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Simple Summary: The growth and vitality of bird embryos during incubation are solely dependent
on the nutrients deposited in the eggs. Lysophospholipid, a type of emulsifier, has been included in
poultry diets to promote lipid digestion and absorption. This research aimed to explore the potential
benefits of adding lysophospholipid to the diet of broiler-type breeders on their offspring. Four test
diets were formulated with two energy levels and two levels of lysophospholipid supplementation.
The experimental diets were fed to a total of 264 49-week-old breeder hens for periods of 8 and
12 weeks, and the hatched chicks were raised and evaluated at the age of 7 days. In summary, adding
lysophospholipid (LPL) to the breeders’ diet led to improved offspring body weight, a better food
conversion ratio, and lower blood fat levels. Additionally, it supported liver health and increased the
expression of genes associated with lipid processing in both the gut and liver.

Abstract: The present study aimed to investigate whether supplementation of modified lysophospho-
lipids (LPLs) in the diet of broiler breeders can benefit their offspring. A total of 264 49-week-old
breeders (Ross 308) were allocated and fed based on a 2 × 2 factorial arrangement with two levels
of dietary energy (normal energy = 2800 kcal/kg and low energy = 2760 kcal/kg) and two LPL
levels (0 and 0.5 g/kg) for periods of 8 and 12 weeks. The offspring were assessed for growth
performance, serum parameters, hepatic antioxidative capability, and expression of genes involved in
liver β-oxidation at 7 days old. The LPL inclusion improved (p < 0.01) average body weight (ABW),
average daily gain (ADG), and feed conversion ratio (FCR). The offspring of 61-week-old breeders fed
with LPL exhibited reduced serum triglyceride levels (p < 0.01) but an increase in hepatic glutathione
peroxidase (p < 0.05). The LPL increased (p < 0.001) the mRNA expression of the PGC-1α gene in the
liver. Supplementing LPL in low-energy diets resulted in higher FABP1 gene expression (p < 0.05) in
the intestine. In conclusion, LPL supplementation in the breeders’ diet improved offspring perfor-
mance by enhancing fatty acid absorption, hepatic indices, and the expression of genes involved in
liver β-oxidation.

Keywords: lysophospholipid; metabolizable energy; hepatic β-oxidation; PGC-1α; LPCAT3; gene
expression
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1. Introduction

Maternal nutrition has a significant impact on the phenotype of offspring [1]. In birds,
embryonic development during incubation depends entirely on the nutrients deposited in
the eggs [2]. Nutritional changes in the chick embryo may cause epigenetic modifications,
altering gene expression, structure, and function of organs and tissues in offspring [2,3].
It has been reported that the supplemental fatty acids (FA) in the breeders’ diet increased
the incorporation of dietary FAs into the egg yolk and, therefore, affected the progeny’s
development during incubation [4]. In addition, the FAs in the egg yolk were transferred
into the liver of the offspring through the yolk residue by the time of hatching [4,5]. This
suggests that the FA composition of the embryo’s tissue and the chicks that hatch rely on the
fatty acid profile of the egg yolk [6]. This led us to the concept of maternal supplementation
of lysophospholipid (LPL) in the broiler breeders’ diet and its subsequent impact on
the offspring.

Exogenous emulsifiers such as LPLs have been included in the diet to promote lipid
digestion and absorption in poultry [7,8]. LPLs increase the active surface area of lipids by
integrating fatty acids into micelles, allowing the lipase enzyme to efficiently hydrolyze
triglyceride molecules into fatty acids and monoglycerides. This process leads to increased
dietary lipid digestibility in the duodenum [9,10]. In addition, the integration of LPLs
into the phospholipid bilayer of enterocytes increases the permeability and formation of
ion channels, resulting in an increased influx of micro and macromolecules through these
cells [11–14]. Altogether, the contribution of LPLs to lipid emulsification coupled with cell
membrane modification may lead to improved nutrient absorption [15,16].

By modulating genes involved in β-oxidation, LPL regulates the mechanism of fatty
acid utilization and influences tissue inflammation. Specifically, LPL reduces hepatic fatty
acid utilization through the downregulation of PPARγ (Peroxisome proliferator-activated
receptor gamma) transcription [17] and downstream factors such as the PGC-1α (Peroxi-
some proliferator-activated receptor gamma coactivator 1 alpha) gene, which is involved
in the β-oxidation pathway in hepatic cells [18]. The lipoprotein lipase enzyme facilitates
lipolysis and the delivery of fatty acids to apolipoproteins for oxidation in various cell
types [19]. Once fatty acids and phospholipids within apolipoproteins enter the cytoplasm
of cells, they undergo acylation through LPCAT3 (Lysophosphatidylcholine Acyltransferase
3) [20]. Additionally, carnitine palmitoyl transferase 1 (CPT1), produced by the expression
of the CPT1A gene, plays an important role in hepatic triglyceride metabolism. It catalyzes
the transfer of the acyl group of long-chain fatty acid-CoA conjugates onto carnitine [21].

It has been reported that the supplementation of LPLs in the diet increases the apparent
metabolizable energy and nitrogen retention in broilers [22–25]. Additionally, subsequent
studies [9,25–29] have confirmed that dietary supplementation of LPL positively affected
the average daily gain (ADG) and feed conversion ratio (FCR) of broiler chickens fed low-
energy diets. Other researchers have also observed the benefits of LPL supplementation
for maintaining performance in broilers fed with low energy [15] and low-nitrogen di-
ets [16,25,30]. Furthermore, LPLs such as Lysophosphatidylcholine (LPC) could potentially
result in the up-regulation of the pro-inflammatory factors as well as TGF-β and NF-κB,
leading to the migration of monocytes and macrophages to the gastrointestinal wall [31].

Despite their beneficial effects, there is limited information available on the effect of
LPL inclusion in the broiler breeders’ diet and its subsequent impact on the progeny. On
the other hand, the mechanisms involved in lipid metabolism are influenced by many
factors, such as breeders’ age [32,33], the energy level of the diet [34,35], and the duration
of LPL inclusion. Therefore, the potential effect of dietary energy and the duration of
LPL inclusion was taken into account. The current study aims to investigate whether LPL
supplementation in the breeders’ diet can benefit newly hatched chick performance, serum
parameters, the antioxidative capacity of the liver, and the downstream gene expression
changes involved in both hepatic β-oxidation pathway and fatty acid absorption.
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2. Materials and Methods
2.1. Bird Husbandry and Dietary Treatments

The experimental procedure was approved by the Guidelines for the Care and Use
of Laboratory Animals in Iran [36]. A total of two hundred and sixty-four 49-week-old
Ross 308 broiler breeders (240 hens, average body weight 3810 g ± 165 SD, and 24 roosters,
average body weight 4690 g ± 181 SD) with similar physiological status were chosen and
randomly subjected to experimental treatments for 12 weeks. Birds were placed in a floored
house and kept according to the Ross 308 breeder management guide [37].

