Effects of Dietary Ferroporphyrin Supplementation on Growth Performance, Antioxidant Capacity, Immune Response, and Oxygen-Carrying Capacity in Gibel Carp (Carassius auratus gibelio)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Diets
2.2. Experimental Fish Feeding and Managing Process
2.3. Collection of Samples
2.4. Chemical Analysis
2.5. Gene Expression Analysis
2.6. Statistical Analysis of Data
3. Results
3.1. Gibel Carp’s Growth Performance and Whole-Body Composition
3.2. Plasma Biochemical Indices
3.3. Antioxidant-Related Indices of Liver
3.4. Expression Level of Antioxidant-Related Genes
3.5. Expression Levels of Genes Involved in the NF-kB Signaling Pathway
3.6. Expression Levels of Genes Related to Oxygen-Carrying Capacity
4. Discussion
4.1. Effects of Dietary Supplementation with FPR on the Growth Performance and Whole-Body Composition
4.2. Effects of Dietary Supplementation with FPR on Plasma Parameters
4.3. Effects of Dietary Supplementation with FPR on Antioxidant Status
4.4. Effects of Dietary Supplementation with FPR on Oxygen Carrying Capacity
4.5. Effects of Dietary Supplementation with FPR on Immunocompetence
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reverter, M.; Bontemps, N.; Lecchini, D.; Banaigs, B.; Sasal, P. Use of Plant Extracts in Fish Aquaculture as an Alternative to Chemotherapy: Current Status and Future Perspectives. Aquaculture 2014, 433, 50–61. [Google Scholar] [CrossRef]
- Moore, E.; Liu, X.; Drewery, M.L. Pelagic Fish Spared from Ocean Catch by Integrating Black Soldier Fly Larvae in U.S. Aquaculture Production. Front. Sustain. Food Syst. 2024, 8, 1297414. [Google Scholar] [CrossRef]
- Zhou, Z.; Pan, S.; Wu, S. Modulation of the Growth Performance, Body Composition and Nonspecific Immunity of Crucian Carp Carassius auratus upon Enteromorpha prolifera Polysaccharide. Int. J. Biol. Macromol. 2020, 147, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.A.; Trushenski, J.; Schwarz, M.H.; Cavalli, R.O. Effects of Rearing Density on Growth, Physiological Responses, and Flesh Quality in Juvenile Cobia (Rachycentron canadum). J. World Aquaculture Soc. 2020, 51, 1301–1312. [Google Scholar] [CrossRef]
- Flores-Méndez, L.C.; Lizárraga-Velázquez, C.E.; Sánchez-Gutiérrez, E.Y.; Arrizon, J.; Leyva-López, N.; Hernández, C. Study of the Effect of Dietary Agavin Supplementation in Blood Parameters and Antioxidant Enzymes of Juvenile Nile Tilapia (Oreochromis niloticus) under Stress Conditions. Fishes 2022, 7, 340. [Google Scholar] [CrossRef]
- Wang, E.; Chen, X.; Liu, T.; Wang, K. Effect of Dietary Ficus carica Polysaccharides on the Growth Performance, Innate Immune Response and Survival of Crucian Carp against Aeromonas hydrophila Infection. Fish. Shellfish. Immunol. 2022, 120, 434–440. [Google Scholar] [CrossRef]
- Wu, S. Dietary Astragalus membranaceus Polysaccharide Ameliorates the Growth Performance and Innate Immunity of Juvenile Crucian Carp (Carassius auratus). Int. J. Biol. Macromol. 2020, 149, 877–881. [Google Scholar] [CrossRef]
- Tang, X.L.; Fu, J.H.; Li, Z.H.; Fang, W.P.; Yang, J.Y.; Zou, J.X. Effects of a Dietary Administration of Purple Coneflower (Echinacea purpurea) on Growth, Antioxidant Activities and 8 miRNAs Expressions in Crucian Carp (Carassius auratus). Aquac. Res. 2016, 47, 1631–1638. [Google Scholar] [CrossRef]
- Wu, S.; Xu, B. Effect of Dietary Astaxanthin Administration on the Growth Performance and Innate Immunity of Juvenile Crucian Carp (Carassius auratus). Biotech 2021, 11, 151. [Google Scholar] [CrossRef]
