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Simple Summary: This study develops a new method to automatically track and analyze pig behavior
in complex environments. We use Pig-ByteTrack algorithm for real-time tracking and perform
trajectory interpolation post-processing on the original algorithm to solve tracking problems caused
by light changes, occlusion, and collisions between pigs. Finally, a set of time statistical algorithms
for behavior categories are designed. The method helps farm managers detect abnormalities and
health problems of pigs in a timely manner. Experimental results show that the method performs
well in behavior recognition and tracking, accurately records pig behavior, and provides technical
support for monitoring the health and welfare of pig herds.

Abstract: Daily behavioral analysis of group-housed pigs provides critical insights into early warning
systems for pig health issues and animal welfare in smart pig farming. In this study, our main objective
was to develop an automated method for monitoring and analyzing the behavior of group-reared
pigs to detect health problems and improve animal welfare promptly. We have developed the method
named Pig-ByteTrack. Our approach addresses target detection, Multi-Object Tracking (MOT), and
behavioral time computation for each pig. The YOLOX-X detection model is employed for pig
detection and behavior recognition, followed by Pig-ByteTrack for tracking behavioral information.
In 1 min videos, the Pig-ByteTrack algorithm achieved Higher Order Tracking Accuracy (HOTA) of
72.9%, Multi-Object Tracking Accuracy (MOTA) of 91.7%, identification F1 Score (IDF1) of 89.0%,
and ID switches (IDs) of 41. Compared with ByteTrack and TransTrack, the Pig-ByteTrack achieved
significant improvements in HOTA, IDF1, MOTA, and IDs. In 10 min videos, the Pig-ByteTrack
achieved the results with 59.3% of HOTA, 89.6% of MOTA, 53.0% of IDF1, and 198 of IDs, respectively.
Experiments on video datasets demonstrate the method’s efficacy in behavior recognition and
tracking, offering technical support for health and welfare monitoring of pig herds.

Keywords: behavioral analysis algorithm; multi-object tracking (MOT); long-term video tracking;
Pig-ByteTrack

1. Introduction

With the increasing demand for animal products and the growing social concern
for animal welfare, effective monitoring and analysis of animal welfare is increasingly
becoming a hot research priority. The health status of pigs will determine the development
and economic efficiency of pig farming. Meanwhile, clinical or subclinical signs of most
swine diseases are usually accompanied by behavioral abnormalities before the appearance
of symptoms [1]. Currently, with the development of image processing technology, the
integration of manual observation and computer vision monitoring is the main manage-
ment method in large-scale pig farms, this still requires a large amount of labor. And
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with the rapid development of Multi-Object Tracking (MOT) technology in the field of
video surveillance, the need for manual labor can be significantly reduced through the
application of MOT for the pig industry, improving the efficiency and cost-effectiveness of
pig farm management.

In recent years, several outstanding MOT algorithms have been proposed. For exam-
ple, the prevailing trackers including simple online and real-time tracking (SORT [2]) and
deep simple online and real-time tracking (DeepSORT [3]), have been widely used for the
MOT of pedestrians and vehicles. SORT is a data association method based on a Kalman
filter (KF) and a Hungarian algorithm to associate the detected bounding-box results be-
tween adjacent frames. DeepSORT introduces the comparison of appearance features,
which is added to the motion model in SORT. This enhances the performance for a longer
duration of occlusion. Zhang et al. proposed Fair Multi-Object Tracking (FairMOT) based
on the anchor-independent target detection architecture CenterNet, which obtains high
accuracy in detection and tracking for MOT datasets [4]. Sun et al. proposed an end-to-end
Transtrack MOT method based on TransFormer, which can perform target detection and
tracking tasks simultaneously [5]. The framework performed well in complex scenarios
and achieved excellent performance on MOT16, MOT17, and MOT20 datasets. Zhang et al.
proposed the ByteTrack algorithm, which adds a correlation phase to low-scoring detection
frames to improve tracking performance on many pedestrian tracking datasets [6]. Aharon
et al. proposed the Bayesian online tracking with sorting (BOT-SORT) algorithm, which
achieves accurate tracking of multiple targets by using appearance and motion information
for re-identification [7]. It could effectively deal with challenges such as target occlusion
and appearance changes. Due to the excellent performance of these MOT algorithms, they
are widely applied in various fields, including autonomous driving, traffic management,
drones, aviation, medical image analysis, agriculture [8–17], and so on.

