A Comprehensive Analysis of CSN1S2 I and II Transcripts Reveals Significant Genetic Diversity and Allele-Specific Exon Skipping in Ragusana and Amiatina Donkeys
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Donkey Breeds
2.2. mRNA Samples
2.3. DNA Samples
2.4. Primer Design, RT-PCR Conditions for Amplification, and Cloning of the Donkey CSN1S2 I and CSN1S2 II cDNAs
2.5. Screening of Clones by PCR and Sequencing
2.6. Genomic DNA Sequencing
2.7. Genotyping of Donkey at CSN1S2 I Locus by XbaI PCR-RFLP
2.8. Bioinformatics and Statistical Analysis
3. Results and Discussion
3.1. Analysis of the Transcripts
3.1.1. CSN1S2 I
3.1.2. CSN1S2 II
3.2. Analysis of Genetic Diversity
3.2.1. CSN1S2 I and CSN1S2 II cDNA Polymorphisms Detection
3.2.2. DNA Sequences: Detection of a Point Mutation in the Splice Acceptor Site of CSN1S2 I Exon 17
3.2.3. Genotyping of the SNP FM946022.1: c.375-1G>A in the Donkey CSN1S2 I Gene
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bordonaro, S.; Dimauro, C.; Criscione, A.; Marletta, D.; Macciotta, N.P.P. The mathematical modeling of the lactation curve for dairy traits of the donkey (Equus asinus). J. Dairy Sci. 2013, 96, 4005–4014. [Google Scholar] [CrossRef] [PubMed]
- Colli, L.; Perrotta, G.; Negrini, R.; Bomba, L.; Bigi, D.; Zambonelli, P.; Verini Supplizi, A.; Liotta, L.; Ajmone-Marsan, P. Detecting population structure and recent demographic history in endangered livestock breeds: The case of the Italian autochthonous donkeys. Anim. Genet. 2013, 44, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Maryniak, N.Z.; Sancho, A.I.; Hansen, E.B.; Bøgh, K.L. Alternatives to cow’s milk-based infant formulas in the prevention and management of cow’s milk allergy. Foods 2022, 11, 926. [Google Scholar] [CrossRef] [PubMed]
- Faccia, M.; D’Alessandro, A.G.; Summer, A.; Hailu, Y. Milk products from minor dairy species: A review. Animals 2020, 10, 1260. [Google Scholar] [CrossRef]
- Kazimierska, K.; Kalinowska-Lis, U. Milk proteins—Their biological activities and use in cosmetics and dermatology. Molecules 2021, 26, 3253. [Google Scholar] [CrossRef]
- Cosenza, G.; Mauriello, R.; Garro, G.; Auzino, B.; Iannaccone, M.; Costanzo, A.; Chianese, L.; Pauciullo, A. Casein composition and differential translational efficiency of casein transcripts in donkey’s milk. J. Dairy Res. 2019, 86, 201–207. [Google Scholar] [CrossRef]
- Auzino, B.; Miranda, G.; Henry, C.; Krupova, Z.; Martini, M.; Salari, F.; Cosenza, G.; Ciampolini, R.; Martin, P. Top-Down proteomics based on LC-MS combined with cDNA sequencing to characterize multiple proteoforms of Amiata donkey milk proteins. Food Res. Int. 2022, 160, 111611. [Google Scholar] [CrossRef]
- Chianese, L.; Calabrese, M.G.; Ferranti, P.; Mauriello, R.; Garro, G.; De Simone, C.; Quarto, M.; Addeo, F.; Cosenza, G.; Ramunno, L. Proteomic characterization of donkey milk “caseome”. J. Chromatogr. A 2010, 1217, 4834–4840. [Google Scholar] [CrossRef] [PubMed]