- Shi, Y.; Zhong, L.; Zhong, H.; Zhang, J.; Liu, X.; Peng, M.; Fu, G.; Hu, Y. Taurine Supplements in High-Carbohydrate Diets Increase Growth Performance of Monopterus albus by Improving Carbohydrate and Lipid Metabolism, Reducing Liver Damage, and Regulating Intestinal Microbiota. Aquaculture 2022, 554, 738150. [Google Scholar] [CrossRef]
- Li, M.; Lai, H.; Li, Q.; Gong, S.; Wang, R. Effects of Dietary Taurine on Growth, Immunity and Hyperammonemia in Juvenile Yellow Catfish Pelteobagrus fulvidraco Fed All-Plant Protein Diets. Aquaculture 2016, 450, 349–355. [Google Scholar] [CrossRef]
- Carvalho, P.L.P.F.; Xavier, W.D.S.; Guimarães, M.G.; Rodrigues, E.J.D.; Furuya, W.M.; Yamamoto, F.Y.; Pezzato, L.E.; Gatlin, D.M.; Barros, M.M. Dietary Glutamine Improves Growth and Intestinal Morphology of Juvenile GIFT Tilapia (Oreochromis niloticus) but Has Limited Effects on Innate Immunity and Antioxidant Capacity. Aquaculture 2023, 563, 738976. [Google Scholar] [CrossRef]
- Cao, Y.; Huang, H.; Li, Y.; Deng, J.; Tan, B. Effects of Dietary Supplemented with a Combination of Magnolol, Palmatine and β-Glucan on Growth Rate, Antioxidant Activity, Immune Response and Resistance to Aeromonas hydrophila in Tilapia (Oreochromis niloticus). Aquac. Rep. 2022, 27, 101337. [Google Scholar] [CrossRef]
- Lee, S.H.; Lee, Y.K.; Katya, K.; Park, J.K.; Bai, S.C. Natural Dietary Additive Yellow Loess as Potential Antibiotic Replacer in Japanese Eel, Anguilla Japonica: Effects on Growth, Immune Responses, Serological Characteristics and Disease Resistance against Edwardsiella Tarda. Aquacult Nutr. 2018, 24, 1034–1040. [Google Scholar] [CrossRef]
- Chowdhury, D.K.; Sahu, N.P.; Sardar, P.; Deo, A.D.; Bedekar, M.K.; Singha, K.P.; Maiti, M.K. Feeding Turmeric in Combination with Ginger or Garlic Enhances the Digestive Enzyme Activities, Growth and Immunity in Labeo Rohita Fingerlings. Anim. Feed. Sci. Technol. 2021, 277, 114964. [Google Scholar] [CrossRef]
- Bai, F.; Fan, C.; Lin, X.; Wang, H.Y.; Wu, B.; Feng, C.L.; Zhou, R.; Wu, Y.W.; Tang, W. Hemin Protects UVB-Induced Skin Damage through Inhibiting Keratinocytes Apoptosis and Reducing Neutrophil Infiltration. J. Photochem. Photobiol. B Biol. 2023, 238, 112604. [Google Scholar] [CrossRef]
- Dai, Y.; Cheng, X.; Yu, J.; Chen, X.; Xiao, Y.; Tang, F.; Li, Y.; Wan, S.; Su, W.; Liang, D. Hemin Promotes Corneal Allograft Survival Through the Suppression of Macrophage Recruitment and Activation. Investig. Ophthalmol. Vis. Sci. 2018, 59, 3952. [Google Scholar] [CrossRef]
- Ndisang, J.F.; Tiwari, S. Featured Article: Induction of Heme Oxygenase with Hemin Improves Pericardial Adipocyte Morphology and Function in Obese Zucker Rats by Enhancing Proteins of Regeneration. Exp. Biol. Med. 2015, 240, 45–57. [Google Scholar] [CrossRef]
- Zhong, W.; Xia, Z.; Hinrichs, D.; Rosenbaum, J.T.; Wegmann, K.W.; Meyrowitz, J.; Zhang, Z. Hemin Exerts Multiple Protective Mechanisms and Attenuates Dextran Sulfate Sodium–Induced Colitis. J. Pediatr. Gastroenterol. Nutr. 2010, 50, 132–139. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Y.; Han, L.; Guo, L.; Zhong, H.; Wang, J. Hemin Ameliorates Influenza Pneumonia by Attenuating Lung Injury and Regulating the Immune Response. Int. J. Antimicrob. Agents 2017, 49, 45–52. [Google Scholar] [CrossRef]
- Natarajan, R.; Fisher, B.J.; Fowler, A.A. Hypoxia Inducible Factor-1 Modulates Hemin-Induced IL-8 Secretion in Microvascular Endothelium. Microvasc. Res. 2007, 73, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Staroń, R.; Lipiński, P.; Lenartowicz, M.; Bednarz, A.; Gajowiak, A.; Smuda, E.; Krzeptowski, W.; Pieszka, M.; Korolonek, T.; Hamza, I.; et al. Dietary Hemoglobin Rescues Young Piglets from Severe Iron Deficiency Anemia: Duodenal Expression Profile of Genes Involved in Heme Iron Absorption. PLoS ONE 2017, 12, e0181117. [Google Scholar] [CrossRef] [PubMed]