Nowadays, more and more studies of MOT technology have been used in livestock de-
tection and tracking. For example, Guo et al. improved the joint detection and embedding
(JDE), FairMOT, and you only look once version 5 small (YOLOv5s) + DeepSORT algo-
rithms, respectively, to improve the performance of individual animal tracking, especially
to reduce the number of identity switches, thus ensuring timely animal welfare [18]. Zheng
et al. proposed a MOT method (YOLO-BYTE), which aims to address the problem of missed
and false detections caused by the complex environment in the detection and tracking of
individual cows [19]. Lu et al. proposed a MOT method based on a rotating bounding box
detector to recognize the number of pigs and monitor their health status, which improved
the adaptability of the tracking technique in complex scenarios and reduced the switching
of pig identities [20]. Zou et al. proposed an improved YOLOv3+DeepSORT algorithm
to achieve accurate MOT of yellow-feathered broilers in large-scale broiler farms, which
provides a technical reference for analyzing the behavioral perception and health status
of broilers [21]. However, all these methods focused on target detection and tracking
tasks, little research was conducted for further behavioral automated analysis based on the
MOT results.

In addition, most work regarding pig detection and tracking involves studies on
the pig tracking of short-duration videos or identifying postural behaviors. For example,
Alameer et al. utilized a MOT technique for automated diagnosis and intelligent monitoring
of health status in 1 min videos of pigs on a pig farm [22]. Huang et al. designed the HE-
Yolo (High Effect Yolo) model to identify the postural behaviors of fenced pigs in real-time
from 10 to 100 s of video [23]. Huang et al. proposed an improved pig counting algorithm
(MPC-YD) based on theYOLOv5 + DeepSORT model, which aims to solve the problems of
partial feature detection, tracking loss due to fast movement, and video counting errors of
pigs [24]. Our previously published work proposed an improved DeepSORT algorithm
for multi-target behavioral tracking in 1 min pig videos. The approach could improve
tracking accuracy under complex scenarios and reduce error IDs due to overlapping and
occlusion between pigs [25]. All the above methods demonstrated superior performance in
pigs’ MOT tasks for short-time videos. However, there is little research on pigs’ behavioral
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tracking for long-time videos. This is because in the long-term MOT of pigs, factors such
as the occlusion of objects and influence of light appear with greater probability, which
leads to a decrease in the accuracy and stability of detection and tracking of pigs; it is
very challenging to recognize the behavior of pigs on this basis. Therefore, it is extremely
challenging to record the behaviors of individual pigs for the long term completely by
MOT methods.

To address the above challenges, we proposed an approach to complete target detec-
tion, tracking, and behavioral automated analysis of three tasks for group-housed pigs.
First, we used the YOLOX-X detector in the detection task to detect the target and output
for the four behavioral categories (lie, stand, eat, and other), locations, and confidence
values of the pigs. Then, we employed a trajectory interpolation post-processing strategy in
the data association part to minimize ID errors caused by occlusion to improve the tracking
accuracy. Finally, we designed an automated behavioral analysis algorithm to calculate
four behavioral times of each pig in each pen based on its ID and behavioral information.

In this study, our main objective was to develop an automated method for monitoring
and analyzing the behavior of group-reared pigs to detect health problems and improve
animal welfare promptly. Specific objectives include the following:

(1) We proposed the Pig-ByteTrack algorithm, integrating trajectory interpolation to
reduce false alarms and enhance tracking stability, to improve the accuracy of behavior
monitoring in pig farming.

(2) We designed a behavioral analysis algorithm to calculate the temporal distribution
of behaviors for each pig, leveraging tracking IDs and categories, to enable detailed
behavioral analysis within individual enclosures.

(3) We constructed a 10 min long-term pig dataset with real pig house videos and
validated our methodology’s effectiveness through comparative tracking experi-
ments, to ensure the practical applicability and reliability of our approach under
real-world conditions.

2. Method

To address the challenges of accurate precision in pig tracking and behavioral analyses
under complex environments, we proposed the process of tracking and behavioral time
statistics for group-housed pigs, as depicted in Figure 1. Firstly, we introduced a novel
target tracking algorithm called Pig-ByteTrack, which is used to detect the pigs, classify
the behavior categories, and assign the target pig ID for input video sequences. Then, the
MOT results were generated, which included the following three parts: pig ID, the pigs’
location, and the pigs’ behavioral categories. Additionally, a behavioral analysis algorithm
was designed to calculate the frequency of each behavior for each pig based on the pig’s ID
and behavior category information. Finally, based on a behavioral analysis algorithm, we
designed the program to visualize the frame number, categories, and frequency for each
pigs’ behaviors, thereby obtaining statistical results of pig behaviors in the videos.
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2.1. Pig-ByteTrack Algorithm of Group-Housed Pigs

Pig-ByteTrack is divided into two main phases: object detection and multi-target
tracking. The workflow is shown in Figure 2. Firstly, the YOLOX-X detector is used to
detect all pig targets for each frame of input video sequences, and the detection results
contained pigs’ confidence value, bounding box (BB), and behavioral category. Then, the
MOT tracker uses the improved BYTE data association algorithm to match the high-scoring
detection boxes to the trajectory, and the unmatched trajectory is linked to the low-scoring
boxes. The improved Byte includes two operations: the Hungarian Matching Algorithm
and the Kalman Filter (KF) prediction, respectively. Finally, the target trajectory output for
the images of consecutive video frames is obtained by the MOT tracker.
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2.1.1. The Original ByteTrack Algorithm

The ByteTrack algorithm utilized the detector of YOLOX to complete the BB regression
and behavior recognition. The detector of YOLOX is an improved version of YOLO [26,27]
with a simple scheme and better performance without the anchor mechanism. YOLOX
decoupled the YOLO detection head into distinct feature channels for box coordinate
regression and target classification. Then, the ByteTrack algorithm utilized the BYTE data
association strategy for MOT task. Its processing flow chart is shown in Figure 3.