- Chianese, L.; De Simone, C.; Ferranti, P.; Mauriello, R.; Costanzo, A.; Quarto, M.; Garro, G.; Picariello, G.; Mamone, G.; Ramunno, L. Occurrence of qualitative and quantitative polymorphism at donkey beta-Lactoglobulin II locus. Food Res. Int. 2013, 54, 1273–1279. [Google Scholar] [CrossRef]
- Cosenza, G.; Ciampolini, R.; Iannaccone, M.; Gallo, D.; Auzino, B.; Pauciullo, A. Sequence variation and detection of a functional promoter polymorphism in the lysozyme c-type gene from Ragusano and Grigio Siciliano donkeys. Anim. Genet. 2018, 49, 270–271. [Google Scholar] [CrossRef]
- Cosenza, G.; Patrice, M.; Garro, G.; Gallo, D.; Barbara, A.; Roberta, C.; Alfredo, P. A novel allelic donkey β-Lg I protein isoform generated by a non-AUG translation initiation codon is associated with a non-synonymous SNP. J. Dairy Sci. 2023, 106, 4158–4170. [Google Scholar] [CrossRef]
- Cosenza, G.; Pauciullo, A.; Annunziata, A.L.; Rando, A.; Chianese, L.; Marletta, D.; Iannolino, G.; Nicodemo, D.; Berardino, D.D.; Ramunno, L. Identification and characterization of the donkey CSN1S2 I and II cDNAs. Ital. J. Anim. Sci. 2010, 9, e40. [Google Scholar]
- Criscione, A.; Cunsolo, V.; Tumino, S.; Di Francesco, A.; Bordonaro, S.; Muccilli, V.; Saletti, R.; Marletta, D. Polymorphism at donkey β-lactoglobulin II locus: Identification and characterization of a new genetic variant with a very low expression. Amino Acids 2018, 50, 735–746. [Google Scholar] [CrossRef]
- Herrouin, M.; Mollé, D.; Fauquant, J.; Ballestra, F.; Maubois, J.-L.; Léonil, J. New genetic variants identified in donkey’s milk whey proteins. J. Protein Chem. 2000, 19, 105–116. [Google Scholar] [CrossRef]
- Özdil, F.; Bulut, H.; Işık, R. Genetic diversity of κ-casein (CSN3) and lactoferrin (LTF) genes in the endangered Turkish donkey (Equus asinus) populations. Arch. Anim. Breed. 2019, 62, 77–82. [Google Scholar] [CrossRef]
- Cunsolo, V.; Saletti, R.; Muccilli, V.; Gallina, S.; Di Francesco, A.; Foti, S. Proteins and bioactive peptides from donkey milk: The molecular basis for its reduced allergenic properties. Food Research International 2017, 99, 41–57. [Google Scholar] [CrossRef]
- Saletti, R.; Muccilli, V.; Cunsolo, V.; Fontanini, D.; Capocchi, A.; Foti, S. MS-based characterization of αs2-casein isoforms in donkey’s milk. J. Mass Spectrom. 2012, 47, 1150–1159. [Google Scholar] [CrossRef]
- Malacarne, M.; Criscione, A.; Franceschi, P.; Bordonaro, S.; Formaggioni, P.; Marletta, D.; Summer, A. New insights into chemical and mineral composition of donkey milk throughout nine months of lactation. Animals 2019, 9, 1161. [Google Scholar] [CrossRef]
- Sargentini, C.; Tocci, R.; Martini, A.; Bozzi, R. Morphological characterization of Amiata donkey through Multivariate analyses. Rev. Bras. Zootec. 2018, 47, e20170310. [Google Scholar] [CrossRef]
- Rijnkels, M. Multispecies comparison of the casein gene loci and evolution of casein gene family. J. Mammary Gland. Biol. Neoplasia 2002, 7, 327–345. [Google Scholar] [CrossRef]
- Pauciullo, A.; Versace, C.; Gaspa, G.; Letaief, N.; Bedhiaf-Romdhani, S.; Fulgione, A.; Cosenza, G. Sequencing and Characterization of αs2-Casein Gene (CSN1S2) in the Old-World Camels Have Proven Genetic Variations Useful for the Understanding of Species Diversification. Animals 2023, 13, 2805. [Google Scholar] [CrossRef] [PubMed]