Breeders were randomly allocated to a 2 × 2 factorial arrangement design with two
levels of dietary energy (normal energy = 2800 kcal/kg and low energy = 2760 kcal/kg)
and two LPL supplement levels (0 and 0.5 g/kg), and 6 replicates (36 pens in total, each
containing 10 hens and 1 rooster).

The dietary treatments were as follows: 1—Normal energy diet (NE, metabolizable
energy = 2800 kcal/kg) as the control group; 2—Normal energy diet supplemented with
LPL 0.5 g/kg (NE + LPL); 3—Low energy diet (LE, metabolizable energy = 2760 kcal/kg);
and 4—Low energy diet supplemented with LPL 0.5 g/kg (LE + LPL).

The LPL supplement (Lipidol®, Pathway Intermediates, Seoul, Republic of Korea) was
obtained from soybean lecithin using an exclusive proprietary technology). According to
the manufacturer, each kilogram of this lysophospholipid product has a matrix value of
80,000 kcal/kg of ME. The recommended dosage is 0.5 g per kg of feed, which contributes
a total of 40 kcal per kg of feed.

On the last 7 consecutive days of weeks 8 and 12 of the experiment, the eggs laid by the
breeders were collected twice a day, grouped by pen, and stored in a temperature-controlled
room at 16 ◦C. From each experimental group, a total of 120 high-quality eggs were selected
and sent to the hatchery. These eggs were hatched under the ambient conditions of 60 to
65% relative humidity and 37.8 ◦C temperature, with intermittent rotation. After hatching,
the chicks were transferred to the experimental farm in two separate batches (weeks 8
and 12). The healthy chicks, with an average initial body weight of 44 ± 0.5 g, were
then transferred to the Isfahan University of Technology research center and placed in a
caged house.

In the first hatch (week 8 of the experiment), 86, 92, 93, and 90 chicks (361 chicks in
total) were hatched from NE, NE + LPL, LE, and LE + LPL groups, respectively. The healthy
chicks were randomly selected and assigned to 36 cages, allocated into 4 groups according
to their maternal dietary treatment with 9 replicates (cages) of 10 birds each, and reared
for 7 days to assess their performance. In the second hatch (week 12 of the experiment),
92, 93, 104, and 98 chicks (387 chicks in total) were hatched from NE, NE + LPL, LE, and
LE + LPL groups, respectively. Similarly, these chicks were randomly selected and assigned
to 28 cages, allocated into 4 groups according to their maternal dietary treatment with
7 replicates (cages) of 10 birds each, and reared for 7 days to assess their performance. When
assigning chicks, it was ensured that all replicates within each treatment had similar body
weights. The remaining offspring of the second hatch were kept separately for assessment
of serum parameters, hepatic antioxidative capability, and expression of genes involved in
liver β-oxidation at 1 day of age. Chicks from both hatches were raised under the same
condition for a week, following the rearing guideline of the Ross 308 broiler management
guide [38]. A lighting program of 23 h light plus 1h darkness was applied throughout the
experimental period. The house temperature was initially set at 33 ◦C upon the arrival of
the chicks and gradually decreased by 0.5 ◦C each day until it reached 30 ◦C on day 7 of
the experiment. Chicks were fed a control diet (Table 1) formulated in accordance with the
Ross 308 nutrient specifications [39]. The diet was provided using trough feeders, and the
chicks had unlimited access to water. At the end of the experimental period, the individual
weight of each chick and the total feed intake of each cage were recorded to determine
the average daily gain (ADG) and average daily feed intake (ADFI). The feed conversion
ratio (FCR) was calculated using the formula: FCR = ADFI (g)/ADG (g). These calculations
were performed separately for each cage.
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Table 1. Ingredient composition and calculated nutrient content of the basal diets (as fed basis).

Breeder Diets Offspring Diet

Ingredients (g/kg) Normal Diet Low Energy Diet Broiler Starter
(1 to 7 d)

Corn 664.00 673.00 553.90
Soybean meal 177.00 176.00 384.00

Corn gluten meal 0.00 0.00 10.00
Wheat bran 38.00 38.00 0.00
Soybean oil 13.00 5.00 10.10
Limestone 82.00 82.00 11.30

Dicalcium phosphate 13.00 13.00 13.40
Sodium bicarbonate 2.50 2.50 2.20

NaCl 2.20 2.20 2.50
L-Lysine hydrochloride - - 2.20

DL-Methionine 1.60 1.60 3.40
L-Threonine 0.70 0.70 1.10

Choline chloride, 60% 1.00 1.00 0.80
Phytase 1 0.00 0.00 0.05

Multienzyme 2 0.00 0.00 0.10
Broiler vitamin-mineral premix 3 0.00 0.00 5.00
Breeder vitamin-mineral premix 4 5.00 5.00 0.00

Lysophospholipid 0.00 0.00 0.00
Total 1000 1000 1000

Calculated nutrients (%)
Metabolizable Energy (kcal/kg) 2800 2760 3030

Crude protein 13.00 13.00 24.13
Digestible lysine 0.56 0.56 1.28

Digestible methionine + cysteine 0.54 0.54 0.95
Digestible threonine 0.47 0.47 0.86
Digestible isoleucine 0.43 0.43 0.87

Digestible valine 0.47 0.47 0.96
Ca 3.4 3.4 0.96

Available P 0.35 0.35 0.48
Na 0.18 0.18 0.16

Choline (mg/kg) 1200 1200 1455
1 Phytase: Ronozyme® HiPhos 20,000 FYT/g (one FYT is defined as the amount of enzyme that releases 1 µmol of
inorganic phosphate from phytate substrate per minute under reaction conditions with a phytate concentration of
5.0 mM/L at pH 5.5 and temperature 37 ◦C). 2 Multienzyme matrix value per kg: 500,000 kcal/kg metabolizable
energy, 2000% protein, 80% lysine, 80% methionine + cysteine, and 80% threonine. 3 Vitamin and mineral supplied
per kg diet: 12,000 IU Vitamin A, 5000 IU Vitamin D3, 80 IU Vitamin E, 3.2 mg vitamin K3, 3.2 mg vitamin B1,
65 mg niacin, 20 mg pantothenic acid, 3.4 mg vitamin B6, 0.22 mg biotin, 2.20 mg folic acid, 0.017 mg vitamin
B12, 120 mg manganese, 110 mg zinc, 20 mg iron, 16 mg copper, 1.25 mg iodine, and 0.3 mg selenium. 4 Vitamin
and mineral supplied per kg diet: 11,000 IU Vitamin A, 3500 IU Vitamin D3, 100 IU Vitamin E, 3.0 mg vitamin
K3, 3.0 mg vitamin B1, 35 mg niacin, 15 mg pantothenic acid, 3.0 mg vitamin B6, 0.15 mg biotin, 1.50 mg folic
acid, 0.02 mg vitamin B12, 120 mg manganese, 110 mg zinc, 40 mg iron, 16 mg copper, 1.25 mg iodine, and
0.3 mg selenium.

