Crude Garden Cress Seed Oil (Lepidium sativum Linn.) Enhances Post-Thawed Boar Sperm Quality
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal
2.2. Chemicals and Extenders
2.3. Fatty Acid Determination
2.4. Amino Acid Determination
2.5. Polyphenol Determination
2.6. Assessment of Total Antioxidant Activity (Seed and Oil)
2.7. Semen Collection and Preparation
2.8. Semen Freezing and Thawing Process
2.9. Assessment of Sperm Motility
2.10. Assessment of Sperm Viability
2.11. Assessment of Acrosome Integrity
2.12. Assessment of Mitochondrial Membrane Potential
2.13. Assessment of Lipid Peroxidation
2.14. Assessment of Total Antioxidant Capacity
2.15. Assessment of Glutathione Peroxidase Activity
2.16. Assessment of Catalase Activity
2.17. Evaluation of Sperm Morphology by Scanning Electron Microscopy (SEM)
2.18. Statistical Analysis
3. Results
3.1. Fatty Acid Determination
3.2. Amino Acid Determination
3.3. In Vitro Antioxidant Activity of Seed and CGCSO Determination
3.4. Effects of CGCSO on Sperm Motility
3.5. Effects of CGCSO on Sperm Viability
3.6. Effects of CGCSO on Sperm Acrosome Integrity
3.7. Effects of CGCSO on Mitochondrial Membrane Potential
3.8. Effects of CGCSO on Lipid Peroxidation
3.9. Effects of CGCSO on Total Antioxidant Capacity
3.10. Effects of CGCSO on Sperm GSH-Px and CAT Activity
3.11. Effects of CGCSO on Sperm Morphology
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yeste, M. Sperm cryopreservation update: Cryodamage, markers, and factors affecting the sperm freezability in pigs. Theriogenology 2016, 85, 47–64. [Google Scholar] [CrossRef] [PubMed]
- Bwanga, C.O. Cryopreservation of boar semen. I: A literature review. Acta Vet. Scand. 1991, 32, 431–453. [Google Scholar] [CrossRef] [PubMed]
- Yeste, M.; Barrera, X.; Coll, D.; Bonet, S. The effects on boar sperm quality of dietary supplementation with omega-3 polyunsaturated fatty acids differ among porcine breeds. Theriogenology 2011, 76, 184–196. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, K.E.; Hofmo, P.O.; Tverdal, A.; Miller, R.R., Jr. Within and between breed differences in freezing tolerance and plasma membrane fatty acid composition of boar sperm. Reproduction 2006, 131, 887–894. [Google Scholar] [CrossRef]
- Strzezek, J.; Fraser, L.; Kuklińska, M.; Dziekońska, A.; Lecewicz, M. Effects of dietary supplementation with polyunsaturated fatty acids and antioxidants on biochemical characteristics of boar semen. Reprod. Biol. 2004, 4, 271–287. [Google Scholar]
- Collodel, G.; Castellini, C.; Lee, J.C.; Signorini, C. Relevance of Fatty Acids to Sperm Maturation and Quality. Oxid. Med. Cell Longev. 2020, 2020, 7038124. [Google Scholar] [CrossRef]
- Kaeoket, K.; Chanapiwat, P.; Tummaruk, P.; Techakumphu, M. Supplemental effect of varying L-cysteine concentrations on the quality of cryopreserved boar semen. Asian J. Androl. 2010, 12, 760–765. [Google Scholar] [CrossRef]
- Khophloiklang, V.; Chanapiwat, P.; Aunpad, R.; Kaeoket, K. Palm kernel meal protein hydrolysates enhance post-thawed boar sperm quality. Animals 2023, 13, 3040. [Google Scholar] [CrossRef]