- Groenen, M.; Dijkhof, R.; Verstege, A.; Van der Poel, J. The complete sequence of the gene encoding bovine α2-casein. Gene 1993, 123, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Ryskaliyeva, A.; Henry, C.; Miranda, G.; Faye, B.; Konuspayeva, G.; Martin, P. Alternative splicing events expand molecular diversity of camel CSN1S2 increasing its ability to generate potentially bioactive peptides. Sci. Rep. 2019, 9, 5243. [Google Scholar] [CrossRef] [PubMed]
- Cosenza, G.; Iannaccone, M.; Pico, B.A.; Ramunno, L.; Capparelli, R. The SNP g. 1311T> C associated with the absence of β-casein in goat milk influences CSN2 promoter activity. Anim. Genet. 2016, 47, 615–617. [Google Scholar] [CrossRef]
- Ramunno, L.; Cosenza, G.; Rando, A.; Pauciullo, A.; Illario, R.; Gallo, D.; Di Berardino, D.; Masina, P. Comparative analysis of gene sequence of goat CSN1S1 F and N alleles and characterization of CSN1S1 transcript variants in mammary gland. Gene 2005, 345, 289–299. [Google Scholar] [CrossRef]
- Ramunno, L.; Longobardi, E.; Pappalardo, M.; Rando, A.; Di Gregorio, P.; Cosenza, G.; Mariani, P.; Pastore, N.; Masina, P. An allele associated with a non-detectable amount of αs2 casein in goat milk. Anim. Genet. 2001, 32, 19–26. [Google Scholar] [CrossRef]
- Hong, D.; Jeong, S. 3’UTR diversity: Expanding repertoire of RNA alterations in human mRNAs. Mol. Cells 2023, 46, 48–56. [Google Scholar] [CrossRef]
- Navarro, E.; Mallén, A.; Hueso, M. Dynamic variations of 3′UTR length reprogram the mRNA regulatory landscape. Biomedicines 2021, 9, 1560. [Google Scholar] [CrossRef]
- Ferranti, P.; Chianese, L.; Malorni, A.; Migliaccio, F.; Stingo, V.; Addeo, F. Copresence of deleted protein species generates structural heterogeneity of ovine αs1-casein. J. Agric. Food Chem. 1998, 46, 411–416. [Google Scholar] [CrossRef]
- Ferranti, P.; Lilla, S.; Chianese, L.; Addeo, F. Alternative nonallelic deletion is constitutive of ruminant α s1-casein. J. Protein Chem. 1999, 18, 595–602. [Google Scholar] [CrossRef]
- Milenkovic, D.; Martin, P.; Guérin, G.; Leroux, C. A specific pattern of splicing for the horse α S1-Casein mRNA and partial genomic characterization of the relevant locus. Genet. Sel. Evol. 2002, 34, 509. [Google Scholar] [CrossRef]
- Martin, P.; Brignon, G.; Furet, J.; Leroux, C. The gene encoding αs1-casein is expressed in human mammary epithelial cells during lactation. Le Lait 1996, 76, 523–535. [Google Scholar] [CrossRef]
- Boisnard, M.; Hue, D.; Bouniol, C.; Mercier, J.C.; Gaye, P. Multiple mRNA species code for two non-allelic forms of ovine αs2-casein. Eur. J. Biochem. 1991, 201, 633–641. [Google Scholar] [CrossRef]
- Martin, P.; Szymanowska, M.; Zwierzchowski, L.; Leroux, C. The impact of genetic polymorphisms on the protein composition of ruminant milks. Reprod. Nutr. Dev. 2002, 42, 433–459. [Google Scholar] [CrossRef]
- Ramunno, L.; Cosenza, G.; Pappalardo, M.; Longobardi, E.; Gallo, D.; Pastore, N.; Di Gregorio, P.; Rando, A. Characterization of two new alleles at the goat CSN1S2 locus. Anim. Genet. 2001, 32, 264–268. [Google Scholar] [CrossRef]
