Avian iPSC Derivation to Recover Threatened Wild Species: A Comprehensive Review in Light of Well-Established Protocols
Abstract
:Simple Summary
Abstract
1. Introduction
2. Somatic Cell Sources for Reprogramming
3. Reprogramming Factors
4. Delivery Methods
5. Reprogramming Enhancers
6. A Brief History of Avian iPSC Production
7. Pluripotent Cellular Characterization and Findings
8. Attention Points in the Use of iPSCs
9. Application and Future Perspectives
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- lUCN. IUCN Red List. Available online: www.iucnredlist.org (accessed on 11 October 2021).
- Donaldson, L.; Bennie, J.J.; Wilson, R.J.; Maclean, I.M.D. Quantifying Resistance and Resilience to Local Extinction for Conservation Prioritization. Ecol. Appl. 2019, 29, e01989. [Google Scholar] [CrossRef] [PubMed]
- Guedes, N.M.R. Sucesso Reprodutivo, Mortalidade e Crescimento de Filhotes de Araras Azuis Anodorhynchus Hyacinthinus (Aves, Psittacidae) No Pantanal, Brasil. 2009, pp. 1–118. Available online: https://repositorio.unesp.br/items/ca1258df-a5ad-482f-9420-cda5008ac608 (accessed on 2 September 2023).
- Guedes, N.M.R.; Toledo, M.C.B.; Fontoura, F.M.; da Silva, G.F.; Donatelli, R.J. Growth Model Analysis of Wild Hyacinth Macaw (Anodorhynchus hyacinthinus) Nestlings Based on Long-Term Monitoring in the Brazilian Pantanal. Sci. Rep. 2022, 12, 15382. [Google Scholar] [CrossRef] [PubMed]
- Marini, M.Â.; Garcia, F.I. Conservação de Aves No Brasil. Megadiversidade 2005, 1, 95–102. [Google Scholar]
- Alho, C.J.R.; Sabino, J. A Conservation Agenda for the Pantanal’s Biodiversity. Braz. J. Biol. 2011, 71, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Lueders, I.; Allen, W.R.T. Managed Wildlife Breeding-an Undervalued Conservation Tool? Theriogenology 2020, 150, 48–54. [Google Scholar] [CrossRef]
- Dicks, N.; Bordignon, V.; Mastromonaco, G.F. Induced Pluripotent Stem Cells in Species Conservation: Advantages, Applications, and the Road Ahead. In iPSCs from Diverse Species; Elsevier: Amsterdam, The Netherlands, 2020; pp. 221–245. ISBN 9780128222287. [Google Scholar]
- Hu, T.; Taylor, L.; Sherman, A.; Tiambo, C.K.; Kemp, S.J.; Whitelaw, B.; Hawken, R.J.; Djikeng, A.; McGrew, M.J. A Low-Tech, Cost-Effective and Efficient Method for Safeguarding Genetic Diversity by Direct Cryopreservation of Poultry Embryonic Reproductive Cells. eLife 2022, 11, e74036. [Google Scholar] [CrossRef]
- Woodcock, M.E.; Gheyas, A.A.; Mason, A.S.; Nandi, S.; Taylor, L.; Sherman, A.; Smith, J.; Burt, D.W.; Hawken, R.; McGrew, M.J. Reviving Rare Chicken Breeds Using Genetically Engineered Sterility in Surrogate Host Birds. Proc. Natl. Acad. Sci. USA 2019, 116, 20930–20937. [Google Scholar] [CrossRef]
- Donoghue, A.; Blanco, J.M.; Gee, G.; Kirby, Y.; Wildt, D. Reproductive Technologies and Challenges in Avian. In Conservation Biology Series; Cambridge University Press: Cambridge, UK, 2003; pp. 321–337. [Google Scholar]
- Stanton, M.M.; Tzatzalos, E.; Donne, M.; Kolundzic, N.; Helgason, I.; Ilic, D. Prospects for the Use of Induced Pluripotent Stem Cells in Animal Conservation and Environmental Protection. Stem Cells Transl. Med. 2019, 8, 7–13. [Google Scholar] [CrossRef]
- Intarapat, S.; Stern, C.D. Chick Stem Cells: Current Progress and Future Prospects. Stem Cell Res. 2013, 11, 1378–1392. [Google Scholar] [CrossRef]
- Watanabe, S.; Nagai, T. Death Losses Due to Stillbirth, Neonatal Death and Diseases in Cloned Cattle Derived from Somatic Cell Nuclear Transfer and Their Progeny: A Result of Nationwide Survey in Japan. Anim. Sci. J. 2009, 80, 233–238. [Google Scholar] [CrossRef]
- Takahashi, K.; Yamanaka, S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell 2007, 131, 861–872. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Huang, J.; Chen, T.; Wang, Y.; Xin, S.; Li, J.; Pei, G.; Kang, J. Yamanaka Factors Critically Regulate the Developmental Signaling Network in Mouse Embryonic Stem Cells. Cell Res. 2008, 18, 1177–1189. [Google Scholar] [CrossRef] [PubMed]
- Robinton, D.A.; Daley, G.Q. The Promise of Induced Pluripotent Stem Cells in Research and Therapy. Nature 2012, 481, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Ray, A.; Joshi, J.M.; Sundaravadivelu, P.K.; Raina, K.; Lenka, N.; Kaveeshwar, V.; Thummer, R.P. An Overview on Promising Somatic Cell Sources Utilized for the Efficient Generation of Induced Pluripotent Stem Cells. Stem Cell Rev. Rep. 2021, 17, 1954–1974. [Google Scholar] [CrossRef] [PubMed]
- Cyranoski, D. How Human Embryonic Stem Cells Sparked a Revolution. Nature 2018, 555, 428–430. [Google Scholar] [CrossRef] [PubMed]