- Liu, G.; Pan, B.; Li, S.; Ren, J.; Wang, B.; Wang, C.; Su, X.; Dai, Y. Effect of bioactive peptide on ram semen cryopreservation. Cryobiology 2020, 97, 153–158. [Google Scholar] [CrossRef]
- Chanapiwat, P.; Kaeoket, K. The effect of Curcuma longa extracted (curcumin) on the quality of cryopreserved boar semen. Anim. Sci. J. 2015, 86, 863–868. [Google Scholar] [CrossRef]
- Kaeoket, K.; Chanapiwat, P. The Beneficial effect of resveratrol on the quality of frozen-thawed boar sperm. Animals 2023, 13, 2829. [Google Scholar] [CrossRef] [PubMed]
- Kaeoket, K.; Chanapiwat, P. DHA Analysis in different types of egg yolks: Its possibility of being a DHA source for boar semen cryopreservation. Thai J. Vet. Med. 2013, 43, 119–123. [Google Scholar] [CrossRef]
- Silva, E.; Cardoso, T.; Junior, A.; Dutra, F.; Leite, F.; Corcini, C. Olive oil as an alternative to boar semen cryopreservation. Ces. Med. Vet. 2016, 11, 8–14. [Google Scholar] [CrossRef]
- Khophloiklang, V.; Chanapiwat, P.; Kaeoket, K. Camellia oil with its rich in fatty acids enhances post-thawed boar sperm quality. Acta Vet. Scand. 2024, 66, 6. [Google Scholar] [CrossRef]
- Chanapiwat, P.; Kaeoket, K. Cryopreservation of boar semen: Where we are. Thai J. Vet. Med. 2020, 50, 283–295. [Google Scholar] [CrossRef]
- Sharma, S.; Agarwal, N. Nourishing and healing prowess of garden cress (Lepidium sativum Linn.)—A review. Indian J. Nat. Prod. Resour. 2011, 2, 292–297. [Google Scholar]
- Aboelmaati, M.; Hassanien, M.; Labib, S.; Al-Gaby, A. Antioxidant and antibactirial properties of gifference extracts of garden cress (Lepidium sativum L.). Zagazig J. Agric. Res. 2016, 43, 1685–1697. [Google Scholar]
- Rehman, N.U.; Mehmood, M.H.; Alkharfy, K.M.; Gilani, A.H. Studies on antidiarrheal and antispasmodic activities of Lepidium sativum crude extract in rats. Phytother. Res. 2012, 26, 136–141. [Google Scholar] [CrossRef]
- Diwakar, B.T.; Dutta, P.K.; Lokesh, B.R.; Naidu, K.A. Bio-availability and metabolism of n-3 fatty acid rich garden cress (Lepidium sativum) seed oil in albino rats. Prostaglandins Leukot. Essent. Fat. Acids 2008, 78, 123–130. [Google Scholar] [CrossRef]
- Thongrueang, N.C.; Chanapiwat, P.; Kaeoket, K. Effects of adding melatonin on the quality of frozen-thawed boar semen. J. App. Anim. Sci. 2017, 10, 47–56. [Google Scholar]
- On-Nom, N.; Promdang, P.; Inthachat, W.; Kanoongon, P.; Sahasakul, Y.; Chupeerach, C.; Suttisansanee, U.; Temviriyanukul, P. Wolffia globosa-Based Nutritious Snack Formulation with High Protein and Dietary Fiber Contents. Foods 2023, 12, 2647. [Google Scholar] [CrossRef] [PubMed]
- Çevikkalp, S.A.; Löker, G.B.; Yaman, M.; Amoutzopoulos, B. A simplified HPLC method for determination of tryptophan in some cereals and legumes. Food Chem. 2016, 193, 26–29. [Google Scholar] [CrossRef]
- Lu, J.; Zhao, H.; Chen, J.; Fan, W.; Dong, J.; Kong, W.; Sun, J.; Cao, Y.; Cai, G. Evolution of phenolic compounds and antioxidant activity during malting. J. Agric. Food Chem. 2007, 55, 10994–11001. [Google Scholar] [CrossRef]
- Katsube, T.; Tabata, H.; Ohta, Y.; Yamasaki, Y.; Anuurad, E.; Shiwaku, K.; Yamane, Y. Screening for antioxidant activity in edible plant products: comparison of low-density lipoprotein oxidation assay, DPPH radical scavenging assay, and folin−ciocalteu assay. J. Agric. Food Chem. 2004, 52, 2391–2396. [Google Scholar] [CrossRef]