- Cosenza, G.; Gallo, D.; Auzino, B.; Gaspa, G.; Pauciullo, A. Complete CSN1S2 Characterization, Novel Allele Identification and Association With Milk Fatty Acid Composition in River Buffalo. Front. Genet. 2021, 11, 622494. [Google Scholar] [CrossRef]
- Cosenza, G.; Pauciullo, A.; Feligini, M.; Coletta, A.; Colimoro, L.; Di Berardino, D.; Ramunno, L. A point mutation in the splice donor site of intron 7 in the αs2-casein encoding gene of the Mediterranean River buffalo results in an allele-specific exon skipping. Anim. Genet. 2009, 40, 791. [Google Scholar] [CrossRef]
- Bouniol, C.; Printz, C.; Mercier, J.-C. Bovine αs2-casein D is generated by exon VIII skipping. Gene 1993, 128, 289–293. [Google Scholar] [CrossRef]
- Brinkmann, J.; Koudelka, T.; Keppler, J.K.; Tholey, A.; Schwarz, K.; Thaller, G.; Tetens, J. Characterization of an equine α-S2-casein variant due to a 1.3 kb deletion spanning two coding exons. PLoS ONE 2015, 10, e0139700. [Google Scholar] [CrossRef]
- Cieslak, J.; Pawlak, P.; Wodas, L.; Borowska, A.; Stachowiak, A.; Puppel, K.; Kuczynska, B.; Luczak, M.; Marczak, L.; Mackowski, M. Characterization of equine CSN1S2 variants considering genetics, transcriptomics, and proteomics. J. Dairy Sci. 2016, 99, 1277–1285. [Google Scholar] [CrossRef]
- Balteanu, V.A.; Carsai, T.C.; Vlaic, A. Identification of an intronic regulatory mutation at the buffalo α S1-casein gene that triggers the skipping of exon 6. Mol. Biol. Rep. 2013, 40, 4311–4316. [Google Scholar] [CrossRef]
- De Pascale, S.; Caira, S.; Garro, G.; Mauriello, R.; Scaloni, A.; Cosenza, G.; Chianese, L. Proteomic characterisation and phylogenetic derivation of ovine αS1-CN B and αS1-CN G genetic variants. Int. Dairy J. 2022, 131, 105387. [Google Scholar] [CrossRef]
- Giambra, I.J.; Chianese, L.; Ferranti, P.; Erhardt, G. Short communication: Molecular genetic characterization of ovine alpha(S1)-casein allele H caused by alternative splicing. J. Dairy Sci. 2010, 93, 792–795. [Google Scholar] [CrossRef]
- Lenasi, T.; Rogelj, I.; Dovc, P. Characterization of equine cDNA sequences for αS1-, β-and κ-casein. J. Dairy Res. 2003, 70, 29–36. [Google Scholar] [CrossRef]
- Pauciullo, A.; Gauly, M.; Cosenza, G.; Wagner, H.; Erhardt, G. Lama glama αS1-casein: Identification of new polymorphisms in the CSN1S1 gene. J. Dairy Sci. 2017, 100, 1282–1289. [Google Scholar] [CrossRef]
- Alexander, L.; Beattie, C. The sequence of porcine αs1-casein cDNA: Evidence for protein variants generated by altered RNA splicing. Anim. Genet. 1992, 23, 283–288. [Google Scholar] [CrossRef]
- Gu, M.; Cosenza, G.; Nicolae, I.; Bota, A.; Guo, Y.; Di Stasio, L.; Pauciullo, A. Transcript analysis at DGAT1 reveals different mRNA profiles in river buffaloes with extreme phenotypes for milk fat. J. Dairy Sci. 2017, 100, 8265–8276. [Google Scholar] [CrossRef]
- Brinkmann, J.; Jagannathan, V.; Drögemüller, C.; Rieder, S.; Leeb, T.; Thaller, G.; Tetens, J. Genetic variability of the equine casein genes. J. Dairy Sci. 2016, 99, 5486–5497. [Google Scholar] [CrossRef]
