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Simple Summary: Effective, sustainable regional surveillance for the early detection of notifiable
swine pathogens has been difficult to achieve. Regional surveillance based on clinical signs (syn-
dromic surveillance) is not diagnostically sensitive and specific. Surveillance based on farm-by-farm
testing is burdensome and costly. Borrowing the strengths of each approach, we evaluated an active
participatory surveillance design in which regional status was determined by targeted sampling of
10 poor-doing pigs in each participating farm followed by screening in credentialed laboratories. The
analysis showed that at 0.1% prevalence (18 infected farms among 17,521 farms) and a farm-level
detection probability of 30%, active participatory surveillance would detect ≥ 1 positive farms with
67%, 90%, and 97% probability when producer participation was 20%, 40%, and 60%, respectively. De-
pending on the specimen collected (serum or swab sample) and test format (nucleic acid or antibody
detection), the cost per round of sampling ranged from EUR 0.016 to EUR 0.032 (USD 0.017 to USD
0.034 USD) per pig in the region. The techniques and technologies required for active participatory
surveillance are widely available and in common use. Implementation would require coordination
among producers, industry groups, and animal health authorities.

Abstract: We evaluated an active participatory design for the regional surveillance of notifiable
swine pathogens based on testing 10 samples collected by farm personnel in each participating
farm. To evaluate the performance of the design, public domain software was used to simulate the
introduction and spread of a pathogen among 17,521 farms in a geographic region of 1,615,246 km2.
Using the simulated pathogen spread data, the probability of detecting ≥ 1 positive farms in the
region was estimated as a function of the percent of participating farms (20%, 40%, 60%, 80%, 100%),
farm-level detection probability (10%, 20%, 30%, 40%, 50%), and regional farm-level prevalence. At
0.1% prevalence (18 positive farms among 17,521 farms) and a farm-level detection probability of
30%, the participatory surveillance design achieved 67%, 90%, and 97% probability of detecting ≥ 1
positive farms in the region when producer participation was 20%, 40%, and 60%, respectively. The
cost analysis assumed that 10 individual pig samples per farm would be pooled into 2 samples
(5 pigs each) for testing. Depending on the specimen collected (serum or swab sample) and test
format (nucleic acid or antibody detection), the cost per round of sampling ranged from EUR 0.017
to EUR 0.032 (USD 0.017 to USD 0.034) per pig in the region. Thus, the analysis suggested that an
active regional participatory surveillance design could achieve detection at low prevalence and at a
sustainable cost.
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1. Introduction

In this study, a swine farm is defined as a specific geographic location where a popula-
tion of pigs under one management system is raised; a region is defined as a contiguous
geographical area within which the farms under surveillance are located. Swine farms are
diverse in size and structure, production type, housing, and management, but the trend
over the last few decades has been toward fewer and larger farms. As an example, the
number of U.S. farms with pigs declined from 168,450 in 1995 to 68,300 in 2012 [1] while
the average farm inventory increased from 302 pigs to 1044 [2]. This period also saw the
emergence of specialized swine farms and widespread adoption of the practice of moving
young pigs from breeding-specific farms to feeding-specific farms. Thus, in 2019, Denmark,
France, Germany, and Spain cumulatively imported 15.7 million and exported 20.5 million
live pigs [3] and, in the U.S., 63.4 million live pigs were transported from one state to
finishing farms in other states [4]. Overall, these changes have contributed to improved
production efficiency but complicated disease control. Logically, the greater movement of
animals, personnel, and material facilitates the spread of infectious agents. For example,
porcine epidemic diarrhea virus spread to at least 12 states within 8 weeks of its initial
detection in the U.S. [5,6].

Under these circumstances, the early detection of notifiable swine pathogens is essen-
tial but difficult. In Brazil (1978), an unrecognized outbreak of African swine fever virus
(ASFV) in the index farm was followed by its spread to 11 states. Eradication took 8 years
and cost ~USD 20 million [7]. In a 1997–1998 outbreak in the Netherlands, a retrospective
analysis determined that classical swine fever virus (CSFV) was spreading in the country
5 to 7 weeks prior to its recognition [8]. Eradication was ultimately accomplished at a
cost of ~USD 2.3 billion [9]. In the United Kingdom (2001), foot-and-mouth disease virus
(FMDV) infections went unnoted and the virus was disseminated widely via the movement
of infected animals. Eradication took 6 months, led to the euthanasia of 4 million animals,
and cost ~USD 4.0 billion [10]. At present, the ASFV pandemic initiated in 2007 continues
to expand despite the recognition that “an early detection system for ASF could facilitate early
reporting and response (and limit) the spread of the disease” [11].

The need for effective, on-going regional surveillance is obvious, but a workable
design is not [12]. Surveillance based on “down-the-road” testing to prove farms free
from infection is often performed in government-supported eradication programs, e.g.,
Aujeszky’s disease [13], but is costly and administratively burdensome. Syndromic surveil-
lance [14], i.e., detection based on reports of clinical signs consistent with the pathogen(s)
of interest, should meet the need, but Poppensiek and Budd, cited in [15], found that
“The greatest single difficulty in a disease-reporting program proved to be the failure of vets to file
reports”. Exploring this problem, Gates et al. [16] found that the reluctance to report arose
from feelings of uncertainty, fear of the consequences of reporting, distrust of authorities,
and unfamiliarity with the reporting process. Participatory surveillance, i.e., including
members of the population at risk in the surveillance data collection process [17–20], has
improved syndromic surveillance, but its effectiveness is limited by the participants’ clinical
experience and the inherent diagnostic ambiguity of clinical signs. Thus, Elbers et al. [21]
estimated that a diagnosis of CSFV based solely on clinical signs achieved a diagnostic
sensitivity of 73% and a diagnostic specificity of 53%.