- Prior, R.L.; Hoang, H.; Gu, L.; Wu, X.; Bacchiocca, M.; Howard, L.; Hampsch-Woodill, M.; Huang, D.; Ou, B.; Jacob, R. Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORACFL)) of plasma and other biological and food samples. J. Agric. Food Chem. 2003, 51, 3273–3279. [Google Scholar] [CrossRef]
- Kaeoket, K.; Donto, S.; Nualnoy, P.; Noiphinit, J.; Chanapiwat, P. Effect of gamma-oryzanol-enriched rice bran oil on quality of cryopreserved boar semen. J. Vet. Med. Sci. 2012, 74, 1149–1153. [Google Scholar] [CrossRef]
- Shi, L.; Zhang, Y.; Huang, X.; Shi, M.; Sun, D.; Zhang, Y.; Li, W.; Jin, T.; Feng, J.; Xing, J.; et al. Effects of mitoquinone (MitoQ) supplementation during boar semen cryopreservation on sperm quality, antioxidant status and mitochondrial proteomics. Anim. Reprod. Sci. 2022, 247, 107099. [Google Scholar] [CrossRef] [PubMed]
- Bonet, S.; Delgado-Bermúdez, A.; Yeste, M.; Pinart, E. Study of boar sperm interaction with Escherichia coli and Clostridium perfringens in refrigerated semen. Anim. Reprod. Sci. 2018, 197, 134–144. [Google Scholar] [CrossRef]
- Ribas-Maynou, J.; Mateo-Otero, Y.; Delgado-Bermúdez, A.; Bucci, D.; Tamanini, C.; Yeste, M.; Barranco, I. Role of exogenous antioxidants on the performance and function of pig sperm after preservation in liquid and frozen states: A systematic review. Theriogenology 2021, 173, 279–294. [Google Scholar] [CrossRef]
- Yuan, C.; Wang, J.; Lu, W. Regulation of semen quality by fatty acids in diets, extender, and semen. Front. Vet. Sci. 2023, 10, 1119153. [Google Scholar] [CrossRef]
- Hossain, M.S.; Tareq, K.; Hammano, K.I.; Tsujii, H. Effect of fatty acids on boar sperm motility, viability and acrosome reaction. Reprod. Med. Biol. 2007, 6, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Li, R.; Feng, C.; Liu, R.; Zheng, Y.; Hoque, S.A.M.; Wu, D.; Lu, H.; Zhang, T.; Zeng, W. Exogenous Oleic acid and Palmitic acid improve boar sperm motility via enhancing mitochondrial Β-oxidation for ATP Generation. Animals 2020, 10, 591. [Google Scholar] [CrossRef] [PubMed]
- Eslami, M.; Ghaniei, A.; Mirzaei Rad, H. Effect of the rooster semen enrichment with oleic acid on the quality of semen during chilled storage. Poult. Sci. 2016, 95, 1418–1424. [Google Scholar] [CrossRef]
- Khalil, W.A.; Hassan, M.A.E.; Attia, K.A.A.; El-Metwaly, H.A.; El-Harairy, M.A.; Sakr, A.M.; Abdelnour, S.A. Effect of olive, flaxseed, and grape seed nano-emulsion essential oils on semen buffalo freezability. Theriogenology 2023, 212, 9–18. [Google Scholar] [CrossRef]
- Naji, N.S. Changes in sperm parameters of adult male rabbits by phenol extract of Lepidium sativum seeds. J. Nat. Sci. Res. 2013, 3, 17–22. [Google Scholar]
- El-Gindy, Y.M.; Zahran, S.M.; Ahmed, M.H.; Idres, A.Y.; Aboolo, S.H.; Morshedy, S.A. Reproductive performance and milk yield of rabbits fed diets supplemented with garden cress (Lepidium sativum) seed. Sci. Rep. 2022, 12, 17083. [Google Scholar] [CrossRef]
- Azene, M.; Habte, K.; Tkuwab, H. Nutritional, health benefits and toxicity of underutilized garden cress seeds and its functional food products: A review. Food Prod. Process Nutr. 2022, 4, 33. [Google Scholar] [CrossRef]