The detailed process is as follows:

(1) The object detection results are divided into high-score and low-score detection boxes.

In the detection results, if the confidence value of the detection box is greater than the
high score box threshold, the detection box is placed in the high score detection box set
(Dhigh). If the confidence value of the detection box is less than the high score box threshold
and greater than the low score box threshold, the detection box will be placed in the low
score detection box set (Dlow).

(2) The high-scoring detection boxes Dhigh are matched with the existing tracks for the
first IoU data association.

The IoU distance matrixes between high-scoring detection boxes Dhigh and the set of
trajectories are calculated and then used to match using the Hungarian algorithm, which
produces three kinds of outputs including matched track set, unmatched high-scoring
detection boxes, and unmatched tracks. The matched track set contains successfully
matched detection boxes updated with their Kalman filter. The unmatched high-scoring
detection boxes and unmatched tracks are placed in Dremain and Tremain sets, respectively.

(3) The low score detection boxes Dlow are associated with the unmatched trace-in Tlow
for the second IoU data.
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We calculate the IoU distance matrixes between Dlow and the unmatched tracks Tremain,
which output three kinds of sets, including unmatched tracks, unmatched low-scoring
detection boxes, and matched track sets. The unmatched trajectories are placed in Tlost set.
The unmatched low-score detection boxes will be considered background boxes and will be
deleted directly. For the set of successfully matched trajectories, its Kalman filter is updated
and placed in the current frame trajectory set.

(4) Trajectories creation, deletion, and merging.

For the detection boxes Dremain, if the confidence values are greater than the tracking
threshold, new tracks are created for them and are merged into the current set of trajectories
for the current frame, if not, they are neglected. The stored trajectories that exceed 30
frames in Tlost are deleted. All trajectories for the current frame are outputted and fed to
the next image frame as the existing trajectories.
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2.1.2. The Pig-ByteTrack Algorithm

To implement stable behavior tracking of group-housed pigs, based on ByteTrack, the
improvement of the Pig-ByteTrack algorithm consists of two steps as follows:

(1) The design of suitable detection anchor boxes and the improvement of tracking boxes.

The anchor boxes of the original detection of the ByteTrack tracker are designed
based on the pedestrian’s features of narrow height which is not suitable for group-housed
pigs. We remove the shape restriction on the pig detection box and implement the most
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appropriate ratio of anchor boxes for pigs. At the same time, four behavioral classes of pigs
(lie, stand, eat, and other) are added to the BYTE tracker for tracking.

The visualization of the Pig-ByteTrack and ByteTrack is shown in Figure 4. The
tracking box of the original ByteTrack in Figure 4a only shows the ID number of each
pig, whereas the tracking box of the Pig-ByteTrack in Figure 4b can reflect the behavioral
categories and ID value of each pig at the same time.
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(2) The implementation of the trajectory interpolation post-processing strategy for BYTE
tracker.

To avoid error IDs due to severe occlusion between group-housed pigs, we propose
the trajectory interpolation post-processing strategy to significantly improve the stable
tracking performance of occluded targets. The process is as follows:

Suppose a trajectory T is lost due to occlusion between t1 frame and t2 frame, if the
current trajectory T is at exactly t frame (t1 < t < t2), the interpolation box Bt of the
trajectory T can be calculated by Equation (1) as follows:

Bt = Bt1 + (Bt2 − Bt1)
t− t1

t2 − t1
(1)

where Bt denotes the track box coordinates of the t frame (containing four values, one for
the top left and one for the bottom right coordinates). Moreover, Bt1 denotes the track box
coordinates of the t1 frame, Bt2 denotes the track box coordinates of the t2 frame.

2.2. The Behavioral Analysis Algorithm

Based on the video sequence tracking results, we design and implement the pig’s four
behavioral time calculation algorithm as shown in Algorithm 1. The algorithm flow is
as follows:

(1) An array of a behavioral category named [A1, A2, A3, A4] is designed for each track,
which creates statistics for the number of all tracks for the four categories of the stand,
lie, eat, and other behaviors. The statistic is added as an attribute in each of the tracks.