- Petitte, J.N. Avian Germplasm Preservation: Embryonic Stem Cells or Primordial Germ Cells? Poult. Sci. 2006, 85, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; West, F.D.; Jordan, B.J.; Jordan, E.T.; West, R.C.; Yu, P.; He, Y.; Barrios, M.A.; Zhu, Z.; Petitte, J.N.; et al. Induced Pluripotency in Chicken Embryonic Fibroblast Results in a Germ Cell Fate. Stem Cells Dev. 2014, 23, 1755–1764. [Google Scholar] [CrossRef]
- Zhao, R.; Zuo, Q.; Yuan, X.; Jin, K.; Jin, J.; Ding, Y.; Zhang, C.; Li, T.; Jiang, J.; Li, J.; et al. Production of Viable Chicken by Allogeneic Transplantation of Primordial Germ Cells Induced from Somatic Cells. Nat. Commun. 2021, 12, 1–13. [Google Scholar] [CrossRef]
- Kim, Y.M.; Park, Y.H.; Lim, J.M.; Jung, H.; Han, J.Y. Technical Note: Induction of Pluripotent Stem Cell-like Cells from Chicken Feather Follicle Cells. J. Anim. Sci. 2017, 95, 3479. [Google Scholar] [CrossRef]
- Verma, R.; Holland, M.K.; Temple-Smith, P.; Verma, P.J. Inducing Pluripotency in Somatic Cells from the Snow Leopard (Panthera uncia), an Endangered Felid. Theriogenology 2012, 77, 220–228.e2. [Google Scholar] [CrossRef] [PubMed]
- Friedrich Ben-Nun, I.; Montague, S.C.; Houck, M.L.; Tran, H.T.; Garitaonandia, I.; Leonardo, T.R.; Wang, Y.C.; Charter, S.J.; Laurent, L.C.; Ryder, O.A.; et al. Induced Pluripotent Stem Cells from Highly Endangered Species. Nat. Methods 2011, 8, 829–831. [Google Scholar] [CrossRef] [PubMed]
- Katayama, M.; Fukuda, T.; Kaneko, T.; Nakagawa, Y.; Tajima, A.; Naito, M.; Ohmaki, H.; Endo, D.; Asano, M.; Nagamine, T.; et al. Induced Pluripotent Stem Cells of Endangered Avian Species. Commun. Biol. 2022, 5, 1049. [Google Scholar] [CrossRef] [PubMed]
- Rosselló, R.A.; Chen, C.C.; Dai, R.; Howard, J.T.; Hochgeschwender, U.; Jarvis, E.D. Mammalian Genes Induce Partially Reprogrammed Pluripotent Stem Cells in Non-Mammalian Vertebrate and Invertebrate Species. eLife 2013, 2013, e00036. [Google Scholar] [CrossRef] [PubMed]
- Fu, K.; Chronis, C.; Soufi, A.; Bonora, G.; Edwards, M.; Smale, S.T.; Zaret, K.S.; Plath, K.; Pellegrini, M. Comparison of Reprogramming Factor Targets Reveals Both Species-Specific and Conserved Mechanisms in Early IPSC Reprogramming. BMC Genom. 2018, 19, 956. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; West, F.D.; Jordan, B.J.; Beckstead, R.B.; Jordan, E.T.; Stice, S.L. Generation of Avian Induced Pluripotent Stem Cells. Methods Mol. Biol. 2015, 1330, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; West, F.D.; Jordan, B.J.; Mumaw, J.L.; Jordan, E.T.; Gallegos-Cardenas, A.; Beckstead, R.B.; Stice, S.L. Avian-Induced Pluripotent Stem Cells Derived Using Human Reprogramming Factors. Stem Cells Dev. 2012, 21, 394–403. [Google Scholar] [CrossRef] [PubMed]
- Malik, N.; Rao, M.S. A Review of the Methods for Human IPSC Derivation. Methods Mol. Biol. 2013, 997, 23–33. [Google Scholar] [CrossRef]
- Mandal, P.K.; Rossi, D.J. Reprogramming Human Fibroblasts to Pluripotency Using Modified MRNA. Nat. Protoc. 2013, 8, 568–582. [Google Scholar] [CrossRef]
- Xi, Y.; Nada, Y.; Soh, T.; Fujihara, N.; Hattori, M.A. Establishment of Feather Follicle Stem Cells as Potential Vehicles for Delivering Exogenous Genes in Birds. J. Reprod. Dev. 2003, 49, 213–219. [Google Scholar] [CrossRef]
- Katayama, M.; Hirayama, T.; Tani, T.; Nishimori, K.; Onuma, M.; Fukuda, T. Chick Derived Induced Pluripotent Stem Cells by the Poly-Cistronic Transposon with Enhanced Transcriptional Activity. J. Cell. Physiol. 2018, 233, 990–1004. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, C.A.; Motta, L.C.B.; Oliveira, V.C.d.; Martins, D.d.S. Somatic Feather Follicle Cell Culture of the Gallus Domesticus Species for Creating a Wild Bird Genetic Resource Bank. Anim. Reprod. 2020, 17, e20200044. [Google Scholar] [CrossRef] [PubMed]
- Streckfuss-Bömeke, K.; Wolf, F.; Azizian, A.; Stauske, M.; Tiburcy, M.; Wagner, S.; Hübscher, D.; Dressel, R.; Chen, S.; Jende, J.; et al. Comparative Study of Human-Induced Pluripotent Stem Cells Derived from Bone Marrow Cells, Hair Keratinocytes, and Skin Fibroblasts. Eur. Heart J. 2013, 34, 2618–2629. [Google Scholar] [CrossRef] [PubMed]
- Rohani, L.; Johnson, A.A.; Arnold, A.; Stolzing, A. The Aging Signature: A Hallmark of Induced Pluripotent Stem Cells? Aging Cell 2014, 13, 2–7. [Google Scholar] [CrossRef]
- Klingenstein, S.; Klingenstein, M.; Kleger, A.; Liebau, S. From Hair to IPSCs—A Guide on How to Reprogram Keratinocytes and Why. Curr. Protoc. Stem Cell Biol. 2020, 55, e121. [Google Scholar] [CrossRef]
- Afzal, M.Z.; Strande, J.L. Generation of Induced Pluripotent Stem Cells from Muscular Dystrophy Patients: Efficient Integration-Free Reprogramming of Urine Derived Cells. J. Vis. Exp. 2015, 95, e52032. [Google Scholar] [CrossRef]
- Zhou, T.; Benda, C.; Duzinger, S.; Huang, Y.; Li, X.; Li, Y.; Guo, X.; Cao, G.; Chen, S.; Hao, L.; et al. Generation of Induced Pluripotent Stem Cells from Urine. J. Am. Soc. Nephrol. 2011, 22, 1221–1228. [Google Scholar] [CrossRef]