The objective of this study was to characterize the performance of a surveillance design
best described as “collecting and testing a few targeted samples from each of many farms
in the region”. In more formal terms, we analyzed the performance and cost of test-based,
regional, active participatory surveillance based on the targeted sampling of 10 poor-doing
pigs by farm personnel (producer, staff, and/or veterinarian) followed by screening for the
pathogen of interest in credentialed laboratories. Because our objective was to explore the
feasibility and performance of this general design, the analysis did not include a sampling
and testing process for a specific pathogen. However, a key assumption in the cost analysis
was that 10 pigs would be sampled on each participating farm and the individual pig
samples combined into two pools (5 pigs per pool) for antibody or nucleic acid testing.
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2. Study Design

The study was conducted in three phases. In Phase 1, the spread of a notifiable
(but unspecified) pathogen was simulated in a population of 17,521 swine farms holding
51,515,699 pigs in a geographic region of 1,615,246 km2 for a period of 70 days. Based
on the simulated farm status (negative or positive), Phase 2 estimated the probability of
detecting ≥ 1 positive farms in the region as a function of farm-level sensitivity (10%, 20%,
30%, 40%, 50%), percent of farms participating in the surveillance program (20%, 40%, 60%,
80%, 100%), and farm-level prevalence in the region. Since the objective was to broadly
evaluate the performance of the surveillance design, Phase 1 (pathogen spread) and Phase
2 (detection) simulations were performed over a range of parameters. In Phase 3, active
participatory surveillance was analyzed in terms of the cost per farm and the cost per pig
in inventory per round of sampling and testing.

2.1. Phase 1: Simulating Pathogen Spread—Animal Disease Spread Model (ADSM)

The Animal Disease Spread Model (ADSM) is public-domain software designed to
simulate the spread of infectious agents in livestock populations [22]. ADSM uses a static,
fixed population and defines the population of animals at a single geographic location,
i.e., a farm, as the epidemiological unit. For Phase 1 simulations, a population of swine
farms was created from publicly available concentrated animal feeding operation (CAFO)
permit data provided by the appropriate authorities in the states of Colorado, Iowa, Kansas,
Minnesota, Missouri, Nebraska, Oklahoma, and South Dakota. State datasets were collated
into a single ADSM-compatible file. Farms determined to be inactive or with data quality
issues were removed, resulting in a final data set consisting of 17,521 farms (Table 1).
Swine packing plant locations and slaughter capacities were included in the population
file to account for their role in indirect pathogen spread [23], with latitude and longitude
generated from their addresses [24] using Google Maps (www.google.com/maps accessed
1 April 2021).

Table 1. Population of farm sites used in Phase 1 (pathogen spread) and Phase 2 (probability of
detection) simulations by production type and pig inventory 1.

Total Pig Inventory Breeder Sites (No. Pigs) Breeder–Feeder Sites
(No. Pigs) Feeder Sites (No. Pigs) Total Sites (No. Pigs)

≤1000
476 650 3296 4422

(140,823) (254,214) (980,356) (1,375,393)

1001 to 4999
474 294 10,493 11,261

(1,244,232) (641,930) (29,374,884) (31,261,046)

≥5000
132 120 1586 1838

(1,556,655) (1,595,964) (15,726,642) (18,879,261)

TOTAL
1082 1064 15,375 17,521

(2,941,710) (2,492,108) (46,081,882) (51,515,700)
1 Swine farm data based on publicly available animal feeding operation permit data provided by the appropri-
ate authorities in the U.S. states of Colorado, Iowa, Kansas, Minnesota, Missouri, Nebraska, Oklahoma, and
South Dakota.

ADSM (version 3.510.0) software required the identification of each farm site by
production type (breeder, feeder, or breeder/feeder), inventory (number of animals), and
geolocation (latitude and longitude). For the majority of farms, production type was
provided in the state datasets or derived from the site name, e.g., “Smith Sow Farm”. Using
this approach, 13,041 of 17,521 farms in the population file were assigned to production type:
209 (1.6%) breeder/feeder, 702 (5.4%) breeder, and 12,130 (93.0%) feeder. The remaining
4481 farms were randomly assigned [25] to production type proportional to state-level
production types or, if state data were not adequately reported, the overall proportions in
the database. State-level permit data described the capacity (inventory) of each farm either

www.google.com/maps
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as the number of pigs or as “animal units”. In the latter case, animal units were converted
to the number of pigs on the basis of one animal unit per 2.5 pigs weighing ≥ 24.9 kg
(≥55 pounds) or 10 pigs weighing < 24.9 kg (<55 pounds) [26]. With one exception, all
states reported farm location by latitude and longitude, by ZIP Code (i.e., postal code),
or by county (i.e., an administrative subdivision of a state). For farms without precise
geolocation, the spsample function in the sp R package (version 1.4-5) [27] was used to
randomly generate a latitude and longitude within the geographic unit associated with the
record (i.e., ZIP Code, county, or state).

2.1.1. ADSM Simulations

The ADSM software was designed to simulate the spread of a designated pathogen in
a defined livestock population by setting parameter values representative of the pathogen’s
transmission characteristics and industry production practices. In this study, ADSM simula-
tions were performed over a range of parameter values (Table 2) to provide spread estimates
generalizable to a variety of notifiable pathogens. Although disease control options are
available in ADSM, e.g., movement restrictions, vaccination, and farm depopulation, they
were not implemented so as to allow the unrestricted spread of the hypothetical agent
within the region.

Table 2. Phase 1 (pathogen spread): parameters used in simulating the spread of a notifiable swine
pathogen in a defined region 1.