2.2. Sample Collection

On day one, a total of 28 chicks (7 chicks per treatment) hatched from 61-week-
old breeders were randomly selected and humanely euthanized by CO2 inhalation for
sample collection. Blood samples were collected via cardiac puncture by inserting a
heparinized needle through the heart ventricle [40–42]. The needle was then removed from
the syringe, and the blood was slowly aspirated into micro tubes, followed by centrifugation
at 2000× g at 15 ◦C for 10 min to separate plasma from blood cells [43]. The plasma samples
were stored at −20 ◦C prior to blood profile measurements. To measure the tissue gene
expression, tissue samples were taken from the left lobe of the liver, pancreas, and jejunum
(a longitudinal segment 5 cm anterior to the Meckel’s diverticulum). All samples were
carefully washed with distilled water, immediately frozen in liquid nitrogen, and stored at
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−80 ◦C for subsequent analysis. In addition, the entire right lobe of the liver was collected
and stored at −20 ◦C to measure the hepatic antioxidative capability.

2.3. Plasma Parameters and Liver Tissue Analysis

The plasma samples were analyzed for triglyceride (TG), cholesterol, albumin, aspar-
tate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase
(ALP). Furthermore, the liver tissue samples were minced and homogenized in an ice-cold
0.9% phosphate-buffered saline solution using a homogenizer (Ultra-Turrax®, IKA Works,
Inc., Wilmington, NC, USA). Afterward, the mixture was centrifuged at 4000 RPM for
10 min at 4 ◦C, and the supernatant was used for measurement of superoxide dismutase
(SOD), glutathione peroxidase (GPx), total protein (TP), total antioxidative capacity (TAC),
and malondialdehyde (MDA) content. Both plasma and liver tissue samples were analyzed
using an automatic analyzer (Alycon 300i, Dual voltage instrument; Abbott Laboratories
Ltd., Chicago, IL, USA) with commercial assay kits (Pars Azmun® medical equipment
manufacturing, Tehran, Iran).

2.4. Total RNA Extraction

The liver, jejunum, and pancreas tissues were placed separately into a stainless-steel
grinding plate with appropriate steel beads, and 1 mL of TRIzol solution was added to
each sample. The mixture was ground for 1–2 min. Next, the solution was transferred
to a 1.5 mL microtube, and 200 µL chloroform was added to the suspension, followed
by vortexing for 1 min. The solutions were then left at room temperature for 20 min and
centrifuged at 13,000× g RPM for 15 min at 4 ◦C. The upper clear phase was transferred to
another set of microtubes, followed by the addition of 500 µL isopropanol, and centrifuged
at 11,500 RPM for 15 min at 4 ◦C. The supernatant was removed, and 1 mL of ethanol was
added and vortexed until the RNA pellet was separated from the bottom of the microtube
and centrifuged at 11,500 RPM for 10 min at 4 ◦C. Subsequently, the supernatant was
removed, and the pellet was left to dry at room temperature. After ensuring that the
ethanol has evaporated, diethylpyrocarbonate (DEPC)-treated water was added based on
the amount of RNA pellet. RNase-free DNase I (Sinaclon, Tehran, Iran) was used to remove
DNA contamination. The total quantity of RNA and purity ratios (260/280 ratios) were
calculated using a NanoDrop-2000 (Thermo, Waltham, MA, USA). Finally, the extracted
RNA was dissolved and stored at −80 ◦C for subsequent analysis.

2.5. Primer Design

All primers were designed using Primer 3 Plus online software (https://www.
bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi, accessed on 21 March 2021) and
checked with the NCBI Primer Blast (https://www.ncbi.nlm.nih.gov/tools/primer-blast/,
accessed on 21 March 2021) to confirm the correct targeting of the desired genes (Table 2).
The primers were commercially purchased from TAG Co. Copenhagen, Denmark.

Table 2. Primers for Real Time-PCR assays.

Gene
Name Forward Primers (5′–3′) Reverse Primers (5′–3′) GenBank

Accession No.
Product
Length

Melting
Temperature

(Tm)
Reference

PPARγ CATCAGGTTTGGGCGAATGC TAACTGGTCGATGTCGCTGG NM_001001460.2 76 60 [29]
PGC-1α CATGTGCAACCAGGACTCTG TGTCTGCATCCAGGTCGTTC NM_001006457.2 131 59 [29]

RBP TGGGAACGGGATGAAAGTGG AGAGGAGGTGCTTGATTGCC NM_205463.2 184 60 Present study
CPT1A TGAGCACTCTTGGGCAGATG TCTCCTTTGCAGTGTCCGTC NM_001012898.1 108 60 Present study

LPCAT3 CCTCATCGTGTCCATCCTG TGTACGACCCATAAGCCTCAG XM_040661607.1 202 59 Present study
TGF-β CTCGACACCGACTACTGCTT TTCCACTGCAGATCCTTGCG NM_001318456.1 95 60 Present study
FABP1 ACTGGCTCCAAAGAATGACCAATG TGTCTCCGTTGAGTTCGGTCAC NM_204192.4 162 61 Not published
NF-κB TACTGATTGCTGCTGGAGTTGATGTC TTGTGCCATCGTATGTAGTGCTGTC NM_205134.2 156 63 [31]
FABP4 CTGGCCTGACAAAATGTGCG CTTCCTGGTAGCAAACCCCA NM_204290.2 109 60 [30]
ASCL GCCAACAAGAAGATGAGCAAA GGAGTTCATGTCGTGGGAGT NM_204412.2 162 59 Present study
LPL ACTTTTTCGCCGCTGCAC CCCAGCTTTCATACATTCCTGTC NM_205282.2 297 60 Present study

GAPDH GAAGCTTACTGGAATGGCTTTCC CGGCAGGTCAGGTCAACAA NM_204305.2 66 60 [29]

https://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi
https://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi
https://www.ncbi.nlm.nih.gov/tools/primer-blast/
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2.6. Complementary DNA (cDNA) Synthesis

The cDNAs were synthesized using a random hexamer mix following the manufac-
turer’s instructions (cDNA Synthesis RT reagent Kit Sinaclon, Tehran, Iran). The resulting
cDNA was stored at −20 ◦C for future experiments.

2.7. Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR)

The procedures and reagents for the qRT-PCR experiment were conducted as described
in our previous publications [44–46]. Briefly, the cycle threshold (Ct) values of the triplicate
PCRs were averaged, and the relative quantification of the transcript levels was performed
using the comparative 2−∆∆CT method. The fold change in the target gene, relative to
GAPDH, was determined according to the following formula: fold change = 2−∆∆CT, where
∆∆CT = (Ct target gene − Ct GAPDH), ∆CT = CT (a target gene) − CT (a reference gene),
∆∆CT = ∆CT (a target sample) − ∆CT (a reference sample); every sample was further
fortified without inverse transcription to ensure that no DNA impurity would be in the
sample [47].