- King, A.S.; McLelland, A.S.K. Cloaca & Vent. In Birds-Their Structure and Function; Bailliere Tindall: London, UK, 1984. [Google Scholar]
- Pereira, L.A. Estabelecimento de Linhagens de Células-Tronco de Pluripotência Induzida (HiPSCs) de Indivíduos Com Transtorno Depressivo Maior. Master’s Thesis, Universidade de São Paulo, São Paulo, Brazil, 2017. [Google Scholar]
- Chou, B.-K.; Gu, H.; Gao, Y.; Dowey, S.N.; Wang, Y.; Shi, J.; Li, Y.; Ye, Z.; Cheng, T.; Cheng, L. A Facile Method to Establish Human Induced Pluripotent Stem Cells From Adult Blood Cells under Feeder-Free and Xeno-Free Culture Conditions: A Clinically Compliant Approach. Stem Cells Transl. Med. 2015, 4, 320–332. [Google Scholar] [CrossRef]
- Jimenez, A.G.; O’Connor, E.S.; Tobin, K.J.; Anderson, K.N.; Winward, J.D.; Fleming, A.; Winner, C.; Chinchilli, E.; Maya, A.; Carlson, K.; et al. Does Cellular Metabolism from Primary Fibroblasts and Oxidative Stress in Blood Differ between Mammals and Birds? The (Lack-Thereof) Scaling of Oxidative Stress. Integr. Comp. Biol. 2019, 59, 953–969. [Google Scholar] [CrossRef]
- Elbourkadi, N.; Austad, S.N.; Miller, R.A. Fibroblasts from Long-Lived Species of Mammals and Birds Show Delayed, but Prolonged, Phosphorylation of ERK. Aging Cell 2014, 13, 283–291. [Google Scholar] [CrossRef]
- McCafferty, D.J.; Gallon, S.; Nord, A. Challenges of Measuring Body Temperatures of Free-Ranging Birds and Mammals. Animal Biotelemetry 2015, 3, 33. [Google Scholar] [CrossRef]
- Boland, M.J.; Hazen, J.L.; Nazor, K.L.; Rodriguez, A.R.; Gifford, W.; Martin, G.; Kupriyanov, S.; Baldwin, K.K. Adult Mice Generated from Induced Pluripotent Stem Cells. Nature 2009, 461, 91–94. [Google Scholar] [CrossRef] [PubMed]
- Park, I.H.; Zhao, R.; West, J.A.; Yabuuchi, A.; Huo, H.; Ince, T.A.; Lerou, P.H.; Lensch, M.W.; Daley, G.Q. Reprogramming of Human Somatic Cells to Pluripotency with Defined Factors. Nature 2008, 451, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Yamanaka, S. Induction of Pluripotent Stem Cells from Mouse Fibroblasts by Four Transcription Factors. Cell Prolif. 2008, 41, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Jean, C.; Aubel, P.; Soleihavoup, C.; Bouhallier, F.; Voisin, S.; Lavial, F.; Pain, B. Pluripotent Genes in Avian Stem Cells. Dev. Growth Differ. 2013, 55, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Chen, K.; Liu, X.; Huang, L.; Zhao, D.; Li, L.; Gao, M.; Pei, D.; Wang, C.; Liu, X. Srebp-1 Interacts with c-Myc to Enhance Somatic Cell Reprogramming. Stem Cells 2016, 34, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Yuan, X.; Zou, Y.; Gao, J.; Xu, X.; Sun, H.; Zuo, Q.; Zhang, Y.; Li, B. OCT4, SOX2 and NANOG Co-Regulate Glycolysis and Participate in Somatic Induced Reprogramming. Cytotechnology 2022, 74, 371–383. [Google Scholar] [CrossRef] [PubMed]
- Nandan, M.O.; Yang, V.W. The Role of Krüppel-like Factors in the Reprogramming of Somatic Cells to Induced Pluripotent Stem Cells. Histol. Histopathol. 2009, 24, 1343–1355. [Google Scholar] [PubMed]
- Araki, R.; Hoki, Y.; Uda, M.; Nakamura, M.; Jincho, Y.; Tamura, C.; Sunayama, M.; Ando, S.; Sugiura, M.; Yoshida, M.A.; et al. Crucial Role of C-Myc in the Generation of Induced Pluripotent Stem Cells. Stem Cells 2011, 29, 1362–1370. [Google Scholar] [CrossRef]
- Fuet, A.; Montillet, G.; Jean, C.; Aubel, P.; Pain, B. NANOG Is Required for the Long-Term Establishment of Avian Somatic Reprogrammed Cells. Stem Cell Rep. 2018, 11, 1272–1286. [Google Scholar] [CrossRef]
- Lavial, F.; Acloque, H.; Bertocchini, F.; MacLeod, D.J.; Boast, S.; Bachelard, E.; Montillet, G.; Thenot, S.; Sang, H.M.; Stern, C.D.; et al. The Oct4 Homologue PouV and Nanog Regulate Pluripotency in Chicken Embryonic Stem Cells. Development 2007, 134, 3549–3563. [Google Scholar] [CrossRef] [PubMed]
- Verma, R.; Liu, J.; Holland, M.K.; Temple-Smith, P.; Williamson, M.; Verma, P.J. Nanog Is an Essential Factor for Induction of Pluripotency in Somatic Cells from Endangered Felids. Biores Open Access 2013, 2, 72–76. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Yu, H.; Zhao, J.; Tan, T.; Pan, H.; Zhu, Y.; Chen, L.; Zhang, C.; Zhang, L.; Lei, A.; et al. LIN28 Coordinately Promotes Nucleolar/Ribosomal Functions and Represses the 2C-like Transcriptional Program in Pluripotent Stem Cells. Protein Cell 2022, 13, 490–512. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ratanasirintrawoot, S.; Chandrasekaran, S.; Wu, Z.; Ficarro, S.B.; Yu, C.; Ross, C.A.; Cacchiarelli, D.; Xia, Q.; Seligson, M.; et al. LIN28 Regulates Stem Cell Metabolism and Conversion to Primed Pluripotency. Cell Stem Cell 2016, 19, 66–80. [Google Scholar] [CrossRef] [PubMed]