(2) For each frame of video, the BYTE data association algorithm first obtains information
about the YOLOX-X detection results of each BB named D, including the category
information mentioned above. Then, the behaviors analysis algorithm creates an
array of frames named [a1, a2, a3, a4] based on the categories (stand, lie, eat, and other
behaviors of each BB) for each pig ID. And if the behavior category belongs to stand,
a1 is set to 1 and the other parameters are set to 0, and so on.
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(3) After Associating T with D using the BYTE operation, we can revise the values
[A1, A2, A3, A4] if the tracklet and detection BB match successfully. The formula of
revised A is as follows: 

A1new
A2new
A3new
A4new

 =


A1
A2
A3
A4

+


a1
a2
a3
a4

 (2)

If there is no match between the detection BB and the track, or if the confidence
value of the detection BB is greater than the high score threshold, we can set the value of
[A1, A2, A3, A4] for this tracklet to 0. Finally, after summing the number of frames obtained
for the four behaviors with different pig IDs, we divide it by the frame rate to obtain the
time for the different behaviors of each pig ID.

Algorithm 1. Pseudo-code of Behavior Category Time Statistics of Pigs

Input: A video sequence V; object detector Det; the k frame fk; the detection BB D; category
includes lie, eat, stand, other; variable a and A: one-dimensional array including four elements for
time statistics; T: tracklet information and four behavior category time statistics; tracking score
threshold η is set 0.75; Frames per second Fps;
Output: Tracks T of the video

1. Initialization: T ← ∅
2. for frame fk in V do
3. D ← Det( fk)
4. Initialize time-count array including four elements for time statistics a← [0, 0, 0, 0]
5. Set variable category _index ← D{category}
6. [category_index]← 1
7. Associate T with D using BYTE:
8. if succeed to match then
9. Call the Update or Re-activate function to update the status of tracks
10. Set variable A← T{category__time_array}+ a
11. T{category__time_array} ← A
12. end
13. if D failed to match and D > then
14. Call the function to create a new track
15. Initialize time-count array A← [0, 0, 0, 0]
16. T{category__time_array} ← A
17. end
18. end
19. T{category__time_array} = T{category__time_array}/Fps

Return T

3. Experiment

All the experiments in this study were conducted on the same computer using Linux
as the experimental platform with Ubuntu 20.04 operating system, using Python 3.7 as the
programming language, Pytorch 1.9.1 as the deep learning framework, and CUDA version
11.1. The GPU server is RTX3090, and the memory is 64 GB. We select HOTA, MOTA, IDF1,
and IDs as the pig MOT evaluation metrics.

HOTA calculation is shown in Equation (3) as follows:

HOTA =

√
Σ

c∈TP
A(c)

TP + FN + FP
(3)

where c is a point belonging to TP, according to which we can always determine a
unique Ground Truth trajectory, and A(c) represents the association accuracy. TP refers
to the number of positive samples; FN refers to the positive samples predicted by the
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model to be negative; and FP represents the negative samples predicted by the model as
positive samples.

MOTA calculation is shown in Equation (4) as follows:

MOTA = 1− ∑t(FP + FN + IDS)
∑t gt

(4)

where FP represents the total number of false detections in frame t; FN represents the total
number of missed detections in frame t; IDS represents the number of times the target label
ID switched during tracking in frame t; and gt represents the number of targets observed at
frame t.

IDF1 calculation is shown in Equation (5) as follows:

IDF1 =
2IDTP

2IDTP + IDFP + IDFN
(5)

where IDTP represents the total number of targets correctly tracked with unchanged ID;
IDFP represents the total number of targets incorrectly tracked with unchanged ID; and
IDFN represents the total number of targets lost in tracking with unchanged ID.

Additionally, the model performance is evaluated with the number of ID Switches
(IDs) in this study. Higher values of HOTA, MOTA, and IDF1, and a lower value of IDs
indicate better model performance.

3.1. Dataset

For a comprehensive analysis of group-housed pig behavior, this study collected two
sets of pig behavior video datasets from different scenarios, categorized as public and
private datasets. The public dataset [28] comprised video clips of pigs of different breeds,
recorded in both daytime and nighttime environments, with each pigpen house including
7 to 20 pigs, with a total of 4 annotated 10 min videos. The private dataset was collected
in September 2022 from a commercial pig farm in Foshan, where each pigpen houses 6 to
11 black and spotted pigs. Pigs in the study were categorized into three age groups: nursery
(3–10 weeks), early fattening (11–18 weeks), and late fattening (19–26 weeks). Weight
distributions across these stages align with standard growth curves. In the nursery phase,
pigs weighed 7–10 kg at 3 weeks, 10–15 kg at 4–5 weeks, and 15–25 kg at 6–10 weeks. Early
fattening pigs weighed 25–35 kg at 11 weeks, 35–50 kg at 12–15 weeks, and 50–70 kg at
16–18 weeks. In the late fattening phase, pigs weighed 70–90 kg at 19 weeks, 90–110 kg
at 20–23 weeks, and 110–130 kg at 24–26 weeks. These estimates may vary due to breed,
husbandry practices, and diet. The study included two breeds: black and spotted pigs.
Welfare principles were adhered to, with each pig allocated 1.2 square meters of pen space.
The housing environment was controlled for temperature and humidity to ensure suitability
for the animals, and the facility was equipped with adequate ventilation for herd density.
Bedding conditions comprised both solid and metal grid flooring. Empirical evidence
suggests that pigs display comparable behaviors on solid and grid floors, indicating that
flooring preferences do not significantly affect basic behavioral patterns and thus do not
impact the study’s findings.

