presumably after stage 44, when tadpoles
can metamorphose into juvenile frogs with only the tail-retraction stage remaining) were
recorded, and their number and weight were recorded to calculate the metamorphosis
rates and the average weight of the tadpoles after metamorphosis. On day 70, the number
and weight of remaining tadpoles in each cage were also recorded to calculate the feed
conversion ratio, weight gain, and survival rate.

SR(%) =

(
FN
IN

)
× 100 (1)

AW(g) =
(

FW
FN

)
× 100 (2)
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WGR(%) =

(
FW
IW

)
× 100 (3)

FCR =

(
DW

FW − IW

)
(4)

In the formulations, SR represents the survival ratio, and FN and IN represent the
final number and initial number, respectively. AW and FW represent the average weight
and final weight, respectively. WG and IW represent the weight gain ratio and initial
weight, respectively. FCR and DW represent the feed conversion ratio and weight of diet,
respectively. In addition, the abbreviations in this manuscript are described in Table 2.

Table 2. List of abbreviations.

Abbreviations Explanation

acadl acetyl-CoA carboxylase beta
accb acetyl-CoA carboxylase beta
actb_g1 actin beta/gamma 1
cpt1a carnitine palmitoyltransferase 1a
cds1 CDP-diacylglycerol synthase
fas fatty acid synthase
gk glycerol kinase
hmgcr 3-hydroxy-3-methylglutaryl-CoA reductase
lcat lecithin-cholesterol acyltransferase
ldlr1 low-density lipoprotein receptor 1
pemt phosphatidylethanolamine N-methyltransferase
fadd6 fatty acid desaturase delta-6
pparα peroxisome proliferator-activated receptor alpha
TG triglyceride
T-CHO total cholesterol
LDL low-density lipoprotein
TBA total bile acid
GLU glucose
TH thyroid powder

On day 70, we collected the livers of 36 metamorphic tadpoles from each group
and stored them in Eppendorf tubes. We snap-froze the tubes in liquid nitrogen and
kept them at −80 ◦C until analyzing the liver biochemical lipid markers. We measured
fatty acid, TG, T-CHO, LDL, TBA, and GLU using reagent kits from Nanjing Jiancheng
Bioengineering Institute (Nanjing, China). Before the measurement, we carefully read the
operating procedures and precautions, and followed the instructions strictly.

Another set of 9 liver samples from each group were collected separately, rinsed
with saline, and fixed with 4% formalin solution. Paraffin-embedded tissue sections were
prepared and stained with hematoxylin and eosin (HE), according to Feldman [16], to
observe the liver tissue morphology. Oil red O staining was performed on liver lipid using
Marquez’s [17] method to observe liver lipid accumulation.

An additional set of 27 liver samples from each group were also harvested and frozen
to await analysis of the transcriptional expression of genes. We used TRIzol reagent to
extract total RNA and assessed its quantity and quality using spectrophotometry and
agarose gel electrophoresis, respectively. RT-qPCR was performed to obtain and calculate
the gene transcripts of acadl, accb, cpt1a, cds1, fas, gk, hmgcr, lcat, ldlr1, pemt, and pparα.
We used actin beta/gamma 1 (actb_g1) as the reference gene and normalized the target
genes expression to the actb_g1 expression. Table 3 lists the primers we used for the
quantitative PCR.
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Table 3. List of primers used in the real-time quantitative PCR.