Spread Parameters Parameter Definitions and/or Values

1. Index farm.

a. Location (pig density).

b. Production type.

1. First positive farm in each simulation.

a. County-level pig density: low (1.1–3.3 pigs per km2), medium
(15.9–25.3 pigs per km2), high (106.8–214.5 pigs per km2).

b. Breeder, breeder–feeder, or feeder.

2. Direct contact.

a. Distance for direct contact.

b. Daily movement rate.

2. Transmission by moving infectious animals among sites.

a. BETAPert distribution, min 0.5 km, mode 100 km, max
1000 km.

b. Fixed rate as specified by farm type:

Destination
Source farm Breeder [28] Feeder [28] Packing Plant [29]

Breeder–Feeder NA 0.0204 0.0310
Breeder 0.0014 0.0687 0.0310
Feeder NA 0.0348 0.0310

c. Probability of infecting a negative farm. c. Probabilities tested 0.2, 0.4, and 0.6.

3. Indirect contact.

a. Distance for indirect contact.

b. Daily indirect contact rate.

3. Transmission by movement of people, fomites, etc.

a. BETAPert distribution, min 0.5 km, mode 100 km, max
1000 km.

b. Fixed rate as specified by farm type:

- - - - - - - - - Destination - - - - - - - - -
Source farm Breeder Feeder Packing Plant

Breeder–Feeder NA 0.0204 0.0310
Breeder 0.0014 0.0687 0.0310
Feeder NA 0.0348 0.0310

c. Probability of infecting a negative farm. c. Probabilities tested 0.05, 0.1, and 0.15.

4. Local area spread.

a. Probability of infecting a negative farm.

4. Daily probability of spread to farms ≤ 1 km from infected farm.

a. Exponential drop off. Probabilities tested 0.001, 0.01, and 0.1.

1 Pathogen spread simulations performed using public domain software [22] and a population of 17,521 farms
(51,515,700 pigs) in a contiguous geographic region (1,615,246 km2).
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For simplicity, each spread scenario began with a single index farm (Table 2). A total of
30 index farms were identified by randomly selecting 10 farms from each of the 3 pig density
categories (1.1–3.3 pigs per km2, 15.9–25.3 pigs per km2, 106.8–214.5 pigs per km2) using
features built into R (version 4.1.0) software [25]. Each of these 30 individual index farms
was successively categorized as a breeder, breeder–feeder, or feeder in simulations. This
process ensured that the spread scenarios covered the range of possible outcomes that could
arise due to differences in pig density in the region surrounding the index farm and in the
direct and indirect contact rates among production types. A total of 2430 pathogen spread
scenarios were simulated based on all combinations of county-level pig density (n = 3),
index farm within county density (10 farms in each of the 3 county-level pig densities),
index farm production type (n = 3, i.e., breeder, feeder, breeder–feeder), spread by direct
contact (n = 3, i.e., probability levels 0.2, 0.4, 0.6), spread by indirect contact (n = 3, i.e.,
probability levels 0.05, 0.10, 0.15), and area spread (n = 3, i.e., probability levels 0.001, 0.010,
0.100). Each scenario was replicated 100 times to account for the stochastic nature of the
ADSM simulations.

2.1.2. ADSM Automation

After constructing the initial pathogen spread scenario using the ADSM Scenario
Creator, the creation of the subsequent 2429 scenarios was automated. In brief, the Scenario
Creator output a directory that contained an SQLite database (“ScenarioX.db”) into the
ADSM workspace that housed the information ADSM used to run the scenario. An R
script [25] was written to copy the database file and update the unique parameter values
for each scenario (Table 2), thereby creating additional SQLite databases suitable to be
imported and run on ADSM.

The procedure was performed as follows:

1. A new file directory in the ADSM workspace was created using the base R function
dir.create and the saved template scenario “ScenarioX.db” was copied from the ini-
tial simulation. This file was renamed using the base R function file.rename, e.g.,
“new_scenario.db”.

2. A connection was created between R and the SQLite database using the dbConnect
function from the RSQLite R package (version 2.2.4) [30] to access the “new_scenario.db”
file for editing, (i.e., con = dbConnect(SQLite(), dbname = “new_scenario.db”)).

3. Once the connection was opened, the dbGetQuery function was used to bring the
SQLite table to be edited into the R environment as a data frame. For example, the
R code created a data frame in the R environment named “Population” using the
ScenarioCreator_unit table from the SQLite database. This table contained the entire
population file input during the ADSM scenario creation process.

a. Population <- dbGetQuery(con, “SELECT * FROM ScenarioCreator_unit”).
b. Other tables altered using this procedure included those containing the direct

spread parameters (ScenarioCreator_directspread), indirect spread parameters
(ScenarioCreator_indirectspread), and local area spread parameters (Scenari-
oCreator_airbornespread).

4. R functions were then used to update the data frame to fit the new desired scenario
(i.e., production types, initial infection statuses, or transmission probabilities).

5. The dbWriteTable function with the overwrite option specified as TRUE was used
to replace the SQLite table in the database file with the newly edited data frame.
For example, dbWriteTable(con, name = “ScenarioCreator_unit”, value = Population,
overwrite = TRUE).

6. Rerunning the dbConnect line exactly as written in Step 2 saved the SQLite
database file with the changes included (i.e., con = dbConnect(SQLite(),
dbname = “new_scenarioX.db”)).
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At the conclusion of the scenario creation process, the spread scenarios were run using
batch processing (see https://github.com/NAVADMC/ADSM/wiki/Batch-processing-of-
scenarios-using-ADSM-Auto-Scenario-Runner accessed on 1 May 2021).