2.8. Statistical Analysis

Experimental data was analyzed using SAS software version 9.04 (SAS Institute, Cary,
NC, USA) as a 2 × 2 factorial arrangement. Each cage served as the experimental unit.
The statistical model used was: Yijk = µ + Mi + Lj + MLij + eijk, where Yijk represents the
amount of each observation, µ is the experimental mean, Mi is the effect of metabolizable
energy, Lj the effect of LPL supplementation, MLij is the interaction between metaboliz-
able energy level and LPL supplementation level, and eijk is the error term. In simpler
terms, the model comprised the main effects of the metabolizable energy level and LPL
supplementation level, as well as the interaction between the metabolizable energy level
and LPL supplementation level. The normality of the data was checked before conducting
the ANOVA analysis. The significance was assessed using the two-way ANOVA analysis,
and the Tukey test was used to differentiate between means. A p-value less than 0.05 was
considered statistically significant. The data was presented as mean ± SEM for each group.

3. Results and Discussion
3.1. Broiler Performance

Previous research has shown that the level of diet metabolizable energy greatly affects
the bird’s growth performance [35]. This energy is utilized by the animal for maintenance
and production parameters [48]. Table 3 presents the performance of offspring during the
0–7 day period after hatching from breeders fed dietary treatments for 8 and 12 weeks
(57 and 61-week-old). The interaction analysis revealed no significant difference across
the dietary treatments. Moreover, the main effects showed that feeding the 57-week-old
breeders with the normal energy diets resulted in offspring with superior (p < 0.05) ABW at
the end of day 7, as compared to those fed the low energy diets. This suggests that offspring
from the low-energy group primarily used energy for maintenance, limiting the energy
towards production [48,49]. Previous studies have demonstrated that reducing the energy
of a broiler diet significantly impaired birds’ ADG and FCR [25,30,50]. However, there is
limited literature available to understand the impact of reducing the dietary metabolizable
energy of breeders on the subsequent long-term performance of their offspring to confirm
our results. Majdolhosseini et al. (2019) found that broilers fed a diet containing LPL 0.1%
and 100 kcal/kg less dietary energy exhibited equivalent FCR and increased apparent
digestibility of dry matter, nitrogen, ether extract, and gross energy at 24 d of age compared
to the control group [50].



Animals 2024, 14, 3066 7 of 20

Table 3. Growth performance of offspring (from 0 to 7 days of age) that hatched from breeders fed
with dietary treatments for 8 and 12 weeks (57 and 61-week-old, respectively).

57-Week-Old Breeders 61-Week-Old Breeders

Main Effects ABW 1 (g) ADG 2 (g) ADFI 3 (g) FCR 4 ABW (g) ADG (g) ADFI (g) FCR

Energy (kcal/kg)
2800 195.64 a 21.90 21.72 0.98 205.77 23.24 22.44 0.95
2760 190.73 b 21.36 21.29 0.99 205.62 23.27 22.14 0.94

LPL (g/kg)
0 186.16 b 20.62 b 21.35 1.02 b 199.57 b 22.57 b 21.97 0.96 b

0.5 200.21 a 22.65 a 21.66 0.95 a 211.81 a 24.13 a 22.61 0.93 a

Interactions

Energy (kcal/kg) LPL 5

(g/kg)
2800 0 188.66 20.83 21.43 1.02 198.97 22.56 22.02 0.97

0.5 202.62 22.97 22.01 0.95 212.57 24.29 22.87 0.93
2760 0 183.65 20.40 21.26 1.03 200.18 22.58 21.93 0.96

0.5 197.81 22.32 21.32 0.95 211.05 23.97 22.35 0.92
SEM 1.77 0.24 0.25 0.009 1.07 0.18 0.27 0.92

p-Value

Energy 0.02 0.07 0.16 0.60 0.90 0.50 0.36 0.29
LPL 0.0001 0.0001 0.30 0.0001 0.0001 0.0001 0.06 0.002

Energy × LPL 0.96 0.72 0.40 0.60 0.29 0.46 0.51 0.75

ab Values within a column followed by different superscripts are significantly different. p < 0.05; Tukey’s pairwise
test. 1 Average body weight. 2 Average daily gain. 3 Average daily feed intake. 4 Feed conversion ratio.
5 Lysophospholipid.

In our study, the ADG of chickens hatched from 57-week-old breeders fed with
the low-energy diet tended to be lower (p = 0.07). Additionally, the inclusion of LPL
resulted in improved (p < 0.05) ABW, ADG, and FCR in chickens hatched from both
hens that fed with LPL for 8 and 12 weeks (57 and 61-week-old, respectively). However,
feeding breeders for 12 weeks with 0.5 g/kg of LPL resulted in a greater ADFI of chickens
(p = 0.06). These findings could be attributed to the role of the LPL supplement, which
acted as an exogenous emulsifier, facilitating the digestion and absorption of lipids [51], and
subsequently improved the offspring’s performance via increased fatty acid mobilization
to the egg. The benefits of improved ADG and FCR in this study were consistent with the
findings of Boontiam et al. (2019), who observed that the inclusion of 0.1% LPL in broilers’
diet could enhance growth performance in young birds from 1 to 21 d of age through the
improvements in feed efficiency [16]. Similarly, Zhao and Kim (2017) reported improved
growth performance and reduced FCR due to supplementation of LPL in broilers diet from
1 to 28 d of age compared to those fed the basal diet [25]. These findings highlight the vital
role of modified LPL in lipid digestion, as it improves nutrient absorption by increasing
micelle formation [52].

3.2. Blood Profile

Table 4 represents the serum biochemical parameters of day-old offspring of the
second hatch, which fed dietary treatments for 12 weeks (61-week-old). The main effect
of metabolizable energy showed that the low-energy diets resulted in decreased (p < 0.05)
serum cholesterol compared to the normal energy diets. This is consistent with the findings
of Boontiam et al. (2019), who reported reduced serum TG concentration in broilers fed
0.1% LPL supplement [16]. Similar results were detected by Hosseini et al. (2018), who
stated that TG and LDL concentrations were decreased by the supplementation of 0.1% LPL
in broilers fed with a low-energy diet on d 24 [53]. The faster absorption and metabolism
rate of ingested fat may explain the lower serum TG levels in birds fed LPL [9,52]. This
indicates that chylomicrons were either secreted into the serum at a slower rate or cleared
from the blood at a faster rate [54], reflecting an improved lipid metabolism in the liver [55].
However, this effect needs further investigation since we did not measure the concentration
of hepatic lipoproteins and lipid content in the blood and liver. Other possible mechanisms
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underlying the reduction in blood TG will be discussed using the expression of liver
candidate genes. Interestingly, in the current study, the LPL supplement did not alter the
serum cholesterol, which is in contrast to previous reports on broiler chickens [25,50,56].
These studies agreed that LPL supplementation in the diet significantly reduced cholesterol
levels in serum.