This dataset annotated 18 1 min video segments, with 9 video segments for training
and 9 for testing. Each video segment had a frame rate of 5 frames per second, resulting
in 300 images in a 1 min video and 3000 images in a 10 min video segment. All datasets
were annotated using DarkLabel1.3 software. Our classifications of pig activity levels
were determined by direct observation in cooperation with farm staff. Specifically, the
classifications of ‘low’, ‘medium’, and ‘high’ activity levels were based on daily observations
and empirical judgments of staff on pig behavior. These categories, although subjective,
reflect the routine practice of actual pig farming and provide a practical benchmark for
our study. In future studies, we plan to introduce more objective quantitative methods
to enhance the accuracy and consistency of the categories. We divided the activity level
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of pigs into three categories according to the time period: high activity during the day,
medium activity during the day (or night), and low activity during the day (or night). The
activity level of pigs was defined as follows: during the day (07:00–17:00), pigs have more
frequent behaviors such as eating and walking, this time was defined as a high activity
level. During the day (07:00–17:00) or night (18:00–06:00), pigs have no high activities such
as eating and walking. This time was defined as the medium activity level during the
day or night. During the day (07:00–17:00) or night (18:00–06:00), pigs had few eating and
walking behaviors, mostly lying behavior. This time period was defined as low activity
during the day or night. The detailed test dataset is shown in Table 1.

Table 1. Test dataset.

Dataset Sequence Day Night Activity Level Number of Pigs

1 min videos

10
√

– Medium 11
11

√
– High 10

12 –
√

Low 11
13

√
– High 11

14
√

– High 6
15

√
– Medium 6

16
√

– Medium 6
17 –

√
Low 6

18 –
√

Low 6

10 min videos

01
√

– Medium 7
02 –

√
Low 8

03
√

– High 14
04 –

√
Low 15

The “
√

” indicates that the value is true, and the “–” indicates that the value is false.

The experiment consisted of the following four parts: (1) the comparison of tracking
results of Pig-ByteTrack, ByteTrack, and TransTrack in the private dataset; (2) the analysis
of MOT results using Pig-ByteTrack for 1 min videos in the private dataset; (3) the tracking
results analysis of Pig-ByteTrack for 10 min videos; and (4) the behavioral analysis for four
video segments in the private dataset.

3.2. Experimental Results and Performance Comparison

In this section, we evaluated the achievement of experiment goals in detail. To achieve
these goals, the following research tools and methods were used:

(1) The YOLOX-X detection model was used for target detection and behavioral recogni-
tion in pigs.

(2) The Pig-ByteTrack algorithm was designed to track behavioral information for each pig.
(3) The Automated Behavioral Analysis algorithm was developed to calculate the tempo-

ral distribution of behaviors.

3.2.1. Results Comparison of Pig-ByteTrack, ByteTrack, and TransTrack

The results comparison of the Pig-ByteTrack with the ByteTrack and TransTrack in
the private dataset is shown in Table 2. The Pig-ByteTrack achieved the best performance
with HOTA, MOTA, IDF1, and IDs of 72.9%, 91.7%, 89% and 41, respectively. Compared
with the ByteTrack, the results of the Pig-ByteTrack improved by 1.5%, 1.1%, 1.1% and 14 in
HOTA, MOTA, IDF1, and IDs, respectively. Compared with TransTrack, its HOTA, MOTA,
and IDF1 were improved by 23.4%, 4.4%, and 21%, and its IDs decreased 212, respectively,
with significant performance improvement. Combining the above results, we found that
Pig-ByteTrack can achieve stable behavioral tracking of group-reared pigs.
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Table 2. The performance comparison between Pig-ByteTrack and the other 2 MOT methods.

Algorithms HOTA(%) ↑ MOTA(%) ↑ IDF1(%) ↑ IDs ↓
TransTrack 49.5 87.3 68 255
ByteTrack 71.4 90.6 87.9 55

Pig-ByteTrack 72.9 91.7 89.0 41
The “↑” indicates that a higher value is better, while “↓” indicates that a lower value is preferable. and bolded
results represent the method used in this study.

The tracking results for Pig-ByteTrack, ByteTrack, and TransTrack in Videos 10, 11,
12, and 13 were shown in Figure 5. The Pig-ByteTrack method not only provided the ID
number but also the behavioral class of each tracked pig, whereas ByteTrack and TransTrack
only displayed the pig’s ID without behavioral categorization. Pig-ByteTrack consistently
achieved accurate pig behavior tracking across all four videos, with minimal IDs. In Video
10, ByteTrack failed to accurately identify a pig within the red dashed box at frame 17. In
Video 11, ByteTrack incorrectly changed an ID indicated by the arrow in frame 26, where the
pig was changed from ID11 to ID12. TransTrack missed detecting two black pigs within the
red dashed box. Video 12 was captured in a challenging night scene, where the color of the
pig is very similar to the shadow, making it difficult to identify the pig. Pig-ByteTrack had
no missed detection, and ByteTrack and TransTrack both exhibited missed detection within
the red dashed box. In Video 13, the same problem occurred with ByteTrack and TransTrack.