2.1.3. Phase 1: Spread Results

Phase 1 simulation results (100 iterations for each of the 2430 scenarios) are reported
in Table 3 as the mean number of infected farms on simulation day 70 for all possible
combinations of the spread parameter values listed in Table 2, i.e., index farm county pig
density (n = 3 pig densities), index farm type (n = 3), probability of transmission by direct
contact (n = 3 levels), indirect contact (n = 3 levels), and area spread (n = 3 levels). All
parameters in the model affected the outcome, but holding all other parameters constant
(ceteris paribus), it can be seen that the probability of transmission by direct contact, i.e.,
the movement of infectious animals among sites, was the most impactful in terms of the
total number of infected farms on day 70.

Table 3. Phase 1 (pathogen spread): results of the simulated regional spread of a notifiable swine
pathogen reported as the mean number of infected farms on simulation day 70 for specific spread
scenarios 1.

Index Farm
Location and Type 2

Spread Probabilities

Area
Spread

Direct Contact 0.2 Direct Contact 0.4 Direct Contact 0.6
Indirect Contact Indirect Contact Indirect Contact

0.05 0.10 0.15 0.05 0.10 0.15 0.05 0.10 0.15

Lo
w

-d
en

si
ty

co
un

ty
1.

1–
3.

3
pi

gs
pe

r
km

2

BF
0.001

4 4 5 16 16 21 63 67 81
B 10 11 12 46 54 60 191 218 242
F 6 7 8 25 31 36 99 113 138

BF
0.010

5 5 5 19 22 25 86 96 107
B 11 12 15 59 64 75 245 279 318
F 7 8 10 31 39 45 136 160 182

BF
0.100

13 14 15 85 97 119 430 427 534
B 34 42 48 247 298 311 1127 1223 1366
F 19 25 33 135 164 190 637 754 864

M
ed

iu
m

-d
en

si
ty

co
un

ty
15

.9
–2

5.
3

pi
gs

pe
r

km
2 BF

0.001
4 4 4 16 17 19 64 76 79

B 10 11 12 47 55 62 195 218 250
F 6 7 9 27 31 37 99 126 150

BF
0.010

5 5 6 21 23 29 88 102 112
B 12 13 15 64 67 80 260 304 336
F 7 10 10 35 41 49 141 164 187

BF
0.100

16 18 18 119 120 146 456 510 595
B 42 49 58 292 317 393 1325 1396 1539
F 23 30 40 155 200 209 742 859 956

H
ig

h-
de

ns
it

y
co

un
ty

10
6.

8–
21

4.
5

pi
gs

pe
r

km
2 BF

0.001
5 5 5 19 20 21 66 74 85

B 11 12 13 51 58 65 200 233 271
F 6 8 9 26 34 41 108 132 151

BF
0.010

6 7 8 26 31 33 109 123 141
B 14 16 18 71 80 94 285 322 358
F 10 11 13 42 51 55 164 182 210

BF
0.100

47 56 67 244 286 330 982 1015 1288
B 81 89 102 446 500 575 1661 1936 2093
F 57 72 85 310 368 432 1239 1345 1553

1 Pathogen spread simulations (100 per scenario × 10 index farms) were performed using public domain soft-
ware [22] in a population of 17,521 farms (51,515,699 pigs) in a contiguous geographic region (1,615,246 km2). 2 BF
(breeder–feeder), B (breeder), F (feeder).

2.2. Phase 2: Simulating Pathogen Detection

Among the 2430 spread scenarios simulated in Phase 1, the 360 scenarios indicated in
Table 4 were selected for use in Phase 2. Each of the 12 groups of spread scenarios shown

https://github.com/NAVADMC/ADSM/wiki/Batch-processing-of-scenarios-using-ADSM-Auto-Scenario-Runner
https://github.com/NAVADMC/ADSM/wiki/Batch-processing-of-scenarios-using-ADSM-Auto-Scenario-Runner
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in Table 4 consisted of 30 scenarios, i.e., 10 index farms in each pig density category, with
each index farm successively classified as one of 3 production types (breeder, breeder–
feeder, and feeder). For each of these 360 spread scenarios, the detection of ≥ 1 positive
farms in the region was simulated under 25 pathogen detection settings based on farm-level
sensitivity (10%, 20%, 30%, 40%, or 50%) and farm participation in the surveillance program
(20%, 40%, 60%, 80%, or 100% of farms in the region). For the 20%, 40%, 60%, and 80%
participation levels, farm participation was allocated uniformly across the 3 pig inventory
size categories in Table 1 through simple random sampling without replacement. For
example, simulations at 20% participation included 20% of the farms in the ≤1000 category,
20% in the 1001–4999 category, and 20% in the ≥5000 category. For each participation
level, 1000 farm groupings were randomly selected using R software [25] to match the
1000 surveillance simulations. By definition, 100% participation did not require participant
selection.

Table 4. Spread parameter values from Phase 1 (pathogen spread) selected for use in Phase 2
(probability of detection) simulations.

Index Farm
Location 1

Spread Probabilities

Area
Spread

Direct Contact 0.2 Direct Contact 0.4 Direct Contact 0.6
Indirect Contact Indirect Contact Indirect Contact

0.05 0.10 0.15 0.05 0.10 0.15 0.05 0.10 0.15

Low-density
county

0.001 - - - - - - - - -
0.010 - ✓ - - ✓ - - ✓ -
0.100 - - - - - - - - -

Medium-density
county

0.001 - - - - - - - - -
0.010 - ✓ - - ✓ - - ✓ -
0.100 - - - - - - - - -

High-density
county

0.001 - - - - - - - - -
0.010 - ✓ - - ✓ - - ✓ -
0.100 - ✓ - - ✓ - - ✓ -

1 Index farm located in low-density county (1.1–3.3 pigs per km2), medium-density county (15.9–25.3 pigs per
km2), or high-density county (106.8–214.5 pigs per km2).