- Ryter, S.W. Significance of Heme and Heme Degradation in the Pathogenesis of Acute Lung and Inflammatory Disorders. Int. J. Mol. Sci. 2021, 22, 5509. [Google Scholar] [CrossRef] [PubMed]
- Foresti, R.; Goatly, H.; Green, C.J.; Motterlini, R. Role of Heme Oxygenase-1 in Hypoxia-Reoxygenation: Requirement of Substrate Heme to Promote Cardioprotection. Am. J. Physiol. Heart Circ. Physiol. 2001, 281, H1976–H1984. [Google Scholar] [CrossRef] [PubMed]
- Jansen, T.; Hortmann, M.; Oelze, M.; Opitz, B.; Steven, S.; Schell, R.; Knorr, M.; Karbach, S.; Schuhmacher, S.; Wenzel, P.; et al. Conversion of Biliverdin to Bilirubin by Biliverdin Reductase Contributes to Endothelial Cell Protection by Heme Oxygenase-1—Evidence for Direct and Indirect Antioxidant Actions of Bilirubin. J. Mol. Cell. Cardiol. 2010, 49, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Sollid, J.; Rissanen, E.; Tranberg, H.K.; Thorstensen, T.; Vuori, K.A.M.; Nikinmaa, M.; Nilsson, G.E. HIF-1α and iNOS Levels in Crucian Carp Gills during Hypoxia-Induced Transformation. J. Comp. Physiol. B 2006, 176, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Yang, Y.; Liu, J.; Awan, F.; Lu, C.; Liu, Y. Inhibition of Aeromonas Hydrophila-Induced Intestinal Inflammation and Mucosal Barrier Function Damage in Crucian Carp by Oral Administration of Lactococcus lactis. Fish. Shellfish. Immunol. 2018, 83, 359–367. [Google Scholar] [CrossRef]
- Huang, M.; Wei, X.; Wu, T.; Li, M.; Zhou, L.; Chai, L.; Ruan, C.; Li, H. Inhibition of TNBS-Induced Intestinal Inflammation in Crucian Carp (Carassius carassius) by Oral Administration of Bioactive Bioactive Food Derived Peptides. Fish. Shellfish. Immunol. 2022, 131, 999–1005. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Z.; Li, S.; Ding, L.; Wei, X.; Han, S.; Wang, P.; Sun, Y. Multi-Omics Profiling and Biochemical Assays Reveal the Acute Toxicity of Environmental Related Concentrations of Di-(2-Ethylhexyl) Phthalate (DEHP) on the Gill of Crucian Carp (Carassius auratus). Chemosphere 2022, 307, 135814. [Google Scholar] [CrossRef]
- Choi, J.H.; Kim, J.H. Toxic Effects of Sub-Acute Microplastic (Polyamide) Exposure on the Accumulation, Hematological, and Antioxidant Responses in Crucian Carp, Carassius carassius. Environ. Toxicol. Pharmacol. 2023, 102, 104199. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y.; Zhou, D.; Li, Q.; Jiang, Z.; Zhang, J.; Qiao, G. Evaluation on the Effects of Phage Cocktail in Preventing Aeromonas veronii Infection in Gibel Carps (Carassius auratus Gibelio). Aquaculture 2023, 563, 738998. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, X.; Jin, J.; Han, D.; Zhu, X.; Liu, H.; Zhang, Z.; Yang, Y.; Xie, S. Effects of the Replacement of Dietary Fishmeal by the Blend of Tenebrio Molitor Meal, Chlorella Meal, Clostridium autoethanogenum Protein, and Cottonseed Protein Concentrate on Growth, Protein Utilization, and Intestinal Health of Gibel Carp (Carassius gibelio, CAS V). Aquac. Nutr. 2024, 2024, 1–18. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, P.; Wang, Z.; Lv, T.; Li, X.; Tian, H.; Zhang, Y.; Cang, P.; Chi, S.; Sun, Y.; et al. Dietary Poly-β-hydroxybutyrate Supplementation Can Effectively Improve Growth, Digestive Enzyme Activities, Immune-related Gene Expression, Disease Resistance, and Intestinal Mucosal Barrier of Gibel Carp, Carassius auratus Gibelio. J. World Aquaculture Soc. 2022, 53, 816–835. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.J.; Wang, L.; Jiang, K.Y. Influence of Several Non-Nutrient Additives on Nonspecific Immunity and Growth of Juvenile Turbot, Scophthalmus maximus L. Aquac. Nutr. 2008, 14, 387–395. [Google Scholar] [CrossRef]