Gene Sequence, 5′→3′ GenBank Number

acadl Fwd: TGAGGAAACCCGGAACTATGTC
Rev: TGTGCTGCACGGTCTGTAAGT LH364687.1

accb Fwd: GTTAAAGCTGCCATCCTCACTGT
Rev: TGTCCGTCTGGCTAAGATGGT LH212450.1

actb_g1 Fwd: ATGATGCTCCTCGTGCTGTGT
Rev: CCCCATTCCAACCATGACA LH355272.1

cpt1a Fwd: TGATTGGCAAAATCAAAGAACATC
Rev: AATGCTCTGACCCTGGTGAGA LH022414.1

cds1 Fwd: GGTTTCTGCATGTTTGTGTTGAG
Rev: TCCATCCAAACATGTAAAACTGAAG LH114672.1

fas Fwd: CCTCCACGCCAGAACAAGAT
Rev: GATATTTTTATGAGTGGACATTGTATCGA LH228595.1

gk Fwd: AACGCTTTGAGCCACAGATTAAT
Rev: CTGCTTTTTTCCATCGAGCAT LH193866.1

hmgcr Fwd: TGCATCCTCAAAAACCCAGAT
Rev: GGGATGTGTTTAGCATTCACCAA LH363056.1

lcat Fwd: GCTGTAGGGTGACCTGTTCCAT
Rev: AGATACGAAGGGCCTTCTGGAT LH171224.1

ldlr1 Fwd: AAGGCTACCAACTAGATCCAGTAACTG
Rev: CGGTTGGTGAAGAACAGGTATG LH243159.1

pemt Fwd: CCGATATACGGTGACCCAAAA
Rev: ACCCGCTCTTCTGGAATGTG LH373164.1

fadd6 Fwd: TGGATCCTTGCTGAATATGTTAGG
LH144230.1Rev: AAGGGAGCTTCAGCCAACTG

pparα
Fwd: CCCGACATTCGATGTTTAGAGATT
Rev: CCAGCCCATCTTCTATCACCTT LH193621.1

The intestinal contents of 18 tadpoles from each group were collected and frozen.
DNA extraction and 16S rRNA gene sequencing were performed following the methods
described in previous studies [18].

2.4. Statistical Analysis

The data were analyzed using SPSS 25.0 software (IBM, New York, NY, USA). We used
Shapiro–Wilk and Levene tests to check the normality and homogeneity of data, respec-
tively [19]. For data with normal distribution and homogenous variance, we performed
one-way ANOVA and Duncan’s multiple range test. For data with heterogenous variance,
we used Welch’s ANOVA and the Games–Howell multiple range test. We set statistical
significance at p < 0.05 and reported the data as mean ± SEM.

3. Results
3.1. Growth and Metamorphosis

The results showed that TH application decreased the feed conversion ratio and
increased the total WGR of tadpoles, but the differences were not statistically significant
(p > 0.05) (Table 4).

TH increased the average weight of tadpoles in the metamorphosis period (AW-IM).
The TH6 group showed a significantly higher final body weight than the TH0 group
(p < 0.05) (Figure 1). The metamorphosis rate and overall metamorphosis rate of tadpoles
on day 59 and day 70 reached the maximum in the TH4.5 group (p < 0.05) (Figure 2).
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Table 4. Effects of thyroid powder on the growth of bullfrog tadpoles.

Initial Average
Weight/g

Initial Total
Weight/g Final Total Weight/g Total Weight Gain

Ratio/%
Feed Conversion

Ratio

TH0 0.03 ± 0.00 12.88 ± 0.03 733.92 ± 15.65 5597.26 ± 128.36 1.18 ± 0.03
TH1.5 0.03 ± 0.00 12.87 ± 0.06 738.13 ± 51.23 5630.70 ± 372.67 1.18 ± 0.08
TH3 0.03 ± 0.00 12.83 ± 0.03 811.91 ± 15.87 6227.31 ± 137.21 1.06 ± 0.02
TH4.5 0.03 ± 0.00 12.87 ± 0.03 834.37 ± 54.48 6384.41 ± 437.83 1.04 ± 0.07
TH6 0.03 ± 0.00 12.95 ± 0.05 785.69 ± 37.73 5967.86 ± 301.60 1.10 ± 0.05

Note: here, the total weight of tadpoles was used to calculate the total weight gain and feed conversion rate.
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that they are not significantly different (p > 0.05). 

Figure 1. Number ratio, average weight, and weight gain ratio of the tadpoles at different develop-
mental periods on day 70. NR-IM (number ratio of tadpoles in metamorphosis), AW-IM (average
weight of tadpoles in metamorphosis), WGR-IM (weight gain ratio of tadpoles in metamorphosis),
NR-AM (number ratio of tadpoles after metamorphosis), AW-AM (average weight of tadpoles after
metamorphosis), WGR-AM (weight gain ratio of tadpoles after metamorphosis), AW-Sum (average
weight of all tadpoles), and WGR-Sum (weight gain ratio of all tadpoles). Here, the average weight
of tadpoles was used to calculate the weight gain ratio. Groups possessing the same letter indicate
that they are not significantly different (p > 0.05).
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Figure 2. Tadpole stage metamorphosis rate. The red line is the metamorphosis rate on day 59,
the green line is the metamorphosis rate on day 60 to day 70, and the purple line is the total
metamorphosis rate. Groups having the same letter in the same line indicate no significant difference
(p > 0.05).