An R function [25] was written to perform the surveillance simulations for each
combination of spread scenario replicate and detection setting, as described below. Because
each spread scenario was replicated 100 times, there were a total of 100,000 iterations
(1000 iterations for each of the 100 replicates) for each combination of spread scenario and
detection setting.

For iteration i, where i = 1, . . ., 1000:

1. Assign as participants the ith set of participating farms from the list of pre-selected
sets corresponding to the current setting’s participation level. For 100% participation,
the entire population of farms were participants.

2. For each participating farm, the farm infection status (negative, positive) was identi-
fied for days 7, 14, 21, 28, 35, 42, 49, 63, and 70 of the ADSM spread simulation.

3. For each of the days listed in Step 2, participating farms classified as positive were
“tested” (simulated) independently in R using the rbinom function with the probability
of detection equaling the assigned farm-level sensitivity. Thus, for each positive farm
and where p was the assigned farm-level sensitivity, rbinom (n = 1, size = 1, prob = p)
randomly generated a 0 or 1, where 1 indicated that the infection was detected.

2.2.1. Phase 2: Detection Results

For each of the 25 detection settings, results were reported as the probability of
detection by regional farm-level prevalence, with the probability of detection calculated
as the percentage of iterations in which ≥ 1 true positive farms “tested” positive in the
simulations. Results are provided in Table 5 and Figures 1 and 2 by regional prevalence,
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farm-level sensitivity, and producer participation. The analysis showed that detection was
dependent on the interactions between producer participation and farm-level sensitivity,
but high probabilities of detection were achieved at low prevalence over a wide range of
participation and sensitivity values. For example, at 0.1% prevalence (18 positive farms
among 17,521 farms) and a farm-level detection probability of 30%, the participatory
surveillance design achieved 67%, 90%, and 97% probabilities of detecting ≥ 1 positive
farms in the region when producer participation was 20%, 40%, and 60%, respectively.

Table 5. Probability of detecting ≥ 1 positive farms as a function of regional prevalence, farm-level
sensitivity (%), and producer participation (%).

Regional
Prevalence 1

Farm-Level
Sensitivity (%) 2

Producer Participation
20% 40% 60% 80% 100%

0.1% (18 farms) 10 0.304 0.520 0.672 0.777 0.850
20 0.519 0.777 0.900 0.957 0.982
30 0.671 0.900 0.972 0.993 0.998
40 0.776 0.956 0.993 0.999 1.000
50 0.849 0.982 0.998 1.000 1.000

0.2% (35 farms) 10 0.506 0.760 0.886 0.946 0.975
20 0.760 0.945 0.989 0.998 1.000
30 0.885 0.989 0.999 1.000 1.000
40 0.945 0.998 1.000 1.000 1.000
50 0.975 1.000 1.000 1.000 1.000

0.3% (53 farms) 10 0.657 0.885 0.963 0.988 0.996
20 0.885 0.988 0.999 1.000 1.000
30 0.962 0.999 1.000 1.000 1.000
40 0.988 1.000 1.000 1.000 1.000
50 0.996 1.000 1.000 1.000 1.000

1 Farm-level prevalence in a population of 17,521 farms in a defined region (1,615,246 km2). 2 Farm-level sensitivity
is the probability of a positive test on samples from an infected farm.

Figure 1. Illustration of the interaction between producer participation, farm-level detection sensitiv-
ity, and number of positive farms on the probability of detecting ≥ 1 positive farms in the region.
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Figure 2. As shown for 3 prevalence levels, various combinations of producer participation and
farm-level sensitivity produced ≥ 95% probability of detecting ≥ 1 positive herds in the region.
Farm-level sensitivity is the probability of a positive test on samples from an infected farm.

2.3. Phase 3: Cost of Sampling and Testing

The cost analysis assumed that ante mortem specimens (blood, blood swabs, nasal
swabs, oral swabs, or fecal swabs) would be collected from 10 poor-doing pigs in each par-
ticipating farm, combined into 2 pooled samples (5 pigs per pool), shipped to a credentialed
laboratory in an insulated shipping container with coolant, and tested by polymerase chain
reaction (PCR) or antibody ELISA. Since the general surveillance design did not define a
specific testing protocol, costs were estimated for 3 cases: serum samples tested by PCR,
swab samples tested by PCR, and serum samples tested by ELISA. To further evaluate the
impact of testing costs on overall program costs, 3 price levels for PCR (EUR 18.65, EUR
23.32, EUR 27.98/USD 20.00, USD 25.00, USD 30.00) and antibody ELISA (EUR 4.66, EUR
7.00, EUR 9.33/USD 5.00, USD 7.50, USD 10.00) were used in the estimates.

The estimated cost of a single round of sampling used the inputs and costs listed in
Table 6 and assumed 100% producer participation. Costs listed in Table 6 are the mean
of prices quoted by 3 companies for the distribution of products in the U.S. Supplies for
collecting serum samples included single-use blood collection tubes and needles (n = 10),
tubes in which to pool samples (n = 2), and disposable gloves (2 pairs). Supplies for swab
samples included swabs (n = 10), transport medium, tubes in which to pool samples (n = 2),
and disposable gloves (2 pairs). Package shipment costs reflect rates paid by clients of the
Iowa State University Veterinary Diagnostic Laboratory (Ames, IA, USA) and may vary.