Animals 2024, 14, x FOR PEER REVIEW 11 of 17 
 

The tracking results for Pig-ByteTrack, ByteTrack, and TransTrack in Videos 10, 11, 
12, and 13 were shown in Figure 5. The Pig-ByteTrack method not only provided the ID 
number but also the behavioral class of each tracked pig, whereas ByteTrack and 
TransTrack only displayed the pig’s ID without behavioral categorization. Pig-ByteTrack 
consistently achieved accurate pig behavior tracking across all four videos, with minimal 
IDs. In Video 10, ByteTrack failed to accurately identify a pig within the red dashed box 
at frame 17. In Video 11, ByteTrack incorrectly changed an ID indicated by the arrow in 
frame 26, where the pig was changed from ID11 to ID12. TransTrack missed detecting two 
black pigs within the red dashed box. Video 12 was captured in a challenging night scene, 
where the color of the pig is very similar to the shadow, making it difficult to identify the 
pig. Pig-ByteTrack had no missed detection, and ByteTrack and TransTrack both exhib-
ited missed detection within the red dashed box. In Video 13, the same problem occurred 
with ByteTrack and TransTrack. 

 
Figure 5. Comparison of Pig-BytetTrack, ByteTrack and TransTrack results on private datasets. 

3.2.2. Results of Pig-ByteTrack for 1 min Video in Private Dataset 
Pig-ByteTrack performed well in the various video tests with high averages. Table 3 

shows its performance in each test video. Pig-ByteTrack performed well in Videos 14, 15, 
16, and 17 with HOTA scores of 77.1%, 81.7%, 82.5%, and 79.6%, respectively, and MOTA 
scores consistently above 97%. In Video 17, both HOTA and IDF1 obtained max values of 
97.9% and 99.0%, respectively, with zero IDs. These results showed Pig-ByteTrack could 
achieve good accuracy in this scenario. However, in Video 18, Pig-ByteTrack performed 

Figure 5. Comparison of Pig-BytetTrack, ByteTrack and TransTrack results on private datasets.



Animals 2024, 14, 3299 11 of 16

3.2.2. Results of Pig-ByteTrack for 1 min Video in Private Dataset

Pig-ByteTrack performed well in the various video tests with high averages. Table 3
shows its performance in each test video. Pig-ByteTrack performed well in Videos 14, 15,
16, and 17 with HOTA scores of 77.1%, 81.7%, 82.5%, and 79.6%, respectively, and MOTA
scores consistently above 97%. In Video 17, both HOTA and IDF1 obtained max values of
97.9% and 99.0%, respectively, with zero IDs. These results showed Pig-ByteTrack could
achieve good accuracy in this scenario. However, in Video 18, Pig-ByteTrack performed
relatively poorly with 56.0%, 67.7%, and 64.2% for HOTA, MOTA, and IDF1, respectively,
and the number of IDs was as high as 17. These results suggested that Pig-ByteTrack is
affected in scenes with low lighting at night. Overall, Pig-ByteTrack showed excellent
accuracy and stability in the pig MOT task. Further optimization and improvement is
needed in complex situations such as severe occlusion and insufficient light.

Table 3. The results of each 1 min video tracking for Pig-ByteTrack.

Video HOTA(%) ↑ MOTA(%) ↑ IDF1(%) ↑ IDs ↓
10 80.3 94.5 95.0 4
11 72.5 94.9 87.8 3
12 63.0 88.7 84.9 10
13 66.2 97.9 84.9 6
14 77.1 97.9 95.0 0
15 81.7 97.1 90.9 1
16 82.5 97.6 98.8 0
17 79.6 97.9 99.0 0
18 56.0 67.7 64.2 17

Average 72.9 91.7 89.0 41
The “↑” indicates that a higher value is better, while “↓” indicates that a lower value is preferable.

Figure 6 shows the tracking results for Pig-ByteTrack, ByteTrack, and TransTrack from
frames 6 to 116 of Video 11, where the real number of pigs was 11. The Pig-ByteTrack
method achieved good tracking throughout and additionally provided behavioral cate-
gories for each pig tracked. ByteTrack and TransTrack both experienced tracking loss (pigs
in the red dashed box in Figure 6). The tracking performance of Pig-ByteTrack was more
stable and accurate than that of the other two methods.
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Figure 6. The visualized tracking results comparison of Pig-BytetTrack, ByteTrack, and TransTrack.