- Zia-Ul-Haq, M.; Ahmad, S.; Calani, L.; Mazzeo, T.; Del Rio, D.; Pellegrini, N.; De Feo, V. Compositional study and antioxidant potential of Ipomoea hederacea Jacq. and Lepidium sativum L. seeds. Molecules 2012, 17, 10306–10321. [Google Scholar] [CrossRef]
- Liu, C.; Feng, H.; Han, J.; Zhou, H.; Yuan, L.; Pan, H.; Wang, X.; Han, X.; Qiao, R.; Yang, F.; et al. Effect of L-proline on sperm quality during cryopreservation of boar semen. Anim. Reprod. Sci. 2023, 258, 107359. [Google Scholar] [CrossRef]
- Jin, H.; Choi, W.; Matsumura, K.; Hyon, S.H.; Gen, Y.; Hayashi, M.; Kawabata, T.; Ijiri, M.; Miyoshi, K. Cryopreservation of pig spermatozoa using carboxylated poly-L-lysine as cryoprotectant. J. Reprod. Dev. 2022, 68, 312–317. [Google Scholar] [CrossRef]
- Ren, B.; Cheng, X.; Wu, D.; Xu, S.Y.; Che, L.Q.; Fang, Z.F.; Lv, G.; Dong, H.J.; Lin, Y. Effect of different amino acid patterns on semen quality of boars fed with low-protein diets. Anim. Reprod. Sci. 2015, 161, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.J.; Wu, D.; Xu, S.Y.; Li, Q.; Fang, Z.F.; Che, L.Q.; Wu, C.M.; Xu, X.Y.; Lin, Y. Effect of dietary supplementation with amino acids on boar sperm quality and fertility. Anim. Reprod. Sci. 2016, 172, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.Q.; Li, Y.S.; Li, Z.J.; Lu, H.X.; Zhu, P.Q.; Li, C.M. Dietary l-arginine supplementation improves semen quality and libido of boars under high ambient temperature. Animal 2018, 12, 1611–1620. [Google Scholar] [CrossRef]
- Trimeche, A.; Yvon, J.M.; Vidament, M.; Palmer, E.; Magistrini, M. Effects of glutamine, proline, histidine and betaine on post-thaw motility of stallion spermatozoa. Theriogenology 1999, 52, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Heber, U.; Tyankova, L.; Santarius, K.A. Stabilization and inactivation of biological membranes during freezing in the presence of amino acids. Biochim. Biophys. Acta 1971, 241, 578–592. [Google Scholar] [CrossRef]
- Renard, P.; Grizard, G.; Griveau, J.F.; Sion, B.; Boucher, D.; Le Lannou, D. Improvement of motility and fertilization potential of postthaw human sperm using glutamine. Cryobiology 1996, 33, 311–319. [Google Scholar] [CrossRef]
- Sangeeta, S.; Arangasamy, A.; Kulkarni, S.; Selvaraju, S. Role of amino acids as additives on sperm motility, plasma membrane integrity and lipid peroxidation levels at pre-freeze and post-thawed ram semen. Anim. Reprod. Sci. 2015, 161, 82–88. [Google Scholar] [CrossRef]
- Rudolph, A.S.; Crowe, J.H.; Crowe, L.M. Effects of three stabilizing agents--proline, betaine, and trehalose--on membrane phospholipids. Arch. Biochem. Biophys. 1986, 245, 134–143. [Google Scholar] [CrossRef]
- Amirat-Briand, L.; Bencharif, D.; Vera-Munoz, O.; Bel Hadj Ali, H.; Destrumelle, S.; Desherces, S.; Schmidt, E.; Anton, M.; Tainturier, D. Effect of glutamine on post-thaw motility of bull spermatozoa after association with LDL (low density lipoproteins) extender: Preliminary results. Theriogenology 2009, 71, 1209–1214. [Google Scholar] [CrossRef]