The analysis assumed that the labor and materials required to collect, process, and
package samples for shipment would be provided by the farm and, therefore, were not
included in the cost analysis. Likewise, it was assumed that blood samples would be
centrifuged and the serum pooled (5 pigs per pool) prior to shipment in order to avoid
processing charges at the laboratory. Some costs that would be expected in the normal
course of sampling and testing were also not included. For example, no attempt was made
to account for the added cost of duplicate sampling or testing, e.g., the cost of an additional
tube and needle for a second attempt at blood collection from a pig or the cost of retesting
a non-negative sample in the laboratory. Likewise, the cost analysis did not include the
costs required to administer and coordinate the program.
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Table 6. Cost per sampling per farm to collect samples and ship to laboratory 1.

Category Cost per Item 2 No. Items Cost per
Sampling

A. Sample collection. Assumes 10 pigs/farm/sampling
Option 1. Serum samples
Blood collection tubes (single-use) 0.525 0.563 10 5.26 5.64
Blood collection needles (single-use) 0.572 0.613 10 5.72 6.13
Plastic tube for pooling 5 samples 3 0.171 0.183 2 0.35 0.37
Disposable gloves €0.064 $0.069 4 (2 pairs) 0.26 0.28

€11.58 $12.42
Option 2. Swab samples (blood, nasal, oral, or fecal)
Sample collection swabs 0.532 0.570 10 5.32 5.70
Transport medium, e.g., phosphate-buffered saline 0.036 0.039 5 mL 0.36 0.39
Plastic tube for pooling 5 samples 0.171 0.183 2 0.35 0.37
Disposable gloves €0.064 $0.069 4 (2 pairs) 0.26 0.28

€6.29 $6.74
B. Shipment of samples to the laboratory

Insulated shipping container 5.167 5.540 1 5.17 5.54
Cold packs to ship with samples 6.529 7.000 1 6.53 7.00
Parcel shipping charge €13.991 $15.000 13.99 15.00

€25.69 $27.54
1 EUR (€) 1.00 = USD ($) 1.0721 U.S. (https://www.federalreserve.gov/releases/h10/current/ accessed on 19
June 2023). 2 Means of prices provided by three distributors in the U.S. 3 Cost analysis assumed blood samples
would be centrifuged and serum pooled (5 pigs per pool) prior to shipment to avoid sample processing charges at
the laboratory.

2.3.1. Phase 3: Estimated Cost of Sampling and Testing

The results of the cost analysis are listed in Table 7 for 3 “specimen by test” combi-
nations with 3 costs for each test. The estimates are given in terms of the average cost
per farm in the region, the average cost per pig in the region, and the average cost per
pig in inventory for the farm size categories given in Table 1, i.e., farms with ≤1000 pigs,
1001–4999 pigs, and ≥5000 pigs. Using a PCR cost of EUR 23.32 (USD 25.00) or ELISA cost
of EUR 7.00 (USD 7.50) per sample, the cost of sampling and testing would be approxi-
mately EUR 0.03 (USD 0.03) or EUR 0.02 (USD 0.02) per pig in the region, respectively. On
a farm basis, given that sample size and test costs are the same for all farms, the cost per
pig increases as the farm pig inventory decreases, as shown in Table 7.

Table 7. Cost of sampling and testing by specimen and test based on 3 test cost options.

Serum Tested by PCR Swabs Tested by PCR Serum Tested by ELISA

Denominator
Cost per test EUR 18.65 EUR 23.32 EUR 27.98 EUR 18.65 EUR 23.32 EUR 27.98 EUR 4.66 EUR 7.00 EUR 9.33

USD 20.00 USD 25.00 USD 30.00 USD 20.00 USD 25.00 USD 30.00 USD 5.00 USD 7.50 USD 10.00

Per farm in region 1 EUR 74.56 EUR 83.89 EUR 93.22 EUR 69.28 EUR 78.60 EUR 87.93 EUR 46.58 EUR 51.25 EUR 55.91
USD 79.94 USD 89.94 USD 99.94 USD 74.27 USD 84.27 USD 94.27 USD 49.94 USD 54.94 USD 59.94

Per pig in region 1 EUR 0.025 EUR 0.029 EUR 0.032 EUR 0.023 EUR 0.027 EUR 0.030 EUR 0.016 EUR 0.018 EUR 0.019
USD 0.027 USD 0.031 USD 0.034 USD 0.025 USD 0.029 USD 0.032 USD 0.017 USD 0.019 USD 0.020

Per pig in inventory
Farms of ≤ 1000 pigs 2

EUR 0.240 EUR 0.270 EUR 0.299 EUR 0.223 EUR 0.253 EUR 0.283 EUR 0.150 EUR 0.165 EUR 0.180
USD 0.257 USD 0.289 USD 0.321 USD 0.239 USD 0.271 USD 0.303 USD 0.161 USD 0.177 USD 0.193

Farms of 1001–4999 pigs 3 EUR 0.027 EUR 0.030 EUR 0.034 EUR 0.025 EUR 0.028 EUR 0.032 EUR 0.017 EUR 0.019 EUR 0.021
USD 0.029 USD 0.032 USD 0.036 USD 0.027 USD 0.030 USD 0.034 USD 0.018 USD 0.020 USD 0.022

Farms of ≥ 5000 pigs 4 EUR 0.007 EUR 0.008 EUR 0.009 EUR 0.007 EUR 0.007 EUR 0.008 EUR 0.005 EUR 0.006 EUR 0.006
USD 0.008 USD 0.009 USD 0.010 USD 0.007 USD 0.008 USD 0.009 USD 0.005 USD 0.005 USD 0.006

1 Estimates based on 17,521 farms in the region, holding 51,515,700 pigs. 2 Estimates based on 4422 farms with a
mean inventory of 311 pigs. 3 Estimates based on 11,261 farms with a mean inventory of 2776 pigs. 4 Estimates
based on 1838 farms with a mean inventory of 10,272 pigs.

https://www.federalreserve.gov/releases/h10/current/
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3. Discussion

Concerning surveillance systems, Thacker et al. [31] advised that “Simplicity should
be a guiding principle . . .. Simple systems are easy to understand and implement, cost less than
complex systems, and provide flexibility”. Consistent with the theme of “simplicity”, the
active participatory regional surveillance design was based on targeted sampling of 10 live
but poor-doing pigs on participating farms by farm personnel, followed by testing in
credentialed laboratories. The design differed most from traditional surveillance in that
it focused on the status of the region rather than the status of individual farms. The
result was fewer samples per farm yet sensitive regional surveillance at a manageable cost
(Tables 5 and 7).