3.2.3. Results of Pig-ByteTrack for 10 min Video Dataset

The results of Pig-ByteTrack in the 10 min videos are shown in Table 4. We found that
the tracking results of the 10 min videos were much less than those of the 1 min videos
by comparing the results with Table 3. Video 02 had the highest HOTA rate, reaching
69.1% precision, while Video 03 had an HOTA rate of only 50.8%. The reason was that
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the pig’s active level in Video 03 was the highest among the four videos, as the pig moves
frequently, resulting in frequent problems such as target occlusion, motion blurring, or
lighting changes. The Pig-ByteTrack achieved the best IDF1 value with 67.0% in Video 04
and the worst IDF1 value with 47.8% in Video 01. The reason for this phenomenon is that
Video 04 is in the nighttime period, and most of the pigs are resting.

Table 4. The 10 min video tracking results for Pig-ByteTrack.

Video HOTA(%) ↑ MOTA(%) ↑ IDF1(%) ↑ IDs ↓
01 66.1 90.8 47.8 14
02 69.1 95.1 53.4 29
03 50.8 88.4 50.8 72
04 59.0 87.5 67.0 83

Average 59.3 89.6 53.0 198
The “↑” indicates that a higher value is better, while “↓” indicates that a lower value is preferable.

Figure 7 shows the visualized tracking results of Pig-ByteTrack for a 10 min video. The
10 min video had many issues with lost tracking and IDs (as indicated by the red arrow in
Figure 7). We thought that this was because the 10 min video produces the situations such
as many pig occlusions, light changes, and so on. The probability of its problems in the
10 min videos is greater than that of the 1 min videos, which leads to the gap in tracking
results. Therefore, the current method is still difficult to meet the demand of tracking
objects for a long time, which is a direction that needs to be improved in the future.
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3.2.4. Behavioral Analysis for Four Video Segments in Private Dataset Algorithm

The histogram results using our designed behavioral analysis algorithm are shown in
Figure 7. It presented the number of frames and distribution of different behavior classes
indicated by each ID number results for the 1 min time videos, including Videos 14, 15,
16, and 17. In each sub-graph of Figure 7, the horizontal coordinates represented the ID
number of the pigs, and the vertical coordinates represented the number of frames for each
behavior. Four different colors represented the four behavioral classes of pigs: stand, lie, eat,
and other, which were represented by light blue, dark blue, red, and yellow, respectively.

When we used the Pig-ByteTrack method to count the frame numbers of different
behaviors of group-housed pigs, the loss of IDs was encountered, but this did not affect
the consistency of the statistical results with the actual situation. In some time periods,
pigs were masked, resulting in changes in identity, such as id3 and id7 in video15; and
id6 in video16. In video14 of Figure 8, id1~4 mainly performed eat behaviors, while id5
and id6 performed lie and other behaviors, respectively, which proved that the pigs were
highly active in this video. Moreover, in video15 of Figure 8, the pigs mainly engaged in eat
and lie behaviors, with a similar proportion of the two, which indicated that the pigs were
generally active. For video16 in Figure 8, most of the pigs exhibited stand behaviors, and
only id3 and id5 engaged in other behaviors, which inferred that the pigs were medium
active. Lastly, in video17 in Figure 8, the pigs, except id5, mainly exhibited stand behavior,
proving the low activity level of the pigs. According to Table 1, we found that the results of
videos 14~17 are completely in line with the actual situation.
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By the pig behavior statistics algorithm, our research provides professionals with a tool
that enables them to identify and initially determine the cause of abnormal behavior. For
example, if our system monitors a pig not eating for an extended period of time, this may
indicate that the pig is experiencing a loss of appetite. This change in behavior could be due
to a health issue, environmental discomfort, or a feed problem. If a pig is monitored lying
down for an extended period of time without normal activity, this may indicate a possible
injury or discomfort. With this behavioral data, our system helps farm managers and
veterinary professionals quickly identify pigs of concern and provide an initial indication
of the cause of abnormal behavior. This provides valuable time for further diagnosis and
timely intervention.

4. Conclusions

In this paper, a Pig-ByteTrack method was proposed for target detection, behavioral
classification, and multi-target tracking of group-reared pigs. The Pig-ByteTrack method
achieves an HOTA of 72.9%, an MOTA of 91.7%, an IDF1 of 89%, and IDs of 41 for the
behavioral tracking of pigs. Compared with ByteTrack, the HOTA, MOTA, IDF1, and IDs
of the Pig-ByteTrack method were improved by 1.5%, 1.1%, 1.1%, and 14, respectively. The
advantage of the Pig-ByteTrack method was tracking all detection frames and then dividing
the detection frames into high-scoring and low-scoring detection frames. Meanwhile, the
post-processing strategy of trajectory interpolation is used in data correlation to maximize
the accuracy of tracking under occlusion. Based on Pig-ByteTrack, we designed an algo-
rithm for statistical analysis of pig behavior. The algorithm could calculate the number of
times each pig behaves in each pen according to the pig’s ID and category information and
could visualize the behavioral statistics time of pigs. Finally, we conducted a multi-target
tracking study on the 10 min-long video of a pig, which provided a technical reference for
subsequent long-time video tracking studies in this field.