- Khlifaoui, M.; Battut, I.; Bruyas, J.F.; Chatagnon, G.; Trimeche, A.; Tainturier, D. Effects of glutamine on post-thaw motility of stallion spermatozoa: An approach of the mechanism of action at spermatozoa level. Theriogenology 2005, 63, 138–149. [Google Scholar] [CrossRef]
- Curi, R.; Lagranha, C.J.; Doi, S.Q.; Sellitti, D.F.; Procopio, J.; Pithon-Curi, T.C.; Corless, M.; Newsholme, P. Molecular mechanisms of glutamine action. J. Cell Physiol. 2005, 204, 392–401. [Google Scholar] [CrossRef] [PubMed]
- Karami, Z.; Akbari-Adergani, B. Bioactive food derived peptides: A review on correlation between structure of bioactive peptides and their functional properties. J. Food Sci. Technol. 2019, 56, 535–547. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Kim, Y.J.; Ho Kang, B.; Park, C.K. Effect of nicotinic acid on the plasma membrane function and polyunsaturated fatty acids composition during cryopreservation in boar sperm. Reprod. Domest. Anim. 2019, 54, 1251–1257. [Google Scholar] [CrossRef] [PubMed]
- Kanabur, V.; V, S. Nutritional significance and usage of garden cress seeds (Lepidium sativum L.)—A review. Am. J. Food Sci. Technol. 2022, 1, 50–55. [Google Scholar] [CrossRef]
- Panwar, H.; Guha, M. Effect of processing on nutraceutical properties of garden cress (Lepidium sativum L.) seeds. Int. J. Pharm. Pharm. Sci. 2014, 6, 315–318. [Google Scholar]
- Ballus, C.; Meinhart, A.; Campos, F.; Godoy, H. Total phenolics of virgin olive oils highly correlate with the hydrogen atom transfer mechanism of antioxidant capacity. J. Am. Oil Chem. 2015, 92, 843–851. [Google Scholar] [CrossRef]
- Liu, R.; Liu, R.; Shi, L.; Zhang, Z.; Zhang, T.; Lu, M.; Chang, M.; Jin, Q.; Wang, X. Effect of refining process on physicochemical parameters, chemical compositions and in vitro antioxidant activities of rice bran oil. LWT 2019, 109, 26–32. [Google Scholar] [CrossRef]
- Winn, E.; Whitaker, B.D. Quercetin supplementation to the thawing and incubation media of boar sperm improves post-thaw sperm characteristics and the in vitro production of pig embryos. Reprod. Biol. 2020, 20, 315–320. [Google Scholar] [CrossRef]
Type of Fatty Acid | g/100 g of Total Fatty Acid |
---|---|
C12:0 (Lauric Acid) (Saturated fatty acids) | 0.01 |
C14:0 (Myristic Acid) (Saturated fatty acids) | 0.09 |
C16:0 (Palmitic Acid) (Saturated fatty acids) | 9.12 |
C18:0 (Stearic Acid) (Saturated fatty acids) | 3.24 |
C18:1n9c (Oleic Acid) (MUFA) (Omega 9) | 21.00 |
C18:2n6c (Linoleic Acid) (PUFA) (Omega 6) | 10.74 |
C18:3n3 (Linolenic Acid) (PUFA) (Omega 3) | 29.83 |
C18:3n6 (Gamma Linolenic Acid) (PUFA) (Omega 6) | 0.09 |
C20:0 (Arachidic Acid) (Saturated fatty acids) | 12.51 |
C20:1 (Eicosenoic acid) (MUFA) | 4.07 |
C20:2 (Eicosadienoic acid) (PUFA) | 0.49 |
C20:3n3 (cis-11,14,17-Eicosatrienoic acid) (PUFA) (Omega 3) | 0.65 |
C22:0 (Docosanoic acid) (Saturated fatty acids) | 1.06 |
C22:1n9 (Erucic acid) (MUFA) (Omega 9) | 5.58 |
C22:2 (cis-13,16-Docosadienoic acid) (PUFA) | 0.05 |
C23:0 (Tricosanoic acid) (Saturated fatty acids) | 0.03 |
C24:0 (Tetracosanoic acid) (Saturated fatty acids) | 0.59 |
C24:1 (Nervonic acid) (MUFA) | 0.83 |
Overall | |
Saturated fatty acids | 26.66 |
Monounsaturated fatty acids | 31.50 |
Polyunsaturated fatty acids | 42.19 |