3.2. Liver Biochemical Tests

The TH3 group had a significantly lower TG content than the TH0 group. The TBA
content of all supplement groups was lower than the TH0 group (p < 0.05). In addition,
all supplement groups had a higher fatty acid content than the TH0 group, and the TH3
and TH4.5 groups had a significantly higher LDL content than the TH0 group (p < 0.05)
(Figure 3).
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3.3. Liver HE Staining and Oil Red O Staining

As shown in Figure 4, with the supplementation of TH, the hepatocyte vacuolation
tended to decrease, and the vacuolation of the TH4.5 and TH6 groups decreased signif-
icantly. As shown in Figure 5, the red staining in liver oil red O sections after thyroid
powder supplementation indicated a decreasing trend of neutral lipid content.
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3.4. Lipid Metabolism-Related Gene Transcription Level

The transcriptional expression of pemt related to lipid metabolism was down-regulated
after TH supplementation, while the transcriptional expression of pparα and accb was up-
regulated (p < 0.05). The TH supplementation also up-regulated the expression of cpt1a and
gk in the TH3 group (p < 0.05) and the expression of fas, fadd6, acadl, and lcat in the TH4.5
and TH6 groups (p < 0.05) (Figure 6).
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vated receptor alpha), fas (fatty acid synthase), accb (acetyl-CoA carboxylase beta), fadd6 (fatty acid 
desaturase delta-6), acadl (long-chain-acyl-CoA dehydrogenase), cpt1a (carnitine palmitoyltransfer-
ase 1a), lcat (lecithin-cholesterol acyltransferase), and gk (glycerol kinase). Groups possessing the 
same letter indicate that they are not significantly different (p > 0.05). 

3.5. Gut Microbiota 
The results of gut microbiota (Figure 7) show that the chao1 and observed species 
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Figure 6. Transcription level of genes related to liver lipid metabolism. hmgcr (3-hydroxy-3-
methylglutaryl-CoA reductase), ldlr1 (low-density lipoprotein receptor 1), cds1 (CDP-diacylglycerol
synthase), pemt (phosphatidylethanolamine N-methyltransferase), pparα (peroxisome proliferator-
activated receptor alpha), fas (fatty acid synthase), accb (acetyl-CoA carboxylase beta), fadd6 (fatty acid
desaturase delta-6), acadl (long-chain-acyl-CoA dehydrogenase), cpt1a (carnitine palmitoyltransferase
1a), lcat (lecithin-cholesterol acyltransferase), and gk (glycerol kinase). Groups possessing the same
letter indicate that they are not significantly different (p > 0.05).

3.5. Gut Microbiota

The results of gut microbiota (Figure 7) show that the chao1 and observed species
indices in each group decreased after TH supplementation. In addition, except for the TH
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group, the Shannon and Simpson indices also decreased. These showed that TH reduced
the abundance and diversity of gut microbiota.
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The composition of gut microbiota in Figure 8a shows that the Chloroflexi decreased
in each supplement group, while Verrucomicrobia was increased in the TH4.5 and TH6
groups at the phylum level. From the composition of the genus level shown in Figure 8b,
the Caldilinea (classified as Chloroflexi) decreased, while Cetobacterium increased. It is worth
noting that the genus Akkermansia (classified as Verrucomicrobia) was increased in the
TH4.5 and TH6 groups. Further Lefse analysis identified Akkermansia as a biomarker to
distinguish the 4.5 g/kg group from the other groups (LDA = 3) (Figure 9).
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Figure 9. LDA effect size analysis and the clade map of the gut microbiota. The rings represent
species, genus, family, order, class, and phylum from outside to inside. The species with an LDA
SCORE > 3 were defined as statistically different biomarkers.