Table 4. Blood biochemical parameters of day-old offspring of the second hatch, which hatched from
breeders fed for 12 weeks (61-week-old) with dietary treatments.

Main Effects TG (mg/dL) 1 Cholesterol
(mg/dL) ALT 2 (U/L) AST 3 (U/L) ALP 4

(U/L)
Albumin

(g/dL)

Energy (kcal/kg)
2800 91.14 549.82 a 34.35 216.50 b 3142.85 0.88
2760 96.28 504.62 b 39.00 269.59 a 3046.00 0.84

LPL (g/kg)
0 106.28 a 527.13 38.21 251.19 a 3055.00 0.86

0.5 81.14 b 527.36 35.14 235.00 b 3133.85 0.86
Interactions

Energy (kcal/kg) LPL 5

(g/kg)
2800 0 106.57 553.70 37.85 221.44 2782.85 c 0.91

0.5 75.71 546.04 30.85 211.70 3502.85 a 0.85
2760 0 106.00 500.50 38.57 280.84 3327.14 b 0.81

0.5 86.57 508.72 39.42 258.23 2764.85 c 0.87
SEM 4.54 15.65 2.97 4.57 247.76 0.04

p-Value

Energy 0.34 0.02 0.19 0.0001 0.74 0.46
LPL 0.0001 0.99 0.38 0.006 0.78 1.00

Energy × LPL 0.29 0.67 0.27 0.24 0.03 0.32
abc Values within a column followed by different superscripts are significantly different. p < 0.05; Tukey’s
pairwise test. 1 Triglyceride. 2 Alanine aminotransferase. 3 Aspartate aminotransferase. 4 Alkaline phosphatase.
5 Lysophospholipid.

In the present study, the offspring of breeders fed the low-energy diets had elevated
(p < 0.05) serum AST compared to the normal energy diets. Feeding breeders with the
LPL-containing diets resulted in chicks with a lower serum TG (p < 0.01) and AST (p < 0.01)
compared to diets with no LPL supplement. Contrary to our findings, Boontiam et al.
(2019) found that reduced metabolizable energy diets, either with or without LPL supple-
mentation, did not significantly alter the AST enzyme activity in broilers. These authors
concluded that an energy reduction of not more than 150 kcal/kg is safe for broilers [16].
Aspartate aminotransferase (AST) is a marker of mitochondrial activity in the Kupffer cells,
and it is measured in serum to assess body metabolism rate and liver health status [57].
Higher serum AST activity indicates an increased rate of free amino acid utilization by
catabolizing the amino acid carbon skeleton [58].

The analysis of output data showed no interactions between dietary treatments, except
for the ALP, where the greatest serum ALP was related to the offspring of breeders who
were fed the NE + LPL diet. Alkaline phosphatase (ALP) is a serological marker of bone
metabolism, which provides a real-time assessment of bone formation, mineralization, and
turnover. Although the exact function of ALP is unknown, it is mainly associated with
increased osteoblastic activity in breeders and commercial chickens [59,60]. The increase
in the ALP level of the NE + LPL group might be due to an increase in corticosteroids,
epinephrine, and nor-epinephrine secretion [41]. Contrary to our findings, Lai et al. (2018)
confirmed no significant difference in serum ALP activity of 42-day-old male broiler chick-
ens fed with a high dose of bile salts (400 mg/kg) compared to the control group [61].
However, the mechanism responsible for these enzyme activity alterations is difficult to
explain and needs further examination. It is crucial to acknowledge that in the present
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study, the total ALP was measured, which includes contributions from other sources, such
as the liver. Therefore, future investigations should measure the bone-specific ALP to
achieve a more comprehensive understanding.

3.3. Hepatic Antioxidative Capability

Table 5 demonstrates the hepatic antioxidative capability of day-old offspring of
the second hatched, which hatched from breeders fed dietary treatments for 12 weeks
(61-week-old). SOD and GPx activity, as well as MDA and TAC levels, are used as markers
of oxidant-antioxidant state in animals [62]. Superoxide dismutase (SOD) is a copper
and zinc-containing enzyme that helps prevent the buildup of superoxide (O2

−). The
accumulation of superoxide can act as an oxidant by itself, and when combined with
H2O2, it forms the OH radical, or it is combined with NO, which forms peroxynitrite [62].
Decreased or inhibited SOD activity may result in cellular membrane damage due to
peroxidative processes initiated by the accumulation of free O2

− [63,64]. There were
significant interactions between dietary energy and LPL supplementation on hepatic SOD
(p < 0.01) and MDA (p < 0.05) levels in chickens. Interestingly, the addition of LPL to
normal energy diets increased SOD and MDA levels, while its addition to low energy diets
decreased SOD and MDA levels. This finding could be referred to as a higher demand
for SOD enzyme for lipid metabolism, resulting from the higher absorption rate of fatty
acids in the liver caused by LPL. In contrast, Siyal et al. (2017) observed a significant
increase in hepatic SOD activity of 42 d old broilers fed with 0.1% soybean lecithin, as
compared to the control group [65]. In this study, dietary LPL inclusion at 0.5 g/kg in
breeders’ diet led to offspring with reduced hepatic SOD (p < 0.01) and increased hepatic
GPx, indicating the improved antioxidant status of chickens [66]. Confirming the present
findings, El-katcha et al. (2021) reported that feeding 60-d-old ducks with 0.05% lysolecithin
resulted in increased GPx activity [67]. GPx predominantly catalyzes the conversion of
H2O2 to H2O. Furthermore, GPx [68] catalyzes the reduction of fatty acid hydroperoxides,
which are the primary oxygenated products of polyunsaturated fatty acids, as well as
1-monoacylglycerol hydroperoxides.

Table 5. The hepatic antioxidative capability of day-old offspring of the second hatch, which hatched
from breeders fed for 12 weeks (61-week-old) with dietary treatments.