Omega 3 fatty acids | 30.47 |
Omega 6 fatty acids | 10.83 |
Omega 9 fatty acids | 30.66 |
Omega 6/omega 3 fatty acids | 0.40 |
Amino Acid Profiles | mg/100 g |
---|---|
Glutamic acid | 3654.67 |
Aspartic acid | 2015.52 |
Arginine | 1544.63 |
Leucine | 1543.73 |
Glycine | 1339.58 |
Lysine | 1252.68 |
Valine | 1221.74 |
Proline | 1099.73 |
Phenylalanine | 1088.55 |
Alanine | 1002.76 |
Serine | 970.13 |
Isoleucine | 953.19 |
Threonine | 917.73 |
Histidine | 606.28 |
Tyrosine | 553.45 |
Methionine | 295.92 |
Tryptophan | 264.54 |
Cystine | <200.00 |
Hydroxylysine | ND |
Hydroxyproline | ND |
Measurement | Results |
---|---|
Seed | |
Total antioxidant activity of ET (DPPH) (mmol TE/100 g) | 4046.96 |
Total polyphenol (mg eq GA/100 g) | 1963.90 |
Oil | |
Total antioxidant activity of HAT (ORAC) (µmol TE/100 mL) | 2628.00 |
Parameters * | Mean ± SEM | Range |
---|---|---|
Concentration (×106 sperm/mL) | 309.7 ± 21.0 | 171–390 |
Total motility (%) | 90.7 ± 1.3 | 95.4–83.6 |
Progressive motility (%) | 83.2 ± 2.7 | 92.7–68.7 |
Sperm viability (%) | 93.7 ± 0.8 | 97.6–90.2 |
Acrosome integrity (%) | 93.9 ± 0.9 | 97.0–89.4 |
Parameters * | Concentrations (% v/v) | |||||
---|---|---|---|---|---|---|
Ctrl (0) | 0.50 | 1 | 1.50 | 2 | 2.50 | |
VCL | 36.7 ± 2.4 ab | 40.4 ± 2.2 ab | 45.3 ± 2.7 a | 44.3 ± 3.1 ab | 39.2 ± 4.9 ab | 36.0 ± 4.0 b |
VSL | 11.4 ± 1.2 a | 14.1 ± 0.7 ab | 17.5 ± 1.1 b | 14.9 ± 1.0 ab | 14.0 ± 2.1 ab | 12.8 ± 1.6 a |
VAP | 15.9 ± 1.2 a | 18.4 ± 1.0 ab | 21.9 ± 1.5 b | 20.3 ± 1.5 ab | 18.0 ± 2.5 ab | 16.6 ± 2.1 a |
ALH | 0.48 ± 0.02 a | 0.50 ± 0.02 a | 0.53 ± 0.02 a | 0.54 ± 0.03 a | 0.48 ± 0.04 a | 0.45 ± 0.03 a |
WOB | 43.1 ± 0.6 a | 45.4 ± 0.6 ab | 47.7 ± 1.0 b | 45.6 ± 0.7 ab | 44.9 ± 1.2 a | 45.4 ± 1.0 ab |
STR | 68.3 ± 2.4 a | 77.1 ± 1.1 bc | 79.8 ± 1.1 c | 74.4 ± 1.5 c | 76.7 ± 1.5 bc | 77.3 ± 0.9 bc |
LIN | 29.3 ± 1.3 a | 35.2 ± 0.9 b | 38.7 ± 1.0 c | 33.9 ± 0.9 b | 34.9 ± 1.4 b | 35.2 ± 1.0 b |
Parameters * | Concentrations (% v/v) | |||||
---|---|---|---|---|---|---|
Ctrl (0) | 0.50 | 1 | 1.50 | 2 | 2.50 | |
GSH-Px (mU/mL) | 38.1 ± 15.7 a | 56.7 ± 24.1 a | 67.9 ± 19.1 a | 56.5 ± 24.2 a | 93.4 ± 15.2 a | 90.4 ± 10.3 a |
CAT (U/mL) | 0.90 ± 0.06 a | 0.98 ± 0.04 a | 0.97 ± 0.06 a | 0.94 ± 0.04 a | 1.11 ± 0.08 a | 1.08 ± 0.07 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khophloiklang, V.; Chanapiwat, P.; Kaeoket, K. Crude Garden Cress Seed Oil (Lepidium sativum Linn.) Enhances Post-Thawed Boar Sperm Quality. Animals 2024, 14, 3178. https://doi.org/10.3390/ani14223178
Khophloiklang V, Chanapiwat P, Kaeoket K. Crude Garden Cress Seed Oil (Lepidium sativum Linn.) Enhances Post-Thawed Boar Sperm Quality. Animals. 2024; 14(22):3178. https://doi.org/10.3390/ani14223178
Chicago/Turabian StyleKhophloiklang, Vassakorn, Panida Chanapiwat, and Kampon Kaeoket. 2024. "Crude Garden Cress Seed Oil (Lepidium sativum Linn.) Enhances Post-Thawed Boar Sperm Quality" Animals 14, no. 22: 3178. https://doi.org/10.3390/ani14223178
APA StyleKhophloiklang, V., Chanapiwat, P., & Kaeoket, K. (2024). Crude Garden Cress Seed Oil (Lepidium sativum Linn.) Enhances Post-Thawed Boar Sperm Quality. Animals, 14(22), 3178. https://doi.org/10.3390/ani14223178