The potential metabolic pathways of gut microbiota are mainly enriched in metabolic
functions (lipid metabolism, carbohydrate metabolism, etc.) (Figure 10a). The main differen-
tial metabolic pathways between the TH4.5 and TH0 groups were ko00196 (Photosynthesis-
antenna proteins), ko00531 (Glycosaminoglycan degradation), ko00331 (Clavulanic acid
biosynthesis), and ko04621 (NOD-like receptor signaling pathway) (Figure 10b).
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4. Discussion

The results showed that 4.5 g/kg of TH significantly accelerated metamorphosis, which
is consistent with our hypothesis. This may be mediated by thyroxine, which is a vital
substance for initiating and regulating the metamorphosis process [20]. Metamorphosis
is triggered by a threshold level of thyroxine that activates the expression of thyroxine
receptors (TRs) and their target genes [21]. The expression and secretion of thyroxine
peak during the metamorphic climax and return to normal levels after metamorphosis
is completed [22,23]. Thyroxine regulates programmed cell death and proliferation and
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differentiation in various tissues during metamorphosis via different molecular pathways.
For instance, thyroxine triggers apoptosis in the tail, gills, and fins through caspases, Bcl-2
family members, and p53, while it stimulates cell cycle progression and differentiation in
the limbs, lungs, and skin by activating cyclins, CDKs, and FGFs [6,10]. Thyroxine also
affects epigenetic modifications such as DNA methylation during metamorphosis, which
influence the functions of various genes [24,25]. In addition, there is a report indicating
that tadpoles can respond to exogenous thyroxine before their own thyroid tissue develops
fully [20]. Therefore, we conclude that the tadpole metamorphosis in this trial is influenced
by TH in diets, in which thyroxine regulates various physiological changes and promotes
the transformation of tadpoles to frogs.

In addition to increasing the metamorphosis rate, TH significantly increased the weight
gain of tadpoles during metamorphosis, which also seems to be attributable to thyroxine.
Firstly, thyroxine could stimulate growth factors and interact with IGF and GH to promote
body growth [26]. Moreover, thyroxine is a vital regulator of animal metabolism, as it
affects the function and activity of various organs and cells (such as cardiomyocytes and
reproductive cells) involved in energy production and utilization, which can influence body
weight [27,28]. Consistently, we found that TH enhanced the transcriptional expression of
genes related to lipid synthesis and breakdown, which resulted in a decrease in neutral
lipids (biochemical analysis, oil red O staining). Triglyceride is the main storage form
of lipids in animals, consisting of three fatty acids attached to a glycerol molecule [29].
Triglyceride and fatty acids can be interconverted by enzymatic reactions. Thyroxine
promotes lipid breakdown and the β-oxidation of fatty acids to release energy, which may
contribute to the enhanced growth of tadpoles in the high-TH supplementation group.
Recent research has revealed that thyroxine induces hepatic triglyceride catabolism by
activating autophagy, a process that degrades lipid droplets and delivers fatty acids to
mitochondria for β-oxidation [13]. Thyroxine has also been found to regulate the gene
expression involved in fatty acid metabolism, such as CPT1A and ACOX, which encode
enzymes or proteins that facilitate fatty acid transport into mitochondria, the oxidation
of fatty acids, and the dissipation of energy as heat [30]. Further, some diiodothyronines,
which are products of thyroxine catabolism, have also been shown to have metabolic effects
in humans [31], such as modulating mitochondrial function and energy expenditure [32].
In short, TH could promote animal growth by increasing the metabolism of nutrients.

As mentioned above, although this trial showed a reduction in neutral lipids and an
increase in fatty acids, the gene expression involved in triglyceride synthesis and fatty
acid degradation was also up-regulated. Thus, a possible explanation is that TH could
simultaneously promote lipid decomposition and synthesis, but triglyceride breakdown
is greater than synthesis [33], and fatty acid production is greater than breakdown. The
effects of thyroxine on lipid decomposition have been investigated previously, and we
have also found the effects of thyroxine regulating lipid production from some studies.
Previous studies have reported that thyroxine affects fatty acid uptake by stimulating
lipolysis from dietary fat sources [34]. Thyroxine also increases the gene expression of
fatty acid uptake, such as CD36 and FATP4, which encode proteins that mediate the fatty
acid transport across the plasma membrane into hepatocytes for lipid synthesis [33]. In
addition, thyroxine directly affects hepatic triglyceride anabolism by regulating the gene
expression involved in lipogenesis, such as ACC, FAS, SREBP-1c, and SCD-1 [35], and also
regulates these processes by influencing the lipogenic gene transcription and the activities
of enzymes such as LPL and HL [36].