Main Effects SOD 1

(U/mg)
GPx 2

(U/mg)
TP 3

(U/mg)
TAC 4

(U/mg)
MDA 5

(mmol/mg)

Energy (kcal/kg)
2800 240.39 66.92 15.35 2.48 146.50
2760 232.92 66.50 17.07 2.61 138.57

LPL (g/kg)
0 259.00 a 64.57 b 15.50 2.58 142.14

0.5 214.32 b 68.85 a 16.92 2.51 142.92
Interactions

Energy (kcal/kg) LPL 6

(g/kg)
2800 0 223.57 c 63.42 14.57 2.43 134.28 c

0.5 257.21 b 70.42 16.14 2.54 158.71 a

2760 0 294.42 a 65.71 16.42 2.73 150.00 b

0.5 171.42 d 67.28 17.71 2.49 127.14 d

SEM 11.96 1.57 1.00 0.18 8.48
p-Value

Energy 0.59 0.81 0.16 0.56 0.43
LPL 0.004 0.02 0.23 0.77 0.93

Energy × LPL 0.0001 0.15 0.90 0.42 0.02
abcd Values within a column followed by different superscripts are significantly different. p < 0.05; Tukey’s
pairwise test. 1 Superoxide dismutase. 2 Glutathione peroxidase. 3 Total protein. 4 Total antioxidative capacity.
5 Malondialdehyde. 6 Lysophospholipid.
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MDA and T-AOC are widely used as indicators of oxidative stress in meat [69,70].
Malondialdehyde is a soluble degraded product of lipid peroxidation and an indicator of
lipid oxidation intensity in tissues such as the liver, heart, kidney, spleen, lungs, egg, and
erythrocytes. Elevated MDA levels in meat are associated with characteristics such as a
rotten smell, loss of taste and color, and reduced nutritional value [71]. Our results suggest
an increase (p < 0.01) in the offspring’s hepatic MDA level of breeders fed NE + LPL, which
could be explained by the fact that the high-energy diet promoted performance in chickens,
thus causing higher metabolic stress with an expected increase of MDA [72,73]. In Siyal
et al. (2017) study, the hepatic MDA of birds fed with 0.1% soybean lecithin significantly
reduced in comparison with the control group, which is in contrast with the findings of
the current study [65]. Moreover, Wu et al. (2022) fed day-old goslings with 100 mg/kg
soybean lecithin for 32 days and concluded that soybean lecithin supplementation led to a
significant decrease in the serum MDA of birds [74].

3.4. Expression of Candidate Genes in the Liver

To test whether the metabolizable energy levels and consumption of LPL by the
breeders could influence the gene expression of offspring, we analyzed the expression of
candidate genes in the liver, jejunum, and pancreas tissues.

We investigated the transcription of the PPARγ gene in the liver hepatocyte cells of
the offspring broilers. There was no significant difference among treatments in mRNA
expression for PPARγ. The PPARγ gene is responsible for triacylglycerol storage in the
adipose tissue [74]. PPARγ gene expression was not affected by the treatments in the
current study since the newly hatched chicks lack adipose tissue.

Reciprocal effects show that the LE diet led to a decrease in PGC-1α gene expres-
sion, but the LPL supplementation in both NE and LE diets increased the PGC-1α gene
transcription. (p < 0.001). The NE + LPL and the LE + LPL groups showed an increase
in PGC-1α expression, as compared to the NE and LE groups (p < 0.05). While the LE
group showed a decrease (p < 0.05) in the PGC-1α expression when compared to the other
groups (Figure 1(A1)). Several studies have shown that the PGC-1α gene is downstream
of the PPARγ gene and, therefore, is affected by the expression of the PPARγ gene. The
PGC-1α regulates key mitochondrial genes essential for adaptive thermogenesis and plays
a crucial role in metabolic adjustments in response to dietary changes by influencing the
transcription of numerous genes involved in nutrient metabolism [75,76]. However, as
we observed in the present study, the expression of the PPARγ gene was not affected by
any of the treatments, but the PGC-1α gene showed a drastic change in response to LPL
supplementation. This indicates that the PGC-1α gene in different tissues can be considered
as a gene downstream of other genes [77], as we showed in our previous studies in the
C2C12 cell line and gastrointestinal tissue [44–46]. Therefore, PGC-1α gene expression was
not affected by the increase or decrease in the expression of the PPARγ gene.

Potentially, PGC-1α leads to fatty acid oxidation in the hepatocytes. The PGC-1α gene
regulates the production of the C-II apolipoprotein, which is involved in the production
and secretion of VLDL [77,78]. The main effect of LPL was a significantly decreased
serum TG concentration. Therefore, it is possible that LPL supplementation could have
caused a positive change in the transcription of PGC-1α, leading to increased production
of apolipoproteins. The current study has shown that LPL supplementation regulated the
production of pancreatic lipase, which ultimately caused a decrease in triglyceride-related
pancreatitis and increased hydrolysis of triglycerides in the intestinal lumen, resulting in
better absorption of lipid derivatives [79].
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Figure 1. The interaction and the main effect of energy and LPL supplement on the transcription
of the related genes with β-oxidation in the liver tissue. (A1) Peroxisome proliferator-activated
receptor gamma coactivator 1-alpha (PGC-1α). (A2) The main effect of LPL supplement on the
PGC-1α transcription. (B) Lipoprotein lipase (LPL). (C) Lysophosphatidylcholine acyltransferase 3
(LPCAT3). (D) Carnitine palmitoyltransferase 1A (CPT1A). Whiskers represent SEM. abcd Values
within a column followed by different superscripts are significantly different. p < 0.05; Tukey’s
pairwise comparison. NE: normal energy, LE: low energy, LPL: Lysophospholipid supplementation.

According to the results, LPL increased the expression of the lipoprotein lipase gene in
the NE + LPL diet. In contrast, the LE + LPL diet decreased the lipoprotein lipase gene expres-
sion compared to the LE diet. The transcription of the Lipoprotein lipase gene significantly
increased in all of the groups, as compared to the NE group. The NE + LPL and the LE
groups had higher expression among other experimental groups (p < 0.01) (Figure 1B). The
basal role of lipoprotein lipase is catalyzing the hydrolysis of the fatty acid component and
lipoproteins, therefore providing non-esterified fatty acids for cell usage [80]. The expres-
sion of the lipoprotein lipase gene is high in capillaries and also in the liver of newly hatched
chickens [81]. Additionally, nutritional and other physiological changes could contribute
to the variation in lipoprotein lipase expression [82]. This enzyme needs cofactors such as
phospholipids and Apo-protein C-II to function [83]. The lipoprotein lipase enzyme causes
the hydrolysis of triacylglycerol in the bloodstream, resulting in a reduction of triglycerides
in the serum profile. This reduction is partially attributed to the activity of this enzyme [84].
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In other words, by providing cofactors for this enzyme, LPL causes more consumption
of VLDL and LDL by other tissues, including the liver itself. Therefore, the insignificant
differences in PPARγ gene expression among the treatments, besides an increase in PGC-1a
and lipoprotein lipase gene expression, result in increased TG usage in the liver and a lack
of abdominal fat formation in the broilers.