- Panciera, T.; Azzolin, L.; Fujimura, A.; Di Biagio, D.; Frasson, C.; Bresolin, S.; Soligo, S.; Basso, G.; Bicciato, S.; Rosato, A.; et al. Induction of Expandable Tissue-Specific Stem/Progenitor Cells through Transient Expression of YAP/TAZ. Cell Stem Cell 2016, 19, 725–737. [Google Scholar] [CrossRef]
- Di Benedetto, G.; Parisi, S.; Russo, T.; Passaro, F. YAP and TAZ Mediators at the Crossroad between Metabolic and Cellular Reprogramming. Metabolites 2021, 11, 154. [Google Scholar] [CrossRef] [PubMed]
- Lian, I.; Kim, J.; Okazawa, H.; Zhao, J.; Zhao, B.; Yu, J.; Chinnaiyan, A.; Israel, M.A.; Goldstein, L.S.B.; Abujarour, R.; et al. The Role of YAP Transcription Coactivator in Regulating Stem Cell Self-Renewal and Differentiation. Genes Dev. 2010, 24, 1106–1118. [Google Scholar] [CrossRef] [PubMed]
- Hartman, A.A.; Scalf, S.M.; Zhang, J.; Hu, X.; Chen, X.; Eastman, A.E.; Yang, C.; Guo, S. YAP Non-Cell-Autonomously Promotes Pluripotency Induction in Mouse Cells. Stem Cell Rep. 2020, 14, 730–743. [Google Scholar] [CrossRef]
- Qin, H.; Hejna, M.; Liu, Y.; Percharde, M.; Wossidlo, M.; Blouin, L.; Durruthy-Durruthy, J.; Wong, P.; Qi, Z.; Yu, J.; et al. YAP Induces Human Naive Pluripotency. Cell Rep. 2016, 14, 2301–2312. [Google Scholar] [CrossRef]
- Mali, S. Delivery Systems for Gene Therapy. Indian. J. Hum. Genet. 2013, 19, 3–8. [Google Scholar] [CrossRef]
- González, F.; Boué, S.; Belmonte, J.C.I. Methods for Making Induced Pluripotent Stem Cells: Reprogramming à La Carte. Nat. Rev. Genet. 2011, 12, 231–242. [Google Scholar] [CrossRef]
- Naldini, L.; Blömer, U.; Gallay, P.; Ory, D.; Mulligan, R.; Gage, F.H.; Verma, I.M.; Trono, D. In Vivo Gene Delivery and Stable Transduction of Nondividing Cells by a Lentiviral Vector. Science 1996, 272, 263–267. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Hamilton, B.; Martin, C.; Gao, Y.; Ye, M.; Yao, S. Generation of Induced Pluripotent Stem Cells by Reprogramming Human Fibroblasts with the Stemgent Human TF Lentivirus Set. J. Vis. Exp. 2010, 34, e1553. [Google Scholar] [CrossRef]
- Stadtfeld, M.; Nagaya, M.; Utikal, J.; Weir, G.; Hochedlinger, K. Induced Pluripotent Stem Cells Generated without Viral Integration. Science 2008, 322, 945–949. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, T.; Koshino, Y.; Shibata, F.; Oki, T.; Nakajima, H.; Nosaka, T.; Kumagai, H. Retrovirus-Mediated Gene Transfer and Expression Cloning: Powerful Tools in Functional Genomics. Exp. Hematol. 2003, 31, 1007–1014. [Google Scholar] [CrossRef] [PubMed]
- Julias, J.G.; Hash, D.; Pathak, V.K. E- Vectors: Development of Novel Self-Inactivating and Self-Activating Retroviral Vectors for Safer Gene Therapy. J. Virol. 1995, 69, 6839–6846. [Google Scholar] [CrossRef]
- Mitchell, R.S.; Beitzel, B.F.; Schroder, A.R.W.; Shinn, P.; Chen, H.; Berry, C.C.; Ecker, J.R.; Bushman, F.D. Retroviral DNA Integration: ASLV, HIV, and MLV Show Distinct Target Site Preferences. PLoS Biol. 2004, 2, e234. [Google Scholar] [CrossRef]
- Ellis, J.; Yao, S. Retrovirus Silencing and Vector Design: Relevance to Normal and Cancer Stem Cells? Curr. Gene Ther. 2005, 5, 367–373. [Google Scholar] [CrossRef]
- Lombardo, A.; Genovese, P.; Beausejour, C.M.; Colleoni, S.; Lee, Y.-L.; Kim, K.A.; Ando, D.; Urnov, F.D.; Galli, C.; Gregory, P.D.; et al. Gene Editing in Human Stem Cells Using Zinc Finger Nucleases and Integrase-Defective Lentiviral Vector Delivery. Nat. Biotechnol. 2007, 25, 1298–1306. [Google Scholar] [CrossRef]
- Jia, F.; Wilson, K.D.; Sun, N.; Gupta, D.M.; Huang, M.; Li, Z.; Panetta, N.J.; Chen, Z.Y.; Robbins, R.C.; Kay, M.A.; et al. A Nonviral Minicircle Vector for Deriving Human IPS Cells. Nat. Methods 2010, 7, 197–199. [Google Scholar] [CrossRef]
- Sommer, C.A.; Stadtfeld, M.; Murphy, G.J.; Hochedlinger, K.; Kotton, D.N.; Mostoslavsky, G. Induced Pluripotent Stem Cell Generation Using a Single Lentiviral Stem Cell Cassette. Stem Cells 2009, 27, 543–549. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Freed, C.R. Adenoviral Gene Delivery Can Reprogram Human Fibroblasts to Induced Pluripotent Stem Cells. Stem Cells 2009, 27, 2667–2674. [Google Scholar] [CrossRef] [PubMed]
- Fusaki, N.; Ban, H.; Nishiyama, A.; Saeki, K.; Hasegawa, M. Efficient Induction of Transgene-Free Human Pluripotent Stem Cells Using a Vector Based on Sendai Virus, an RNA Virus That Does Not Integrate into the Host Genome. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2009, 85, 348–362. [Google Scholar] [CrossRef] [PubMed]
- Kunitomi, A.; Hirohata, R.; Arreola, V.; Osawa, M.; Kato, T.M.; Nomura, M.; Kawaguchi, J.; Hara, H.; Kusano, K.; Takashima, Y.; et al. Improved Sendai Viral System for Reprogramming to Naive Pluripotency. Cell Rep. Methods 2022, 2, 100317. [Google Scholar] [CrossRef] [PubMed]