- Lu, D.-L.; Limbu, S.M.; Lv, H.-B.; Ma, Q.; Chen, L.-Q.; Zhang, M.-L.; Du, Z.-Y. The Comparisons in Protective Mechanisms and Efficiencies among Dietary α-Lipoic Acid, β-Glucan and l-Carnitine on Nile Tilapia Infected by Aeromonas Hydrophila. Fish Shellfish. Immunol. 2019, 86, 785–793. [Google Scholar] [CrossRef]
- Gauy, A.C.D.S.; Bolognesi, M.C.; Gonçalves-de-Freitas, E. Body Tactile Stimulation Reduces the Effects of High Stocking Density on the Welfare of Nile Tilapia (Oreochromis niloticus). Fishes 2023, 8, 320. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists: Official Methods of Analysis of AOAC International, 21st ed.; AOAC: Washington, DC, USA, 2019. [Google Scholar]
- Liang, H.; Ren, M.; Zhang, L.; Mi, H.; Yu, H.; Huang, D.; Gu, J.; Teng, T. Excessive Replacement of Fish Meal by Soy Protein Concentrate Resulted in Inhibition of Growth, Nutrient Metabolism, Antioxidant Capacity, Immune Capacity, and Intestinal Development in Juvenile Largemouth Bass (Micropterus salmoides). Antioxidants 2024, 13, 809. [Google Scholar] [CrossRef]
- Stone, D.A.J.; Gaylord, T.G.; Johansen, K.A.; Overturf, K.; Sealey, W.M.; Hardy, R.W. Evaluation of the Effects of Repeated Fecal Collection by Manual Stripping on the Plasma Cortisol Levels, TNF-α Gene Expression, and Digestibility and Availability of Nutrients from Hydrolyzed Poultry and Egg Meal by Rainbow Trout, Oncorhynchus mykiss (Walbaum). Aquaculture 2008, 275, 250–259. [Google Scholar] [CrossRef]
- Yang, K.; Qi, X.; He, M.; Song, K.; Luo, F.; Qu, X.; Wang, G.; Ling, F. Dietary Supplementation of Salidroside Increases Immune Response and Disease Resistance of Crucian Carp (Carassius auratus) against Aeromonas hydrophila. Fish. Shellfish. Immunol. 2020, 106, 1–7. [Google Scholar] [CrossRef]
- Sun, L.; Wang, Q.; Wang, R.; Sun, K.; Li, S.; Lin, G.; Lei, P.; Xu, H. Effect of Dietary Poly-γ-Glutamic Acid on Growth, Digestive Enzyme Activity, Antioxidant Capacity, and TOR Pathway Gene Expression of Gibel Carp (Carassius auratus Gibelio). Aquac. Rep. 2022, 27, 101412. [Google Scholar] [CrossRef]
- Gu, Y.; Chen, K.; Xi, B.; Xie, J.; Bing, X. Protective Effects of Paeonol against Lipopolysaccharide-Induced Liver Oxidative Stress and Inflammation in Gibel Carp (Carassius auratus Gibelio). Comp. Biochem. Physiol. Part. C Toxicol. Pharmacol. 2022, 257, 109339. [Google Scholar] [CrossRef] [PubMed]
- Khieokhajonkhet, A.; Suwannalers, P.; Aeksiri, N.; Ratanasut, K.; Chitmanat, C.; Inyawilert, W.; Phromkunthong, W.; Kaneko, G. Effects of Dietary Red Pepper Extracts on Growth, Hematology, Pigmentation, Disease Resistance, and Growth- and Immune-Related Gene Expressions of Goldfish (Carassius auratus). Anim. Feed. Sci. Technol. 2023, 301, 115658. [Google Scholar] [CrossRef]
- Andersen, F.; Lorentzen, M.; Waagbø, R.; Maage, A. Bioavailability and Interactions with Other Micronutrients of Three Dietary Iron Sources in Atlantic Salmon, Salmo salar, Smolts. Aquac. Nutr. 1997, 3, 239–246. [Google Scholar] [CrossRef]
- Standal; Dehli; Rørvik; Andersen. Iron Status and Dietary Levels of Iron Affect the Bioavailability of Haem and Nonhaem Iron in Atlantic Salmon Salmo salar: Effect of Iron Status and Dietary Levels on the Bioavailability of Iron in Atlantic Salmon. Aquac. Nutr. 1999, 5, 193–198. [Google Scholar] [CrossRef]
- Feng, W.; Hu, X.Q.; Wang, F.C.; Huang, F.; Liu, L.; Li, H.; Liu, H.M.; Yang, W.M. Effect of Dietary Iron Levels on Growth, Iron Concentration in Tissues, and Blood Concentration Levels of Transferrin and Hepcidin in Bighead Carp (Aristichthys nobilis). Aquac. Res. 2020, 51, 1113–1119. [Google Scholar] [CrossRef]