Targeted sampling, already recommended for the surveillance of CSFV [32] and
ASFV [33], addressed the problem of detection in populations characterized by heterogene-
ity and low prevalence [34]. That is, commercial swine farms separate animals into barns
and pens by age, stage, and function, i.e., conditions that are inconsistent with the indepen-
dence and homogeneity assumptions underlying the traditional power formula based on
simple random sampling. Thus, Crauwels et al. [35] reported that random sampling would
be unlikely to include a CSFV-positive pig for several weeks following its introduction into
a naïve farm; that is, until it had spread sufficiently and infected a sufficient proportion of
the population.

The surveillance design called for sampling live, poor-doing pigs because notifiable
pathogens may not produce remarkable clinical signs and early mortalities, including
CSFV [36], ASFV [37], and FMDV [38]. Kirkland et al. [36] cautioned that CSFV strains
of low or moderate virulence could circulate without notable clinical signs for 4–8 weeks.
Schulz et al. [39] concluded that, depending on the virulence of the isolate, it could take
up to a month for ASFV-related mortalities to be noted. Thus, sampling poor-doing live
pigs would facilitate early detection by eliminating the expectation of telltale clinical signs
and/or conspicuous mortalities.

Sampling live pigs also anticipates the need to quickly resolve ambiguous (“non-
negative”) test results. The typical response to a non-negative surveillance sample result is
retesting the original sample using the original test or a confirmatory assay. If the retest
result is conclusive, the question is resolved. If not, the fact that the samples originated from
live pigs means that it is likely possible to re-sample and retest the original pigs and/or
their penmates to quickly resolve the issue. On the other hand, if the samples originated
from dead pigs or pigs no longer on the farm, the resolution will require extensive sampling
of animals on the farm of origin and on other epidemiologically relevant farms.

In this “generic” surveillance scenario it was not necessary to designate specific spec-
imens to be collected or tests to be performed. While blood and serum are traditional
surveillance specimens, a variety of more easily collected antemortem specimens are
increasingly used in diagnostics and surveillance, e.g., blood swabs, nasal swabs, oropha-
ryngeal swabs, and rectal swabs [40]. Trevisan et al. [41] documented this trend for the
period 2007 to 2018 in a study of 547,873 diagnostic cases submitted to 4 Midwestern U.S.
veterinary diagnostic laboratories for porcine reproductive and respiratory syndrome virus
(PRRSV) testing. In 2007, 51% of the diagnostic cases included serum samples; in 2018,
21% of cases included serum samples, 35% included oral fluid samples, and 11% included
processing fluid samples.

Sample collection by farm personnel working under the supervision of the farm
veterinarian is common practice in many parts of the world. The use of easily collected an-
temortem samples will facilitate producer participation and is consistent with sampling by
lay personnel. Regardless of the specimen(s) selected for use, the ability of lay participants
to collect diagnostic samples is supported by the literature. In human medicine, Bran-
son [42] reported that 156,121 (94.5%) of 165,194 self-collected dried blood spot specimens
were acceptable for human immunodeficiency virus testing. The remaining 5.5% were
disqualified for insufficient quantity, contamination, or excessive time between sampling
and submission. Similarly, Tsang et al. [43] found no loss in diagnostic accuracy with self-
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collected oronasal swabs or oral fluid samples in a systematic review of 23 refereed studies
involving severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing. In the
veterinary literature, formal examples of the use of producer-collected samples include
field studies on CSFV [44], PRRSV [45], and antibiotic resistance in Escherichia coli [46].

The use of farm personnel in sample collection acknowledges the fact that those who
work with the pigs are also those most aware of recent changes in pig health and are best
qualified to identify the appropriate animals to sample. Relevant to program sustainability,
the use of farm personnel reduces sampling costs by eliminating the need to employ
program samplers and integrates both scalability and responsiveness into the design. That
is, because farm personnel are already on the farms, sample size and/or frequency can
be quickly adjusted in response to changing circumstances, e.g., increased after the initial
detection of the target to improve case finding and decreased after the threat is contained
to reduce costs.

The final point in the surveillance design is the testing of samples in credentialed
diagnostic laboratories. “Credentialed”, in this case, refers to laboratories operating under
national or international standards, e.g., ISO/IEC 17025 [47,48]. Such laboratories have
operational quality management systems, proper equipment, and the technical expertise to
reliably perform testing. Further, many of these laboratories are equipped with laboratory
information management systems and the capacity to report test results electronically,
thereby facilitating timely reporting to participants and, if needed, animal health authorities.
Alternatively, testing in the field using point-of-care test devices is sometimes suggested as a
means to expedite the discovery of notifiable pathogens. This may be possible in the future,
but not at present. Hobbs et al. [49] reported the most fundamental problem: “Inadequate
regulatory guidance and poor industry oversight has led to a proliferation of point-of-care tests of
varying quality and fitness for purpose . . .”. A number of issues would need to be addressed if
point-of-care tests are to be used for notifiable pathogens, but at a minimum, an accounting
system for tracking kits and test results will need to be in place to avoid misuse.