- Sano, M.; Iijima, M.; Ohtaka, M.; Nakanishi, M. Novel Strategy to Control Transgene Expression Mediated by a Sendai Virus-Based Vector Using a Nonstructural C Protein and Endogenous MicroRNAs. PLoS ONE 2016, 11, e0164720. [Google Scholar] [CrossRef] [PubMed]
- Yusa, K.; Rad, R.; Takeda, J.; Bradley, A. Generation of Transgene-Free Induced Pluripotent Mouse Stem Cells by the PiggyBac Transposon. Nat. Methods 2009, 6, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Chou, B.K.; Mali, P.; Huang, X.; Ye, Z.; Dowey, S.N.; Resar, L.M.S.; Zou, C.; Zhang, Y.A.; Tong, J.; Cheng, L. Efficient Human IPS Cell Derivation by a Non-Integrating Plasmid from Blood Cells with Unique Epigenetic and Gene Expression Signatures. Cell Res. 2011, 21, 518–529. [Google Scholar] [CrossRef] [PubMed]
- Diecke, S.; Lu, J.; Lee, J.; Termglinchan, V.; Kooreman, N.G.; Burridge, P.W.; Ebert, A.D.; Churko, J.M.; Sharma, A.; Kay, M.A.; et al. Novel Codon-Optimized Mini-Intronic Plasmid for Efficient, Inexpensive, and Xeno-Free Induction of Pluripotency. Sci. Rep. 2015, 5, 8081. [Google Scholar] [CrossRef]
- Yu, P.; Lu, Y.; Jordan, B.J.; Liu, Y.; Yang, J.; Hutcheson, J.M.; Ethridge, C.L.; Mumaw, J.L.; Kinder, H.A.; Beckstead, R.B.; et al. Nonviral Minicircle Generation of Induced Pluripotent Stem Cells Compatible with Production of Chimeric Chickens. Cell. Reprogram. 2014, 16, 366–378. [Google Scholar] [CrossRef]
- Steinle, H.; Weber, M.; Behring, A.; Mau-Holzmann, U.; Schlensak, C.; Wendel, H.P.; Avci-Adali, M. Generation of IPSCs by Nonintegrative RNA-Based Reprogramming Techniques: Benefits of Self-Replicating RNA versus Synthetic MRNA. Stem Cells Int. 2019, 2019, 7641767. [Google Scholar] [CrossRef]
- Warren, L.; Manos, P.D.; Ahfeldt, T.; Loh, Y.; Li, H.; Lau, F.; Ebina, W.; Mandal, P.K.; Smith, Z.D.; Meissner, A.; et al. Highly Efficient Reprogramming to Pluripotency and Directed Differentiation of Human Cells with Synthetic Modified MRNA. Cell Stem Cell 2010, 7, 618–630. [Google Scholar] [CrossRef] [PubMed]
- Kogut, I.; McCarthy, S.M.; Pavlova, M.; Astling, D.P.; Chen, X.; Jakimenko, A.; Jones, K.L.; Getahun, A.; Cambier, J.C.; Pasmooij, A.M.G.; et al. High-Efficiency RNA-Based Reprogramming of Human Primary Fibroblasts. Nat. Commun. 2018, 9, 745. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhai, Y.; Yu, D.; Cui, J.; Hu, J.F.; Li, W. Valproic Acid Enhances IPSC Induction from Human Bone Marrow-Derived Cells Through the Suppression of Reprogramming-Induced Senescence. J. Cell Physiol. 2016, 231, 1719–1727. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Y.; Chen, X.; Yu, D.; Li, T.; Cui, J.; Wang, G.; Hu, J.F.; Li, W. Histone Deacetylase Inhibitor Valproic Acid Promotes the Induction of Pluripotency in Mouse Fibroblasts by Suppressing Reprogramming-Induced Senescence Stress. Exp. Cell Res. 2015, 337, 61–67. [Google Scholar] [CrossRef]
- Liu, B.; Chen, S.; Xu, Y.; Lyu, Y.; Wang, J.; Du, Y.; Sun, Y.; Liu, H.; Zhou, H.; Lai, W.; et al. Chemically Defined and Xeno-Free Culture Condition for Human Extended Pluripotent Stem Cells. Nat. Commun. 2021, 12, 3017. [Google Scholar] [CrossRef]
- Esteban, M.A.; Wang, T.; Qin, B.; Yang, J.; Qin, D.; Cai, J.; Li, W.; Weng, Z.; Chen, J.; Ni, S.; et al. Vitamin C Enhances the Generation of Mouse and Human Induced Pluripotent Stem Cells. Cell Stem Cell 2010, 6, 71–79. [Google Scholar] [CrossRef]
- Gao, Y.; Yang, L.; Chen, L.; Wang, X.; Wu, H.; Ai, Z.; Du, J.; Liu, Y.; Shi, X.; Wu, Y.; et al. Vitamin C Facilitates Pluripotent Stem Cell Maintenance by Promoting Pluripotency Gene Transcription. Biochimie 2013, 95, 2107–2113. [Google Scholar] [CrossRef]
- Wang, T.; Chen, K.; Zeng, X.; Yang, J.; Wu, Y.; Shi, X.; Qin, B.; Zeng, L.; Esteban, M.A.; Pan, G.; et al. The Histone Demethylases Jhdm1a/1b Enhance Somatic Cell Reprogramming in a Vitamin-C-Dependent Manner. Cell Stem Cell 2011, 9, 575–587. [Google Scholar] [CrossRef]
- Shi, Y.; Zhao, Y.; Deng, H. Powering Reprogramming with Vitamin C. Cell Stem Cell 2010, 6, 1–2. [Google Scholar] [CrossRef]
- Yoda, K.; Ohnuki, Y.; Kurosawa, H. Optimization of the Treatment Conditions with Glycogen Synthase Kinase-3 Inhibitor towards Enhancing the Proliferation of Human Induced Pluripotent Stem Cells While Maintaining an Undifferentiated State under Feeder-Free Conditions. J. Biosci. Bioeng. 2019, 127, 381–387. [Google Scholar] [CrossRef]
- Watanabe, K.; Ueno, M.; Kamiya, D.; Nishiyama, A.; Matsumura, M.; Wataya, T.; Takahashi, J.B.; Nishikawa, S.; Nishikawa, S.; Muguruma, K.; et al. A ROCK Inhibitor Permits Survival of Dissociated Human Embryonic Stem Cells. Nat. Biotechnol. 2007, 25, 681–686. [Google Scholar] [CrossRef] [PubMed]