- Musharraf, M.; Khan, M.A. Requirement of Fingerling Indian Major Carp, Labeo rohita (Hamilton) for Dietary Iron Based on Growth, Whole Body Composition, Haematological Parameters, Tissue Iron Concentration and Serum Antioxidant Status. Aquaculture 2019, 504, 148–157. [Google Scholar] [CrossRef]
- Song, Y.; Bu, X.; Huang, Q.; Wang, X.; Lin, Z.; Qiao, F.; Shi, Q.; Qin, J.; Chen, L. Evaluation of the Optimum Dietary Iron Level and Its Immunomodulatory Effects on Juvenile Chinese Mitten Crab, Eriocheir sinensis. Aquaculture 2021, 544, 737122. [Google Scholar] [CrossRef]
- Mao, X.; Chen, W.; Long, X.; Pan, X.; Liu, G.; Hu, W.; Gu, D.; Tan, Q. Effect of Dietary Iron (Fe) Level on Growth Performance and Health Status of Largemouth Bass (Micropterus salmoides). Aquaculture 2024, 581, 740446. [Google Scholar] [CrossRef]
- Ding, L.; Zhang, L.; Wang, J.; Ma, J.; Meng, X.; Duan, P.; Sun, L.; Sun, Y. Effect of Dietary Lipid Level on the Growth Performance, Feed Utilization, Body Composition and Blood Chemistry of Juvenile Starry Flounder (Platichthys stellatus). Aquac. Res. 2009, 21, 100797. Available online: https://onlinelibrary.wiley.com/doi/10.1111/j.1365-2109.2009.02440.x (accessed on 6 July 2024). [CrossRef]
- Yi, C.; Huang, D.; Yu, H.; Gu, J.; Liang, H.; Ren, M. Enzymatically Hydrolyzed Poultry By-Product Supplementation, Instead of Fishmeal, Alone Improves the Quality of Largemouth Bass (Micropterus salmoides) Back Muscle without Compromising Growth. Foods 2023, 12, 3485. [Google Scholar] [CrossRef]
- Huang, D.; Zhu, J.; Zhang, L.; Ge, X.; Ren, M.; Liang, H. Dietary Supplementation with Eucommia Ulmoides Leaf Extract Improved the Intestinal Antioxidant Capacity, Immune Response, and Disease Resistance against Streptococcus agalactiae in Genetically Improved Farmed Tilapia (GIFT.; Oreochromis niloticus). Antioxidants 2022, 11, 1800. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Liang, H.; Xu, P.; Xu, G.; Zhang, L.; Wang, Y.; Ren, M.; Chen, X. Effects of Enzymatic Cottonseed Protein Concentrate as a Feed Protein Source on the Growth, Plasma Parameters, Liver Antioxidant Capacity and Immune Status of Largemouth Bass (Micropterus salmoides). Metabolites 2022, 12, 1233. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Jiang, G.; Cheng, H.; Cao, X.; Shi, H.; Liu, W. An Evaluation of Replacing Fish Meal with Cottonseed Meal Protein Hydrolysate in Diet for Juvenile Blunt Snout Bream (Megalobrama amblycephala): Growth, Antioxidant, Innate Immunity and Disease Resistance. Aquacult. Nutr. 2019, 25, 1334–1344. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, Y.; Li, X.; Han, T.; Yang, Y.; Hu, S.; Yang, M. Dietary Protein Requirement of Juvenile Red Spotted Grouper (Epinephelus akaara). Aquaculture 2016, 450, 289–294. [Google Scholar] [CrossRef]
- Afshari, A.; Sourinejad, I.; Gharaei, A.; Johari, S.A.; Ghasemi, Z. The Effects of Diet Supplementation with Inorganic and Nanoparticulate Iron and Copper on Growth Performance, Blood Biochemical Parameters, Antioxidant Response and Immune Function of Snow Trout Schizothorax zarudnyi (Nikolskii, 1897). Aquaculture 2021, 539, 736638. [Google Scholar] [CrossRef]
- Thangapandiyan, S.; Alif Alisha, A.S.; Anidha, K. Growth Performance, Hematological and Biochemical Effects of Iron Oxide Nanoparticles in Labeo rohita. Biocatal. Agric. Biotechnol. 2020, 25, 101582. [Google Scholar] [CrossRef]
- Ju, T.J.; Kwon, W.Y.; Kim, Y.W.; Kim, J.Y.; Kim, Y.D.; Lee, I.K.; Park, S.Y. Hemin Improves Insulin Sensitivity in Skeletal Muscle in High Fat–Fed Mice. J. Pharmacol. Sci. 2014, 126, 115–125. [Google Scholar] [CrossRef]