Gut microbiota have been shown to regulate lipid metabolism in animals [37]. Medium-
chain fatty acids, short-chain fatty acids, and bile acids produced by gut microbiota from
diet can affect lipid metabolism and inflammation via the PPARα, NF-κB, and MAPK
signaling pathways or binding some receptors [38–40]. Thus, the state of gut microbiota
could reflect the metabolism and health of animals [41]. This study found that the function
of gut microbiota is mainly enriched in metabolic-related pathways and related to lipid
metabolism. Consistently, the abundance of Akkermansia in the TH4.5 and TH6 groups
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was significantly higher than in the TH0 group, especially in the TH4.5 group. Akker-
mansia bacteria are biomarkers that distinguish them from the TH0 group. We speculate
that Akkermansia bacteria are important microbiota affecting lipid metabolism. In fact,
Akkermansia belongs to the Verrucomicrobia phylum, is mainly colonized in the mucous
layer of the intestine, and has been found to alleviate metabolic disorders and obesity in
animals [42]. Akkermansia can modulate lipid metabolism by enhancing intestinal barrier
function, increasing fatty acid oxidation and energy expenditure in adipose tissue [42,43],
and regulating bile acid metabolism and signaling in the intestine and liver [44]. In ad-
dition, the NOD-like receptor (NLR) signaling pathway was also significantly activated
in the TH4.5 group, besides the significant difference in the abundance of Akkermansia
bacteria from the TH0 group. The NLR is a pathway that mediates the innate immune
response to intracellular pathogens and cellular stress, and activates downstream signaling
cascades [45]. For instance, it can induce the production of pro-inflammatory cytokines by
forming multiprotein complexes called inflammasomes, activate NF-κB and MAPK path-
ways that regulate gene expression related to inflammation, and modulate autophagy [46].
Akkermansia has also been found to improve immune function through the NLR signaling
pathway, such as enhancing the intestinal barrier function by increasing mucus production
and tight junction expression, and reducing inflammation and oxidative stress by modulat-
ing NLRP3 inflammasome activation and IL-1β secretion [47,48]. Nevertheless, the reason
for the increase in Akkermansia abundance after adding TH cannot be well explained.

5. Conclusions

In summary, TH supplementation can promote the metamorphosis of bullfrog tadpoles
and enhance lipid and fatty acid metabolism, while gut microbiota, especially Akkermansia,
play a vital role in affecting lipid metabolism and potentially also immune function. Thus, it
is advisable to supplement 4.5 g/kg or 6 g/kg thyroid powder (TH) in the diet of tadpoles,
which can contribute to the development of the bullfrog breeding industry and provide
more food for humans.

6. Perspectives

In China, the artificial breeding industry of bullfrogs faces an important problem,
which is the low metamorphosis rate of tadpoles. In recent years, the production area
of bullfrogs has shifted to the northern high-latitude regions, where the environmental
temperature is lower and unfavorable for tadpole metamorphosis. Therefore, it is necessary
to find ways to promote tadpole metamorphosis, which is not only applicable to bullfrog
tadpoles, but also to other artificially bred frogs, such as Pelophylax nigromaculatus and
Quasipaa spinosa. This study found that thyroid powder can accelerate the metamorphosis of
bullfrog tadpoles in the same feeding cycle, and has potential application value. However,
the safety of thyroid powder (its impact on animals and the environment) still needs
to be evaluated through more research. In addition, a feasible method is to add thyroid
hormone promoters (such as iodine and tyrosine) to the feed, which may indirectly promote
metamorphosis by increasing the synthesis of the thyroid hormone. This method is more
acceptable, because these substances are already present in commercial feed, and only the
dosage would need to be adjusted.
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