- Pakzad, M.; Totonchi, M.; Taei, A.; Seifinejad, A.; Hassani, S.N.; Baharvand, H. Presence of a ROCK Inhibitor in Extracellular Matrix Supports More Undifferentiated Growth of Feeder-Free Human Embryonic and Induced Pluripotent Stem Cells upon Passaging. Stem Cell Rev. Rep. 2010, 6, 96–107. [Google Scholar] [CrossRef] [PubMed]
- Claassen, D.A.; Desler, M.M.; Rizzino, A. ROCK Inhibition Enhances the Recovery and Growth of Cryopreserved Human Embryonic Stem Cells and Human Induced Pluripotent Stem Cells. Mol. Reprod. Dev. 2009, 76, 722–732. [Google Scholar] [CrossRef] [PubMed]
- Mohseni, R.; Shoae-Hassani, A.; Verdi, J. Reprogramming of Endometrial Adult Stromal Cells in the Presence of a ROCK Inhibitor, Thiazovivin, Could Obtain More Efficient IPSCs. Cell Biol. Int. 2015, 39, 515–518. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhu, X.; Hahm, H.S.; Wei, W.; Hao, E.; Hayek, A.; Ding, S. Revealing a Core Signaling Regulatory Mechanism for Pluripotent Stem Cell Survival and Self-Renewal by Small Molecules. Proc. Natl. Acad. Sci. USA 2010, 107, 8129–8134. [Google Scholar] [CrossRef]
- Dorris, E.R.; Blackshields, G.; Sommerville, G.; Alhashemi, M.; Dias, A.; McEneaney, V.; Smyth, P.; O’Leary, J.J.; Sheils, O. Pluripotency Markers Are Differentially Induced by MEK Inhibition in Thyroid and Melanoma BRAFV600E Cell Lines. Cancer Biol. Ther. 2016, 17, 526–542. [Google Scholar] [CrossRef]
- Garay, B.I.; Givens, S.; Abreu, P.; Liu, M.; Yücel, D.; Baik, J.; Stanis, N.; Rothermel, T.M.; Magli, A.; Abrahante, J.E.; et al. Dual Inhibition of MAPK and PI3K/AKT Pathways Enhances Maturation of Human IPSC-Derived Cardiomyocytes. Stem Cell Rep. 2022, 17, 2005–2022. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhou, X.; Chen, D.; Lu, K.; Lu, Y. Effects of Feeder Cells on Proliferation of Inducible Pluripotent Stem Cells in Chicken. Biotech. Histochem. 2022, 97, 159–167. [Google Scholar] [CrossRef]
- Yue, X.S.; Fujishiro, M.; Nishioka, C.; Arai, T.; Takahashi, E.; Gong, J.S.; Akaike, T.; Ito, Y. Feeder Cells Support the Culture of Induced Pluripotent Stem Cells Even after Chemical Fixation. PLoS ONE 2012, 7, e32707. [Google Scholar] [CrossRef]
- Lambshead, J.W.; Meagher, L.; O’Brien, C.; Laslett, A.L. Defining Synthetic Surfaces for Human Pluripotent Stem Cell Culture. Cell Regen. 2013, 2, 2–7. [Google Scholar] [CrossRef]
- Dai, R.; Rossello, R.; Chen, C.C.; Kessler, J.; Davison, I.; Hochgeschwender, U.; Jarvis, E.D. Maintenance and Neuronal Differentiation of Chicken Induced Pluripotent Stem-like Cells. Stem Cells Int. 2014, 2014, 182737. [Google Scholar] [CrossRef] [PubMed]
- Susta, L.; He, Y.; Hutcheson, J.M.; Lu, Y.; West, F.D.; Stice, S.L.; Yu, P.; Abdo, Z.; Afonso, C.L. Derivation of Chicken Induced Pluripotent Stem Cells Tolerant to Newcastle Disease Virus-Induced Lysis through Multiple Rounds of Infection. Virol. J. 2016, 13, 205. [Google Scholar] [CrossRef] [PubMed]
- Shittu, I.; Zhu, Z.; Lu, Y.; Hutcheson, J.M.; Stice, S.L.; West, F.D.; Donadeu, M.; Dungu, B.; Fadly, A.M.; Zavala, G.; et al. Development, Characterization and Optimization of a New Suspension Chicken-Induced Pluripotent Cell Line for the Production of Newcastle Disease Vaccine. Biologicals 2016, 44, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Liou, J.F.; Wu, W.R.; Chen, L.R.; Shiue, Y.L. Establishment of an Induced Pluripotent Cell Line from Taiwan Black Silkie Chick Embryonic Fibroblasts for Replication-Incompetent Virus Production. Sci. Rep. 2019, 9, 15745. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.W.; Kim, J.S.; Choi, S.; Ju Hong, Y.; Byun, S.J.; Seo, H.G.; Do, J.T. Mitochondrial Remodeling in Chicken Induced Pluripotent Stem-like Cells. Stem Cells Dev. 2016, 25, 472–476. [Google Scholar] [CrossRef] [PubMed]
- Štefková, K.; Procházková, J.; Pacherník, J. Alkaline Phosphatase in Stem Cells. Stem Cells Int. 2015, 2015, 628368. [Google Scholar] [CrossRef]
- Abad, M.; Mosteiro, L.; Pantoja, C.; Cañamero, M.; Rayon, T.; Ors, I.; Graña, O.; Megías, D.; Domínguez, O.; Martínez, D.; et al. Reprogramming In Vivo Produces Teratomas and IPS Cells with Totipotency Features. Nature 2013, 502, 340–345. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, S.; Stacey, G.N.; Akazawa, C.; Aoyama, N.; Baptista, R.; Bedford, P.; Bennaceur Griscelli, A.; Chandra, A.; Elwood, N.; Girard, M.; et al. Quality Control Guidelines for Clinical-Grade Human Induced Pluripotent Stem Cell Lines. Regen. Med. 2018, 13, 859–866. [Google Scholar] [CrossRef]
- Cyranoski, D. Japanese Woman Is First Recipient of Next-Generation Stem Cells. Nature 2014, 2, 2–5. [Google Scholar] [CrossRef]
- Yoshihara, M.; Hayashizaki, Y.; Murakawa, Y. Genomic Instability of IPSCs: Challenges Towards Their Clinical Applications. Stem Cell Rev. Rep. 2017, 13, 7–16. [Google Scholar] [CrossRef]