- Giambra, I.; Erhardt, G. Molecular genetic characterization of ovine CSN1S2 variants C and D reveal further important variability within CSN1S2. Anim. Genet. 2012, 43, 642–645. [Google Scholar] [CrossRef]
- Farrell Jr, H.; Jimenez-Flores, R.; Bleck, G.; Brown, E.; Butler, J.; Creamer, L.; Hicks, C.; Hollar, C.; Ng-Kwai-Hang, K.; Swaisgood, H. Nomenclature of the proteins of cows’ milk—Sixth revision. J. Dairy Sci. 2004, 87, 1641–1674. [Google Scholar] [CrossRef]
- Cosenza, G.; Albarella, S.; D’Anza, E.; Iannuzzi, A.; Selvaggi, M.; Pugliano, M.; Galli, T.; Saralli, G.; Ciotola, F.; Peretti, V. A New AS-PCR Method to Detect CSN2 01 Allele, Genotyping at Ca-Sensitive Caseins Loci and Milk Traits Association Studies in Autochthonous Lazio Goats. Animals 2023, 13, 239. [Google Scholar] [CrossRef] [PubMed]
- Di Gerlando, R.; Tortorici, L.; Sardina, M.T.; Monteleone, G.; Mastrangelo, S.; Portolano, B. Molecular Characterisation of κ–Casein Gene in Girgentana Dairy Goat Breed and Identification of Two New Alleles. Ital. J. Anim. Sci. 2015, 14, 3464. [Google Scholar] [CrossRef]
- Pazzola, M.; Vacca, G.M.; Noce, A.; Porcedda, M.; Onnis, M.; Manca, N.; Dettori, M.L. Exploring the genotype at CSN3 gene, milk composition, coagulation and cheese-yield traits of the sardo-modicana, an autochthonous cattle breed from the Sardinia Region, Italy. Animals 2020, 10, 1995. [Google Scholar] [CrossRef] [PubMed]
- Anagnostou, M.; Chung, C.; McGann, E.; Verheijen, B.; Kou, Y.; Chen, L.; Vermulst, M. Transcription errors in aging and disease. Transl. Med. Aging 2021, 5, 31–38. [Google Scholar] [CrossRef]
- Fritsch, C.; Gout, J.-F.P.; Vermulst, M. Genome-wide surveillance of transcription errors in eukaryotic organisms. JoVE (J. Vis. Exp.) 2018, 139, e57731. [Google Scholar]
- Mohr, U.; Koczan, D.; Linder, D.; Hobom, G.; Erhardt, G. A single point mutation results in A allele-specific exon skipping in the bovine αs1-casein mRNA. Gene 1994, 143, 187–192. [Google Scholar] [CrossRef]
- Cosenza, G.; Iannaccone, M.; Auzino, B.; Macciotta, N.; Kovitvadhi, A.; Nicolae, I.; Pauciullo, A. Remarkable genetic diversity detected at river buffalo prolactin receptor (PRLR) gene and association studies with milk fatty acid composition. Anim. Genet. 2018, 49, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Cosenza, G.; Iannaccone, M.; Pico, A.B.; Gallo, D.; Capparelli, R.; Pauciullo, A. Molecular characterisation, genetic variability and detection of a functional polymorphism influencing the promoter activity of OXT gene in goat and sheep. J. Dairy Res. 2017, 84, 165–169. [Google Scholar] [CrossRef]
- Pauciullo, A.; Versace, C.; Miretti, S.; Giambra, I.; Gaspa, G.; Letaief, N.; Cosenza, G. Genetic variability among and within domestic Old and New World camels at the α-lactalbumin gene (LALBA) reveals new alleles and polymorphisms responsible for differential expression. J. Dairy Sci. 2024, 107, 1068–1084. [Google Scholar] [CrossRef]
- Klein, J. Origin of major histocompatibility complex polymorphism: The trans-species hypothesis. Hum. Immunol. 1987, 19, 155–162. [Google Scholar] [CrossRef]