The performance analyses of the active participatory regional surveillance design were
based on simulations of the spread (Phase 1) and detection (Phase 2) of an unspecified
pathogen in a population of naïve swine farms representative of the Midwest U.S. The swine
farm dataset was created using concentrated animal feeding operation (CAFO) permit
records from eight U.S. states. CAFO permitting requirements and data quality were not
standardized across states, but the data required for the pathogen spread simulations (farm
geolocation, inventory, and production type) were provided in most cases. After resolving
inconsistencies and missing data (Section 2.1), the dataset consisted of 17,521 swine farms
holding 51,515,699 pigs in a region of ~1,582,000 km2 [50]. As a point of reference, the
geographic area of Belgium, France, Germany, Luxembourg, the Netherlands, Portugal,
and Spain is ~1,584,000 km2 [51].

The purpose of Phase 1 was to create datasets of swine farms of known infection
status (negative, positive) for use in the detection simulations (Phase 2). The Animal
Disease Spread Model (ADSM) [15] software used in Phase 1 provided substantial modeling
flexibility and has previously been used to simulate the spread of ASFV in Vietnam [49],
Aujeszky’s disease virus in Thailand [52], CSFV in the Republic of Serbia [53], and PRRSV
in both Uganda [54] and Canada [28]. A total of 2430 pathogen spread scenarios were
simulated (Section 2.1.1) based on combinations of county-level pig densities, index herd
production types, and the probabilities of transmission by direct contact, indirect contact,
and area spread. Among these scenarios, 360 spread scenarios representing the range of
outcomes were selected for use in the Phase 2 detection simulations.

The objective of Phase 2 was to estimate the probability of detecting ≥ 1 positive farms
in the region as a function of farm-level sensitivity, percent of farms participating in the
surveillance program, and regional farm-level prevalence. The results were expressed in
terms of the probability of detection by regional herd prevalence (from Phase 1 simulation
results) rather than time-to-detection because of the diversity of spread rates simulated
in the ADSM software. A difficulty when applying targeted sampling to surveillance is
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the absence of agreed-upon methods for calculating sample size and associated farm-level
sensitivities. Using a modeling approach, Nielsen et al. [32,33] reported that targeted
sampling of 5 sick or dead pigs in a population of 1000 pigs would detect CSFV 4 to 37 days
and ASFV 13 days post-introduction with 95% probability. In the present study, a sample
size of 10 pigs was considered a practical number for on-farm collection. The present
study was not pathogen-specific and, in the absence of citable estimates, a conservative
range of farm-level detection sensitivities (10%, 20%, 30%, 40%, and 50%) was used in
the Phase 2 detection analysis. Similarly, data to inform the level of farm participation
in this voluntary regional surveillance program were lacking. Consequently, adopting
an approach that would inform administrators if such a program were to be initiated, a
range of participation levels (20%, 40%, 60%, 80%, 100%) were evaluated for their effect on
detection by prevalence.

In Phase 3, the regional surveillance design was analyzed for the cost per farm
(17,521 farms) and per pig in the region (51,515,700 pigs) for one round of sampling.
Options evaluated in the analysis included specimen (serum vs. swab samples), assay
format (PCR or ELISA), and 3 assay cost options. The analysis was based on the present
costs of materials for collecting, shipping, and testing in credentialed laboratories (Table 6).
The cost analysis assumed that the labor required to collect and package samples would be
provided by participant swine producers and that administrative costs would be borne by
existent animal health agencies. Using test costs of EUR 23.32 (USD 25.00) per PCR and
EUR 7.00 (USD 7.50) per ELISA, the cost per farm in the region ranged from EUR 51.25
(USD 54.94) for serum tested by ELISA to EUR 83.89 (USD 89.94) for serum tested by PCR.
The cost per pig in the region ranged from EUR 0.018 (USD 0.019) to EUR 0.029 (USD 0.031)
for the same scenarios.

Lee et al. [55] reported that U.S. swine producers would be willing to pay USD 0.581
(EUR 0.542) per pig per year to reduce the risk of losses from notifiable pathogens. While
Lee et al. [55] focused on biosecurity, the regional surveillance design described herein
would facilitate early detection and elimination, provide evidence of freedom from disease,
and support access to international markets. Thus, the net effect is the amelioration of the
major economic losses expected after the introduction of a notifiable pathogen at a price
close to the producers’ cost constraints.

The dataset of 17,521 farms used in this study was assembled from CAFO permits and,
therefore, may be considered representative of the region. From Table 1, it can be seen that
the 4422 farms (25.2%) in the smallest farm category (≤1000 pigs) held 2.67% of the pigs
in the region. The 11,261 farms (71.8%) in the mid-size category (1001 to 4999 pigs) held
an additional 64.3% of the pigs in the region. By definition, smaller farms have fewer pigs
and, therefore, surveillance cost per pig is higher (Table 7). To be successful, participatory
surveillance requires broad engagement. While it may be possible to further reduce costs
associated with sampling, transport, and testing, it would be prudent to explore the means
to incentivize small producer participation.

4. Conclusions

The regional active participatory surveillance design evaluated in this study is simple
and adaptable to the surveillance of a variety of pathogens, farm animal species, or regions.
Simplicity and clarity in sampling, testing, and reporting are central to the success of a
participatory program because voluntary programs depend on the full confidence of the
participants. In truth, there is little innovation in the proposed surveillance framework; the
personnel, testing, and reporting systems are largely in place. The only possible novelty is
the aggregation and interpretation of surveillance testing data at the regional level rather
than the farm level. As was shown in the evaluation, this change in focus achieved highly
sensitive regional detection at a low cost.
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