- Peterson, S.E.; Loring, J.F. Genomic Instability in Pluripotent Stem Cells: Implications for Clinical Applications. J. Biol. Chem. 2014, 289, 4578–4584. [Google Scholar] [CrossRef] [PubMed]
- Mayshar, Y.; Ben-David, U.; Lavon, N.; Biancotti, J.C.; Yakir, B.; Clark, A.T.; Plath, K.; Lowry, W.E.; Benvenisty, N. Identification and Classification of Chromosomal Aberrations in Human Induced Pluripotent Stem Cells. Cell Stem Cell 2010, 7, 521–531. [Google Scholar] [CrossRef] [PubMed]
- Draper, J.S.; Smith, K.; Gokhale, P.; Moore, H.D.; Maltby, E.; Johnson, J.; Meisner, L.; Zwaka, T.P.; Thomson, J.A.; Andrews, P.W. Recurrent Gain of Chromosomes 17q and 12 in Cultured Human Embryonic Stem Cells. Nat. Biotechnol. 2004, 22, 53–54. [Google Scholar] [CrossRef] [PubMed]
- Taapken, S.M.; Nisler, B.S.; Newton, M.A.; Sampsell-Barron, T.L.; Leonhard, K.A.; McIntire, E.M.; Montgomery, K.D. Karyotypic Abnormalities in Human Induced Pluripotent Stem Cells and Embryonic Stem Cells. Nat. Biotechnol. 2011, 29, 313–314. [Google Scholar] [CrossRef] [PubMed]
- Turinetto, V.; Orlando, L.; Giachino, C. Induced Pluripotent Stem Cells: Advances in the Quest for Genetic Stability during Reprogramming Process. Int. J. Mol. Sci. 2017, 18, 1952. [Google Scholar] [CrossRef]
- Laurent, L.C.; Ulitsky, I.; Slavin, I.; Tran, H.; Schork, A.; Morey, R.; Lynch, C.; Harness, J.V.; Lee, S.; Barrero, M.J.; et al. Dynamic Changes in the Copy Number of Pluripotency and Cell Proliferation Genes in Human ESCs and IPSCs during Reprogramming and Time in Culture. Cell Stem Cell 2011, 8, 106–118. [Google Scholar] [CrossRef] [PubMed]
- Bai, H.; Chen, K.; Gao, Y.-X.; Arzigian, M.; Xie, Y.-L.; Malcosky, C.; Yang, Y.-G.; Wu, W.-S.; Wang, Z.Z. Bcl-XL Enhances Single-Cell Survival and Expansion of Human Embryonic Stem Cells without Affecting Self-Renewal. Stem Cell Res. 2012, 8, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Kanchan, K.; Iyer, K.; Yanek, L.R.; Carcamo-Orive, I.; Taub, M.A.; Malley, C.; Baldwin, K.; Becker, L.C.; Broeckel, U.; Cheng, L.; et al. Genomic Integrity of Human Induced Pluripotent Stem Cells across Nine Studies in the NHLBI NextGen Program. Stem Cell Res. 2020, 46, 101803. [Google Scholar] [CrossRef]
- Gore, A.; Li, Z.; Fung, H.-L.; Young, J.E.; Agarwal, S.; Antosiewicz-Bourget, J.; Canto, I.; Giorgetti, A.; Israel, M.A.; Kiskinis, E.; et al. Somatic Coding Mutations in Human Induced Pluripotent Stem Cells. Nature 2011, 471, 63–67. [Google Scholar] [CrossRef]
- Ji, J.; Ng, S.H.; Sharma, V.; Neculai, D.; Hussein, S.; Sam, M.; Trinh, Q.; Church, G.M.; Mcpherson, J.D.; Nagy, A.; et al. Elevated Coding Mutation Rate during the Reprogramming of Human Somatic Cells into Induced Pluripotent Stem Cells. Stem Cells 2012, 30, 435–440. [Google Scholar] [CrossRef]
- Wang, B.; Miyagoe-Suzuki, Y.; Yada, E.; Ito, N.; Nishiyama, T.; Nakamura, M.; Ono, Y.; Motohashi, N.; Segawa, M.; Masuda, S.; et al. Reprogramming Efficiency and Quality of Induced Pluripotent Stem Cells (IPSCs) Generated from Muscle-Derived Fibroblasts of Mdx Mice at Different Ages. PLoS Curr. 2011, 3, RRN1274. [Google Scholar] [CrossRef]
- Sugiura, M.; Kasama, Y.; Araki, R.; Hoki, Y.; Sunayama, M.; Uda, M.; Nakamura, M.; Ando, S.; Abe, M. Induced Pluripotent Stem Cell Generation-Associated Point Mutations Arise during the Initial Stages of the Conversion of These Cells. Stem Cell Rep. 2014, 2, 52–63. [Google Scholar] [CrossRef] [PubMed]
- Meisner, L.; Johnson, J. Protocols for Cytogenetic Studies of Human Embryonic Stem Cells. Methods 2008, 45, 133–141. [Google Scholar] [CrossRef]
- Wang, D.G.; Fan, J.-B.; Siao, C.-J.; Berno, A.; Young, P.; Sapolsky, R.; Ghandour, G.; Perkins, N.; Winchester, E.; Spencer, J.; et al. Large-Scale Identification, Mapping, and Genotyping of Single-Nucleotide Polymorphisms in the Human Genome. Science 1998, 280, 1077–1082. [Google Scholar] [CrossRef] [PubMed]
- Baylin, S.B.; Ohm, J.E. Epigenetic Gene Silencing in Cancer—A Mechanism for Early Oncogenic Pathway Addiction? Nat. Rev. Cancer 2006, 6, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, R.D.; Hon, G.C.; Lee, L.K.; Ngo, Q.; Lister, R.; Pelizzola, M.; Edsall, L.E.; Kuan, S.; Luu, Y.; Klugman, S.; et al. Distinct Epigenomic Landscapes of Pluripotent and Lineage-Committed Human Cells. Cell Stem Cell 2010, 6, 479–491. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Doi, A.; Wen, B.; Ng, K.; Zhao, R.; Cahan, P.; Kim, J.; Aryee, M.J.; Ji, H.; Ehrlich, L.I.R.; et al. Epigenetic Memory in Induced Pluripotent Stem Cells. Nature 2010, 467, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Maherali, N.; Sridharan, R.; Xie, W.; Utikal, J.; Eminli, S.; Arnold, K.; Stadtfeld, M.; Yachechko, R.; Tchieu, J.; Jaenisch, R.; et al. Directly Reprogrammed Fibroblasts Show Global Epigenetic Remodeling and Widespread Tissue Contribution. Cell Stem Cell 2007, 1, 55–70. [Google Scholar] [CrossRef]