LPL increased the LPCAT3 transcription in the NE + LPL diet, while in the LE diet,
the LPCAT3 gene expression decreased with LPL supplementation. The expression of the
LPCAT3 gene increased in NE + LPL and LE birds, compared to the NE group (p < 0.01).
Also, the transcription of the LPCAT3 gene in the LE + LPL diet increased when compared
to the NE group (p < 0.05) (Figure 1C). The LPC in the intestinal epithelial cells leads
to an increment of lipid absorption. During this process, transcription of the LPCAT3
gene is increased, resulting in the re-esterification of LPC to phosphatidylcholine [85]. LP-
CAT3 also esterifies lysophospholipid species [86], converting 1-acyl LPC to phosphatidyl-
choline [87], 1-acyl lysophosphatidylserine to phosphatidylserine [88], and 1-acyl lysophos-
phatidylethanolamine to phosphatidylethanolamine. Moreover, the LPCAT3 gene acts as
a major LPC O-acyltransferase in the liver and intestine [89]. It also increases membrane
dynamics and enables the transfer of triacylglycerols to nascent, very low-density lipopro-
tein (VLDL) particles [90]. However, previous studies demonstrated that a reduction of
LPCAT3 expression can decrease cholesterol, phospholipids, and plasma TG concentra-
tion [91]. Therefore, we expected that the utilization of LPL would increase the LPCAT3
gene expression. Previous studies have shown that reducing the LPCAT3 gene expression
can increase the rate of apoptosis in liver cells [85]. The reason could be that by reducing the
expression of LPCAT3, the amount of LPC esterification decreases. The amount of storage
of fatty acids in liver cells probably increases since LPC is known to be effective in inducing
cell death in liver cells [92]. In our study, we observed that the reduction of dietary energy
and the inclusion of LPL in the diet increased the LPCAT3 gene transcription, which might
have reduced the fatty liver syndrome and apoptosis rate in liver cells.

Based on our results, there was no significant difference in the expression of the RBP
gene between dietary treatments. Although the amount of albumin protein remained
unchanged across treatments, this may suggest the involvement of free fatty acids in the
formation of chylomicrons in intestinal epithelial cells [93]. Moreover, the function of
RBP protein depends on pre-albumin, as the RBP-pre-albumin complex transports the
absorbed retinol and fatty acids from the liver to the various tissues through the blood-
stream. Also, the dietary treatments did not induce any change in albumin and RBP gene
expression, which suggests that there was no change in the amount of lipolysis in tissues
such as abdominal fat tissue, although newly hatched chickens do not have abdominal fat
tissue [94]. However, previous studies have shown that retinol, which regulates RBP gene
expression, could potentially activate the transcription of the TGF-β gene. This interaction
could prevent various diseases and improve immune system function [95,96]. The CPT1A
gene expression response was affected by LPL inclusion in the diet. In the NE + LPL and
LE + LPL birds, the transcription of the CPT1A markedly increased, as compared to the NE
and LE groups (p < 0.05). However, the inclusion of LPL in both NE and LE diets caused an
increase in CPT1A gene expression, while this increase was more visible in the LE + LPL
(p < 0.001) (Figure 1D). The protein resulting from the transcription of the CPT1A gene is
involved in the pathway of fatty acid beta-oxidation, which is part of lipid metabolism.
Carnitine acetyl-transferase enzymes need a sufficient amount of L-carnitine to perform
at their best [97]. L-carnitine is supplied through the diet, although it is also produced
endogenously in the body from precursors such as lysine and methionine. The high expres-
sion of the CPT1A gene under the influence of treatments in all groups compared to the NE
group can indicate the proper balance of these two amino acids in the diet. Also, studies
have shown that PGC-1α gene transcription acts as an upstream regulator of the CPT1A
gene and causes an increase in the CPT1A gene expression [98]. As observed in the present
research, adding LPL to the breeders’ diet increased the PGC-1α and, ultimately, CPT1A
gene expression in the offspring hepatocytes. While high-fat diets increase the CPT1A gene
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expression [99], starvation also increases the CPT1A gene expression. Moreover, lipopro-
teins can also increase the CPT1A gene transcription [100]. Thus, this gene is essential for
the mitochondrial uptake of long-chain fatty acids and their subsequent β-oxidation in
the mitochondria. Therefore, the CPT1A gene expression can be significantly increased
under the influence of genetic factors such as increased expression of PGC-1α and PPAR
families, as well as physiological factors such as apolipoproteins and nutritional factors
such as dietary fat.

3.5. Expression of Candidate Genes in the Jejunum

The liver fatty acid binding protein, also known as FABP1, is highly expressed in the
duodenum and jejunum [101]. Compared to other FABPs, FABP1 has a higher binding
capacity for fatty acids and other lipid species, including LPLs [102]. It is also expressed in
the intestinal epithelial and hepatocyte cells, where it plays a critical role in lipoprotein-
mediated cholesterol uptake [103]. In addition, it binds to sterols [104], bilirubin [105], and
free fatty acids [106] and, therefore, is involved in intracellular lipid transport. During
fasting, the FABP1 is located on the apical surface of enterocytes [107]. This interaction
results in a considerable up-regulation of the FABP1 gene when LPL is supplemented.
The addition of LPL in the diets with lower metabolizable energy resulted in the greatest
expression of FABP1, as compared to the other groups (p < 0.05). In contrast, the birds fed
with NE + LPL did not have a significant difference in the expression of FABP1 relative
to the NE and LE groups (Figure 2A). Thus, probably due to the elevated availability of
fatty acid during LPL consumption in the lumen, the highest concentration of FABP1 is
around the endoplasmic reticulum and Golgi network. Interestingly, the expression of
FABP1 is regulated by the PPARs [101]. FABP1 has a positive regulatory effect on fatty acid
beta-oxidation and positive regulation of hydrolase activity [108]. Also, the increase in
FABP1 expression could lead to overexpression of the liver and intestinal inflammatory
genes [109]. It is worth noting that the overload of free fatty acids in the enterocyte after
the feeding could be cytotoxic to the enterocyte cells. Thus, the FABP1 protein reduces
the apoptotic effect of FFA in the intestinal cells by binding to the FFA [110,111]. The LPL
supplementation increased this positive effect of FABP1 through the increment of FABP1
gene transcription [112].

Animals 2024, 14, x FOR PEER REVIEW 14 of 21 
 

In addition, the transcription of the TGF-β gene did not have any difference between 
experimental treatments. However, the LE and LE + LPL groups demonstrated a numeri-
cal decrease compared to the other groups. Based on our observations, the consumption 
of NE + LPL diet in the breeders caused an increase in NF-κB gene expression, an inflam-
matory factor in the offspring intestinal epithelial cells. This is due to the decrease in NF-
κB gene expression resulting from the reduction of dietary energy and the volume of free 
fatty acids in the intestinal epithelial cells. Actually, NF-κB cluster components regulate 
the transcriptional function of several promoters of pro-inflammatory cytokines [113], im-
mune receptor proteins [114], transcription factors [115], and adhesion factors that con-
tribute to intestinal inflammation [116]. The TGF-β potentially could activate the NF-κB 
factor. Through the mitochondrial biogenesis increment, the fatty acid β-oxidation 
changes in the adipocytes, leading to the conversion of the white adipocytes to the brown 
adipocytes [117].  