- Luan, Y.; Zhang, F.; Cheng, Y.; Liu, J.; Huang, R.; Yan, M.; Wang, Y.; He, Z.; Lai, H.; Wang, H.; et al. Hemin Improves Insulin Sensitivity and Lipid Metabolism in Cultured Hepatocytes and Mice Fed a High-Fat Diet. Nutrients 2017, 9, 805. [Google Scholar] [CrossRef]
- Sadasivam, N.; Kim, Y.-J.; Radhakrishnan, K.; Kim, D.-K. Oxidative Stress, Genomic Integrity, and Liver Diseases. Molecules 2022, 27, 3159. [Google Scholar] [CrossRef]
- Allameh, A.; Niayesh-Mehr, R.; Aliarab, A.; Sebastiani, G.; Pantopoulos, K. Oxidative Stress in Liver Pathophysiology and Disease. Antioxidants 2023, 12, 1653. [Google Scholar] [CrossRef]
- Yang, G.; Yu, R.; Qiu, H.; Wu, H.; Yan, Q.; Chen, W.; Ding, L.; Kumar, V.; Wen, C.; Peng, M. Beneficial Effects of Emodin and Curcumin Supplementation on Antioxidant Defence Response, Inflammatory Response and Intestinal Barrier of Pengze Crucian Carp (Carassius auratus Var. Pengze). Aquacult. Nutr. 2020, 26, 1958–1969. [Google Scholar] [CrossRef]
- Zhou, Y.; Jiang, Z.; Lu, H.; Xu, Z.; Tong, R.; Shi, J.; Jia, G. Recent Advances of Natural Polyphenols Activators for Keap1-Nrf2 Signaling Pathway. Chem. Biodivers. 2019, 16, e1900400. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q. Role of Nrf2 in Oxidative Stress and Toxicity. Annu. Rev. Pharmacol. Toxicol. 2013, 53, 401–426. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, M.; Itoh, K.; Suzuki, T.; Osanai, H.; Nishikawa, K.; Katoh, Y.; Takagi, Y.; Yamamoto, M. Identification of the Interactive Interface and Phylogenic Conservation of the Nrf2-Keap1 System. Genes. Cells 2002, 7, 807–820. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liu, H.; Liu, S.; Zhang, Z.; Li, X.; Mao, J. Excessive Dietary Iron Exposure Increases the Susceptibility of Largemouth Bass (Micropterus salmoides) to Aeromonas Hydrophila by Interfering with Immune Response, Oxidative Stress, and Intestinal Homeostasis. Fish. Shellfish. Immunol. 2024, 147, 109430. [Google Scholar] [CrossRef]
- Fontagné-Dicharry, S.; Lataillade, E.; Surget, A.; Larroquet, L.; Cluzeaud, M.; Kaushik, S. Antioxidant Defense System Is Altered by Dietary Oxidized Lipid in First-Feeding Rainbow Trout (Oncorhynchus mykiss). Aquaculture 2014, 424–425, 220–227. [Google Scholar] [CrossRef]
- Busch, C.J.; Binder, C.J. Malondialdehyde Epitopes as Mediators of Sterile Inflammation. Biochim. Et. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2017, 1862, 398–406. [Google Scholar] [CrossRef]
- Jomova, K.; Valko, M. Importance of Iron Chelation in Free Radical-Induced Oxidative Stress and Human Disease. CPD 2011, 17, 3460–3473. [Google Scholar] [CrossRef]
- Katschinski, D.M.; Le, L.; Heinrich, D.; Wagner, K.F.; Hofer, T.; Schindler, S.G.; Wenger, R.H. Heat Induction of the Unphosphorylated Form of Hypoxia-Inducible Factor-1α Is Dependent on Heat Shock Protein-90 Activity. J. Biol. Chem. 2002, 277, 9262–9267. [Google Scholar] [CrossRef]
- Lin, Y.; Miao, L.H.; Zhang, W.X.; Pan, W.J.; Liang, H.L.; Ge, X.P.; Xu, Y.S.; Liu, B.; Ren, M.C.; Zhou, Q.L.; et al. Effect of Nitrite Exposure on Oxygen-Carrying Capacity and Gene Expression of NF-κB/HIF-1α Pathway in Gill of Bighead Carp (Aristichthys nobilis). Aquacult. Int. 2018, 26, 899–911. [Google Scholar] [CrossRef]
- Jung, Y.J.; Isaacs, J.S.; Lee, S.; Trepel, J.; Neckers, L. IL-1β Mediated Up-regulation of HIF-lα via an NFkB/COX-2 Pathway Identifies HIF-1 as a Critical Link between Inflammation and Oncogenesis. FASEB J. 2003, 17, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Metzen, E.; Zhou, J.; Jelkmann, W.; Fandrey, J. Nitric Oxide Impairs Normoxic Degradation of HIF-1α by Inhibition of Prolyl Hydroxylases. Mol. Biol. Cell 2003, 14, 3470–3481. [Google Scholar] [CrossRef] [PubMed]