- Mikkelsen, T.S.; Ku, M.; Jaffe, D.B.; Issac, B.; Lieberman, E.; Giannoukos, G.; Alvarez, P.; Brockman, W.; Kim, T.-K.; Koche, R.P.; et al. Genome-Wide Maps of Chromatin State in Pluripotent and Lineage-Committed Cells. Nature 2007, 448, 553–560. [Google Scholar] [CrossRef]
- Ohi, Y.; Qin, H.; Hong, C.; Blouin, L.; Polo, J.M.; Guo, T.; Qi, Z.; Downey, S.L.; Manos, P.D.; Rossi, D.J.; et al. Incomplete DNA Methylation Underlies a Transcriptional Memory of Somatic Cells in Human IPS Cells. Nat. Cell Biol. 2011, 13, 541–549. [Google Scholar] [CrossRef]
- Benirschke, K. The Frozen Zoo Concept. Zoo Biol. 1984, 3, 325–328. [Google Scholar] [CrossRef]
- Hayashi, K.; Ogushi, S.; Kurimoto, K.; Shimamoto, S.; Ohta, H.; Saitou, M. Offspring from Oocytes Derived from in Vitro Primordial Germ Cell–like Cells in Mice. Science 2012, 338, 971–975. [Google Scholar] [CrossRef] [PubMed]
- Yamashiro, C.; Sasaki, K.; Yabuta, Y.; Kojima, Y.; Nakamura, T.; Okamoto, I.; Yokobayashi, S.; Murase, Y.; Ishikura, Y.; Shirane, K.; et al. Generation of Human Oogonia from Induced Pluripotent Stem Cells in Vitro. Science 2018, 362, 356–360. [Google Scholar] [CrossRef] [PubMed]
- Specht, E.A.; Welch, D.R.; Rees Clayton, E.M.; Lagally, C.D. Opportunities for Applying Biomedical Production and Manufacturing Methods to the Development of the Clean Meat Industry. Biochem. Eng. J. 2018, 132, 161–168. [Google Scholar] [CrossRef]
Reference | [27] | [23] | [35] | [24] | [30] | [85] | [28] | [31] |
---|---|---|---|---|---|---|---|---|
Cellular source | FFCs, dermal fibroblasts | CEFs | Dermal fibroblasts | FFCs | QEFs | CEFs | CEFs, QEFs | QEFs |
Reprogramming method | PiggyBac transposon vector | Lentiviral vector | PiggyBac transposon | Retroviral vector | Lentiviral vector | Minicircle DNA | Lentiviral vector | Lentiviral vector |
Reprogramming genes | Oct3/4, Sox2, Klf4, c-Myc, Lin28, Nanog, Klf2, Yap | Oct3/4, Sox2, Lin28, Nanog | Oct3/4, Sox2, Klf4, c-Myc, Lin28, Nanog | Oct3/4, Sox2, Klf4, cMyc, Nanog | OCT3/4, SOX, KLF4, C-MYC, LIN28, NANOG | OCT3/4, SOX2, LIN28, NANOG | Oct3/4, Sox2, Klf4, c-Myc | OCT3/4, SOX2, KLF4, C-MYC, LIN28, NANOG |
Alkaline phosphatase | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Immunocytochemistry (Pluripotency markers) | SSEA-1 SSEA-3 SSEA-4 | SSEA-1 | SSEA-1 SSEA-3 SSEA-4 | SSEA-1 | POUF SSEA-1 | POU5F1 SSEA-1 SSEA-4 SOX2 NANOG | SSEA-1 | POU5F1 SOX2 SOX17 SSEA4 TRA-1-60 TRA-1-81 |
RT-PCR (Pluripotency-associated genes) | DNMT3B ESRRB FBXO15 LIN28 NANOG chicken PouV REX1 SALL4 SOX2 SOX3 | KLF4 LIN28 NANOG POU5F1 SOX2 SSEA1 | ESRRB KLF2 cKLF4 chicken Nanog chicken PouV REX1 cSOX2 TBX3 | c-MYC KLF4 LIN28 NANOG POU5F1 chicken PouV SOX2 | - | DNMT3B LIN28 NANOG POU5F1 chicken PouV REX-1 SLC2A3 chicken Sox2 SOX2 TERF1 | KLF4 c-MYC NANOG POU5F1 SOX2 | POU5F1 |
Telomerase activity | - | - | - | - | - | Yes | Yes | Yes |
Embryoid body formation | Yes | - | Yes | Yes | - | Yes | Yes | |
In vitro differentiation | Neural and smooth muscle | Neural cells | Endo-, meso-, and ectoderm | - | Endo-, meso-, and ectoderm | Endo-, meso-, and ectoderm—neural | ||
Teratoma formation | Yes | Yes | - | - | - | Yes | - | |
Proliferation assay | - | - | - | - | Yes | Yes | ||
Production of chimera | Yes | Yes | - | Yes | Yes | Yes | Yes | Yes |
Karyotype | Yes | Yes | - | - | - | Yes | - | |
Other analysis | Rnaseq, mitochondrial staining | Rnaseq, bissulfete sequencies, DNA methylation, flow cytometry, short tandem, Western blot | Rnaseq | Mitochondrial staining | - | Flow cytometry | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nogueira, I.P.M.; Costa, G.M.J.; Lacerda, S.M.d.S.N. Avian iPSC Derivation to Recover Threatened Wild Species: A Comprehensive Review in Light of Well-Established Protocols. Animals 2024, 14, 220. https://doi.org/10.3390/ani14020220
Nogueira IPM, Costa GMJ, Lacerda SMdSN. Avian iPSC Derivation to Recover Threatened Wild Species: A Comprehensive Review in Light of Well-Established Protocols. Animals. 2024; 14(2):220. https://doi.org/10.3390/ani14020220
Chicago/Turabian StyleNogueira, Iara Pastor Martins, Guilherme Mattos Jardim Costa, and Samyra Maria dos Santos Nassif Lacerda. 2024. "Avian iPSC Derivation to Recover Threatened Wild Species: A Comprehensive Review in Light of Well-Established Protocols" Animals 14, no. 2: 220. https://doi.org/10.3390/ani14020220
APA StyleNogueira, I. P. M., Costa, G. M. J., & Lacerda, S. M. d. S. N. (2024). Avian iPSC Derivation to Recover Threatened Wild Species: A Comprehensive Review in Light of Well-Established Protocols. Animals, 14(2), 220. https://doi.org/10.3390/ani14020220