According to the interaction results, the expression of the NF-κB gene was only in-
creased by adding LPL to the NE diet (p < 0.01). In addition, the main effect of the LPL 
supplementation was a tendency to increase the transcription of the NF-κB gene. Auto-
taxin leads to the production of LPA and choline by affecting the LPC [118]. The produced 
LPA causes oxidative stress, alteration of PPARγ transcription, and mitochondrial dys-
function, probably through the reduction of PGC-1α expression. The LPAs and even LPCs 
in various tissues, as well as adipocytes, liver, and ovary tissue [119], bind to the G-protein 
receptors and cause the NF-κB transcriptor activation. Finally, the activated NF-κB in-
duces the expression of pro-inflammatory cytokines, which further stimulate the migra-
tion of macrophages and monocytes to the digestive tract, increasing systemic inflamma-
tion [120]. 

 
 

Figure 2. The interaction of energy and LPL supplement the expression of the genes in the intestine 
tissue. (A) Fatty Acid Binding Protein 1 (FABP1). (B) Nuclear Factor Kappa B (NF-κB). Whiskers 
represent SEM. ab  Values within a column followed by different superscripts are significantly differ-
ent. p < 0.05; Tukey’s pairwise comparison. NE: normal energy, LE: low energy, LPL: Lysophospho-
lipid supplementation. 

3.6. Expression of FABP4 Gene in the Pancreas 
The interaction between metabolizable energy and LPL showed that FABP4 gene ex-

pression in the offspring was higher in breeders fed with the LE diet (p < 0.01) (Figure 3). 
Moreover, the main effect of the energy showed that the LE diet had a tendency to increase 
the transcription of the FABP4 gene (p = 0.08). Also, lysophospholipids could potentially 
bind to the albumin binding site in the same way as the long-chain fatty acids do [121]. 
With an increase in fatty acid absorption, the amount of lipoprotein secretion from the 
liver and the amount of β-oxidation of fatty acids in the mitochondria increases [122]. 
FABP4 is one of the key factors that demonstrate the abnormal positioning of fat sediment 
in non-adipose tissues, including the liver [123], and can also regulate enzyme activity 

0
0.5

1
1.5

2
2.5

3

NE NE+LPL LE LE+LPL

FA
B

P1
ge

ne
 e

xp
re

ss
io

n/
 

G
AP

D
H

A

a

b
b

b

0
1
2
3
4
5
6
7
8

NE NE+LPL LE LE+LPL

N
F-
κB

 g
en

e 
ex

pr
es

si
on

/ 
G

AP
D

H

B

b b b

a

Figure 2. The interaction of energy and LPL supplement the expression of the genes in the intestine
tissue. (A) Fatty Acid Binding Protein 1 (FABP1). (B) Nuclear Factor Kappa B (NF-κB). Whiskers
represent SEM. ab Values within a column followed by different superscripts are significantly different.
p < 0.05; Tukey’s pairwise comparison. NE: normal energy, LE: low energy, LPL: Lysophospholipid
supplementation.

In addition, the transcription of the TGF-β gene did not have any difference between
experimental treatments. However, the LE and LE + LPL groups demonstrated a numerical
decrease compared to the other groups. Based on our observations, the consumption of
NE + LPL diet in the breeders caused an increase in NF-κB gene expression, an inflamma-
tory factor in the offspring intestinal epithelial cells. This is due to the decrease in NF-κB
gene expression resulting from the reduction of dietary energy and the volume of free fatty
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acids in the intestinal epithelial cells. Actually, NF-κB cluster components regulate the
transcriptional function of several promoters of pro-inflammatory cytokines [113], immune
receptor proteins [114], transcription factors [115], and adhesion factors that contribute
to intestinal inflammation [116]. The TGF-β potentially could activate the NF-κB factor.
Through the mitochondrial biogenesis increment, the fatty acid β-oxidation changes in the
adipocytes, leading to the conversion of the white adipocytes to the brown adipocytes [117].

According to the interaction results, the expression of the NF-κB gene was only in-
creased by adding LPL to the NE diet (p < 0.01). In addition, the main effect of the LPL
supplementation was a tendency to increase the transcription of the NF-κB gene. Autotaxin
leads to the production of LPA and choline by affecting the LPC [118]. The produced LPA
causes oxidative stress, alteration of PPARγ transcription, and mitochondrial dysfunction,
probably through the reduction of PGC-1α expression. The LPAs and even LPCs in various
tissues, as well as adipocytes, liver, and ovary tissue [119], bind to the G-protein recep-
tors and cause the NF-κB transcriptor activation. Finally, the activated NF-κB induces
the expression of pro-inflammatory cytokines, which further stimulate the migration of
macrophages and monocytes to the digestive tract, increasing systemic inflammation [120].

3.6. Expression of FABP4 Gene in the Pancreas

The interaction between metabolizable energy and LPL showed that FABP4 gene
expression in the offspring was higher in breeders fed with the LE diet (p < 0.01) (Figure 3).
Moreover, the main effect of the energy showed that the LE diet had a tendency to increase
the transcription of the FABP4 gene (p = 0.08). Also, lysophospholipids could potentially
bind to the albumin binding site in the same way as the long-chain fatty acids do [121]. With
an increase in fatty acid absorption, the amount of lipoprotein secretion from the liver and
the amount of β-oxidation of fatty acids in the mitochondria increases [122]. FABP4 is one
of the key factors that demonstrate the abnormal positioning of fat sediment in non-adipose
tissues, including the liver [123], and can also regulate enzyme activity [124]. In addition,
the FABP4 expression is regulated by the PPARγ [125]. It increases the hydrolytic activity
of hormone-sensitive lipase [126], as well as regulating the transcription of PPARγ in the
transport of specific PPARγ agonists to the nucleus. As lipolysis increases, the secretion
of FABP4 protein from adipocytes also increases. This, in turn, enhances the activity of
hormone-sensitive lipase, promoting the defective process and resulting in even more
secretion of FABP4 protein [127].
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NE: normal energy, LE: low energy, LPL: Lysophospholipid supplementation.



Animals 2024, 14, 3066 15 of 20

4. Conclusions

Overall, our findings indicate that supplementation of LPL in broiler breeders’ diet
with a low energy level favors offspring performance, serum metabolites, and hepatic en-
durance against oxidative stress. Therefore, the consumption of LPL by breeders improves
the health and performance of the offspring, primarily through the regulation of genes
involved in the offspring’s liver β-oxidation process. Overall, this study suggests that LPL
is a safe and effective feed additive as it enhances lipid absorption and metabolism rate,
leading to improved performance and health in poultry.
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