- Guven Bagla, A.; Ercan, E.; Asgun, H.F.; Ickin, M.; Ercan, F.; Yavuz, O.; Bagla, S.; Kaplan, A. Experimental Acute Myocardial Infarction in Rats: HIF-1α, Caspase-3, Erythropoietin and Erythropoietin Receptor Expression and the Cardioprotective Effects of Two Different Erythropoietin Doses. Acta Histochem. 2013, 115, 658–668. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, K.; Tokida, M.; Katsuyama, H.; Nakagawa, H.; Matsuo, S. The Effect of Hemin-induced Oxidative Stress on Erythropoietin Production in HepG2 Cells. Cell Biol. Int. 2014, 38, 1321–1329. [Google Scholar] [CrossRef] [PubMed]
- Cisowski, J.; Łoboda, A.; Agarwal, A. Role of Heme Oxygenase-1 in Hydrogen Peroxide-Induced VEGF Synthesis: Effect of HO-1 Knockout. Biochem. Biophys. Res. Commun. 2005, 326, 670–676. [Google Scholar] [CrossRef]
- Wong, C.; Wellman, T.L.; Lounsbury, K.M. VEGF and HIF-1α Expression Are Increased in Advanced Stages of Epithelial Ovarian Cancer. Gynecol. Oncol. 2003, 91, 513–517. [Google Scholar] [CrossRef]
- Jazwa, A.; Loboda, A.; Golda, S.; Cisowski, J.; Szelag, M.; Zagorska, A.; Sroczynska, P.; Drukala, J.; Jozkowicz, A.; Dulak, J. Effect of Heme and Heme Oxygenase-1 on Vascular Endothelial Growth Factor Synthesis and Angiogenic Potency of Human Keratinocytes. Free. Radic. Biol. Med. 2006, 40, 1250–1263. [Google Scholar] [CrossRef]
- Gao, F.; Zhao, Y.; Shi, X.; Qiao, D.; Pei, C.; Kong, X. Signalling Regulation of Reactive Oxygen Species in Fish Inflammation. Rev. Aquac. 2024, 16, 1266–1285. [Google Scholar] [CrossRef]
- He, K.; Huang, R.; Cheng, L.; Liu, Q.; Zhang, Y.; Yan, H.; Hu, Y.; Zhao, L.; Yang, S. Effects of Dietary Nano-Iron on Growth, Hematological Parameters, Immune Antioxidant Response, and Hypoxic Tolerance in Juvenile Largemouth Bass (Micropterus salmoides). Aquac. Rep. 2023, 33, 101759. [Google Scholar] [CrossRef]
- Wu, Y.; Guo, M.; Hua, X.; Duan, K.; Lian, G.; Sun, L.; Tang, L.; Xu, Y.; Liu, M.; Li, Y. The Role of Infectious Hematopoietic Necrosis Virus (IHNV) Proteins in the Modulation of NF-κB Pathway during IHNV Infection. Fish. Shellfish. Immunol. 2017, 63, 500–506. [Google Scholar] [CrossRef]
Ingredients (g/kg) | Level (%) | Ingredients (g/kg) | Level (%) |
---|---|---|---|
Fish meal 1 | 14.00 | Calcium dihydrogen phosphate | 2.00 |
Chicken meal 1 | 4.00 | Vitamin premix 2 | 0.20 |
Soybean meal 1 | 22.00 | Mineral premix 2 | 2.00 |
Cottonseed meal 1 | 5.00 | Lysine 3 | 0.30 |
Rapeseed meal | 22.00 | Methionine 3 | 0.10 |
Wheat flour 1 | 14.15 | L-Ascorbate-2-monophosphate | 0.05 |
Rice bran | 10.00 | Choline chloride | 0.20 |
Soybean oil | 4.00 | ||
Analyzed proximate composition (dry matter) | |||
Crude protein (%) | 39.94 ± 0.29 | ||
Crude lipid (%) | 7.63 ± 0.39 | ||
Crude ash (%) | 10.02 ± 0.09 | ||
Dry matter (%) | 92.27 ± 0.12 | ||
Energy (KJ) | 13.75 ± 0.189 |
Gene | Forward Primer (5′-3′) | Reverse Primer (5′-3′) | R2 (%) | PCR Efficiency | Accession Number/Reference |
---|---|---|---|---|---|
1 β-actin | GATGATGAAATTGCCGCACTG | ACCGACCATGACGCCCTGATGT | 99.8 | 101.3 | Yang [40] |
2 keap1 | CTCCGCTGAATGCTACAA | GGTCATAACACTCCACACT | 99.7 | 104.8 | XM_026245355.1 |
3 nrf2 | TACCAAAGACAAGCAGAAGAAACG | GCCTCGTTGAGCTGGTGTTTGG | 99.6 | 100.5 | Sun et al. [41] |
4 sod | TCGGAGACCTTGGTAATGT | CGCCTTCTCATGGATCAC | 99.3 | 104.4 | JQ776518.1 |
5 cat | TGAAGTTCTACACCGATGAG | CTGAGAGTGGACGAAGGA | 99.1 | 101.9 | XM_026238665.1 |
6 gpx | GAAGTGAACGGTGTGAACGC | GATCCCCCATCAAGGACACG | 99.5 | 97.9 | DQ983598.1 |
7 nf-kb | GCTCTGACTGCGGTCTTATAC | GCGCTTCATCGAGGATAGTT | 99.3 | 102.5 | Gu et al. [42] |
8 tgf-β | GTTGGCGTAATAACCAGAAGG | AACAGAACAAGTTTGTACCGATAAG | 99.6 | 99.0 | Yang [40] |
9 il-10 | AGTGAGACTGAAGGAGCTCCG | TGGCAGAATGGTGTCCAAGTA | 99.7 | 101.8 | KHIEOKHAJONKHET [43] |