- Zachos, F.E. Mammalian phylogenetics: A short overview of recent advances. In Mammals of Europe-Past, Present, and Future; Springer: Cham, Switzerland, 2020; pp. 31–48. [Google Scholar]
Present Work | Auzino et al. [7] | Saletti et al. [17] Cunsolo et al. [16] | Deduced Mature Protein Size (aa) | Theoretical Mw | |
---|---|---|---|---|---|
Correctly assembled | - | Correctly assembled | 221 | 26,030.19 | |
Alternative skipping | Lacking exon 11 | - | - | 206 | 24,116.04 |
Insertion exon 12′ | - | - | 143 | 16,617.68 | |
- | Lacking exon 3 and 3′ end of exon 17 | - | 205 | 24,145.24 | |
Lacking exons 4, 5, 6, and 3′ end of exon 17 | Lacking exons 4, 5, 6, and 3′ end of exon 17 | Lacking exons 4, 5, 6, and 3′ end of exon 17 | 183 | 21,713.42 | |
Lacking 3′ end of exon 17 | Lacking 3′ end of exon 17 | Lacking 3′ end of exon 17 | 214 | 25,203.33 | |
Lacking exons 4, 5, and 6 | Lacking exons 4, 5, and 6 | - | 190 | 22,540.28 | |
- | Lacking exons 4, 5, 6, and 13 | - | 181 | 21,490.19 | |
- | Lacking exon 6 and 3′ end of exon 17 | - | 205 | 24,263.32 | |
Lacking exons 4, 5, 6, and 5′ of exon 17 | - | Lacking exons 4, 5, 6, and 5′ of exon 17 | 185 | 21,942.60 | |
Lacking 5′ of exon 17 | - | Lacking 5′ of exon 17 | 216 | 25,432.52 |
Present Work | Auzino et al. [7] | Deduced Mature Protein Size (aa) | Theoretical Mw | |
---|---|---|---|---|
Correctly assembled with or without exon 15 | 142 | 16,377.88 | ||
Alternative skipping | Insertion exon 7′ | 157 | 18,236.13 | |
Lacking exon 9 and insertion exon 7′ | 149 | 17,314.17 | ||
Lacking exon 3 and insertion exon 7′ | 148 | 17,239.06 | ||
Lacking exons 3, 9, and insertion exon 7′ | 140 | 16,317.10 | ||
Lacking exons 3, 11, 12, first 33nt exon 13, and insertion exon 7′ | 114 | 13,308.63 | ||
Lacking exon 9 | 134 | 15,455.92 | ||
Lacking exon 10 | 133 | 15,358.65 | ||
Lacking exons 11, 12, and first 33nt exon 13 with or without exon 15 | 108 | 12,447.45 | ||
Lacking exons 9, 10, and 15 | 125 | 14,436.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cosenza, G.; Pauciullo, A. A Comprehensive Analysis of CSN1S2 I and II Transcripts Reveals Significant Genetic Diversity and Allele-Specific Exon Skipping in Ragusana and Amiatina Donkeys. Animals 2024, 14, 2918. https://doi.org/10.3390/ani14202918
Cosenza G, Pauciullo A. A Comprehensive Analysis of CSN1S2 I and II Transcripts Reveals Significant Genetic Diversity and Allele-Specific Exon Skipping in Ragusana and Amiatina Donkeys. Animals. 2024; 14(20):2918. https://doi.org/10.3390/ani14202918
Chicago/Turabian StyleCosenza, Gianfranco, and Alfredo Pauciullo. 2024. "A Comprehensive Analysis of CSN1S2 I and II Transcripts Reveals Significant Genetic Diversity and Allele-Specific Exon Skipping in Ragusana and Amiatina Donkeys" Animals 14, no. 20: 2918. https://doi.org/10.3390/ani14202918
APA StyleCosenza, G., & Pauciullo, A. (2024). A Comprehensive Analysis of CSN1S2 I and II Transcripts Reveals Significant Genetic Diversity and Allele-Specific Exon Skipping in Ragusana and Amiatina Donkeys. Animals, 14(20), 2918. https://doi.org/10.3390/ani14202918