10 il-6 | CGGAGGGGCTTAACAGGATG | GCTGGCTCAGGAATGGGTAT | 99.0 | 102.9 | DQ861993.1 |
11 tnf-α | CATTCCTACGGATGGCATTTACTT | CCTCAGGAATGTCAGTCTTGCAT | 99.7 | 98.1 | Yang [40] |
12 il-1β | GCGCTGCTCAACTTCATCTTG | GTGACACATTAAGCGGCTTCA C | 99.4 | 101.3 | Yang [40] |
13 hif-1α | CTGCCGATCAGTCTGTCTCC | TTTGTGGAGTCTGGACCACG | 99.8 | 105 | DQ306727. |
14 epo | CGAAGTGTCAGCATACCGGA | GCAGATGACGCACTTTTCCC | 99.0 | 101.9 | KC460317.1 |
15 vegf | ATCGAGCACACGTACATCCC | CCTTTGGCCTGCATTCACAC | 99.0 | 102.8 | NM_131408.3 |
16 et1 | TAAAGCAGCGTCAGACAGGG | CTGCCAGCTTGTGTTTGCAT | 99.5 | 99.6 | NM_131519.1 |
Dietary FPR Level (%) | 1 IW (g) | 2 FW (g) | 3 WGR (%) | 4 SGR (%/d) | 5 FCR | 6 SR (%) |
---|---|---|---|---|---|---|
0 | 36.4 ± 0.07 | 87.0 ± 2.18 | 140 ± 5.76 | 0.94 ± 0.03 | 1.21 ± 0.05 | 100 ± 0.00 |
0.01 | 36.3 ± 0.08 | 89.3 ± 4.45 | 146 ± 12.67 | 0.96 ± 0.05 | 1.17 ± 0.09 | 100 ± 0.00 |
0.02 | 36.4 ± 0.12 | 89.7 ± 0.72 | 147± 2.21 | 0.97 ± 0.01 | 1.15 ± 0.01 | 100 ± 0.00 |
0.03 | 36.4 ± 0.16 | 90.7 ± 1.04 | 149 ± 1.94 | 0.98 ± 0.01 | 1.13 ± 0.02 | 100 ± 0.00 |
0.04 | 36.4 ± 0.11 | 84.2 ± 2.76 | 131 ± 7.04 | 0.90 ± 0.03 | 1.29 ± 0.07 | 100 ± 0.00 |
Dietary FPR Level (%) | Moisture (%) | Protein (%) | Lipid (%) | Ash (%) |
---|---|---|---|---|
0 | 74.2 ± 1.23 a | 16.6 ± 0.13 | 2.2 ± 0.27 ab | 4.8 ± 0.21 |
0.01 | 75.3 ± 0.50 ab | 15.9 ± 0.31 | 2.5 ± 0.63 ab | 4.8 ± 0.08 |
0.02 | 75.1 ± 0.53 ab | 15.2 ± 0.89 | 3.1 ± 0.48 b | 4.8 ± 0.08 |
0.03 | 77.2 ± 0.42 b | 15.4 ± 0.21 | 1.3 ± 0.13 a | 4.6 ± 0.16 |
0.04 | 74.3 ± 0.66 a | 16.3 ± 0.35 | 3.0 ± 0.85 ab | 4.8 ± 0.07 |
Parameters | Supplement Levels (%) | ||||
---|---|---|---|---|---|
0 | 0.01 | 0.02 | 0.03 | 0.04 | |
1 ALB(mmol/L) | 7.7 ± 0.43 a | 8.5 ± 0.13 b | 8.23 ± 0.21 ab | 7.6 ± 0.24 a | 8.3 ± 0.21 ab |
2 ALT(U/L) | 0.78 ± 0.10 a | 0.82 ± 0.20 ab | 0.90 ± 0.13 ab | 1.27 ± 0.16 b | 1.14 ± 0.10 ab |
3 AST(U/L) | 135 ± 6.21 a | 137 ± 6.54 a | 137 ± 7.99 a | 143 ± 6.48 a | 169 ± 7.63 b |
4 TC(mmol/L) | 5.7 ± 0.12 b | 6.2 ± 0.16 c | 5.7 ± 0.06 b | 5.5 ± 0.11 b | 5.2 ± 0.12 a |
5 TG (mmol/L) | 1.35 ± 0.06 a | 1.26 ± 0.03 ab | 1.23 ± 0.03 ab | 1.21 ± 0.04 b | 1.16 ± 0.05 b |
6 GLU(mmol/L) | 8.95 ± 0.26 ab | 9.19 ± 0.44 a | 8.29 ± 0.13 b | 6.81± 0.29 c | 6.98 ± 0.16 c |
7 TP(g/ L) | 26.7 ± 0.76 a | 28.4 ± 0.53 b | 26.1 ± 0.38 a | 25.8 ± 0.44 a | 26.2 ± 0.64 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Zhang, L.; Liang, H.; Ren, M.; Mi, H.; Huang, D.; Gu, J. Effects of Dietary Ferroporphyrin Supplementation on Growth Performance, Antioxidant Capacity, Immune Response, and Oxygen-Carrying Capacity in Gibel Carp (Carassius auratus gibelio). Animals 2024, 14, 3104. https://doi.org/10.3390/ani14213104
Wang K, Zhang L, Liang H, Ren M, Mi H, Huang D, Gu J. Effects of Dietary Ferroporphyrin Supplementation on Growth Performance, Antioxidant Capacity, Immune Response, and Oxygen-Carrying Capacity in Gibel Carp (Carassius auratus gibelio). Animals. 2024; 14(21):3104. https://doi.org/10.3390/ani14213104
Chicago/Turabian StyleWang, Kai, Lu Zhang, Hualiang Liang, Mingchun Ren, Haifeng Mi, Dongyu Huang, and Jiaze Gu. 2024. "Effects of Dietary Ferroporphyrin Supplementation on Growth Performance, Antioxidant Capacity, Immune Response, and Oxygen-Carrying Capacity in Gibel Carp (Carassius auratus gibelio)" Animals 14, no. 21: 3104. https://doi.org/10.3390/ani14213104
APA StyleWang, K., Zhang, L., Liang, H., Ren, M., Mi, H., Huang, D., & Gu, J. (2024). Effects of Dietary Ferroporphyrin Supplementation on Growth Performance, Antioxidant Capacity, Immune Response, and Oxygen-Carrying Capacity in Gibel Carp (Carassius auratus gibelio). Animals, 14(21), 3104. https://doi.org/10.3390/ani14213104