Through the analysis of the method in this paper, we could consider that future
research could focus on enhancing the model’s long-term tracking performance. This could
be achieved by delving deeper into the optimization of deep learning models, which entails
refined network structures and fine-tuning hyperparameters. Furthermore, the integration
of advanced data analysis and machine learning techniques presented an opportunity to
develop predictive models for assessing the health status of pigs based on their behaviors.
By continuously monitoring various parameters such as activity levels, feeding patterns,
movement trajectories, and physiological indicators like body temperature and heart rate,
it became feasible to implement real-time tracking systems for monitoring the health
conditions of the pigs.

Author Contributions: Conceptualization, S.T. and L.M.; methodology, H.O.; software, H.O.; valida-
tion, H.O., W.C. and Y.C.; formal analysis, J.D.; investigation, H.O.; resources, H.O.; data curation,
H.O.; writing—original draft preparation, H.O.; writing—review and editing, H.O.; visualization,
H.O.; supervision, S.T.; project administration, H.O.; funding acquisition, H.O. All authors have read
and agreed to the published version of the manuscript.

Funding: The work was supported by the Guangdong Province Rural Science and Technology Com-
missioner Project, zen tea reliable traceability and intelligent planting key technology research and
development, promotion and application (KTP20210199), Special Project of Guangdong Provincial Ed-
ucation Department, research on abnormal behavior recognition technology of pregnant sows based
on graph convolution (2021ZDZX1091), and Shenzhen Polytechnic University Smart Agriculture
Innovation Application R&D Center (602431001PQ).

Institutional Review Board Statement: The animal study protocol was approved by the Animal
Ethics Committee of South China Agricultural University (protocol code 2024F213 and date of
approval: 14 March 2024).



Animals 2024, 14, 3299 15 of 16

Informed Consent Statement: Not applicable.

Data Availability Statement: All relevant data are included in the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Wang, S.; Jiang, H.; Qiao, Y.; Jiang, S.; Lin, H.; Sun, Q. The Research Progress of Vision-Based Artificial Intelligence in Smart Pig

Farming. Sensors 2022, 22, 6541. [CrossRef] [PubMed]
2. Bewley, A.; Ge, Z.; Ott, L.; Ramos, F.; Upcroft, B. Simple online and realtime tracking. In Proceedings of the IEEE International

Conference on Image Processing (ICIP), Phoenix, AZ, USA, 26 September 2016; pp. 3464–3468.
3. Wojke, N.; Bewley, A.; Paulus, D. Simple online and realtime tracking with a deep association metric. In Proceedings of the 2017

IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 3645–3649.
4. Zhang, Y.; Wang, C.; Wang, X.; Zeng, W.; Liu, W. FairMOT: On the Fairness of Detection and Re-identification in Multiple Object

Tracking. Int. J. Comput. Vis. 2021, 129, 3069–3087. [CrossRef]
5. Sun, P.; Jiang, Y.; Zhang, R.; Xie, E.; Cao, J.; Hu, X.; Kong, T.; Yuan, Z.; Wang, C.; Luo, P. TransTrack Multiple Object Tracking with

Transformer. arXiv 2020, arXiv:2012.15460.
6. Zhang, Y.; Sun, P.; Jiang, Y.; Yu, D.; Yuan, Z.; Luo, P.; Liu, W.; Wang, X. ByteTrack: Multi-Object Tracking by Associating Every

Detection Box. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; Springer:
Cham, Switzerland, 2022.

7. Aharon, N.; Orfaig, R.; Bobrovsky, B.-Z.J.A. BoT-SORT: Robust Associations Multi-Pedestrian Tracking. arXiv 2022,
arXiv:2206.14651.

8. Dorum, E.S.; Kaufmann, T.; Alnaes, D.; Richard, G.; Kolskar, K.K.; Engvig, A.; Sanders, A.M.; Ulrichsen, K.; Ihle-Hansen,
H.; Nordvik, J.E.; et al. Functional brain network modeling in sub-acute stroke patients and healthy controls during rest and
continuous attentive tracking. Heliyon 2020, 6, e04854. [CrossRef]

9. Arulmozhi, E.; Bhujel, A.; Moon, B.E.; Kim, H.T. The Application of Cameras in Precision Pig Farming: An Overview for
Swine-Keeping Professionals. Animals 2021, 11, 2343. [CrossRef]

10. Bhujel, A.; Arulmozhi, E.; Moon, B.E.; Kim, H.T. Deep-Learning-Based Automatic Monitoring of Pigs’ Physico-Temporal Activities
at Different Greenhouse Gas Concentrations. Animals 2021, 11, 3089. [CrossRef]

11. Pandey, S.; Kalwa, U.; Kong, T.; Guo, B.; Gauger, P.C.; Peters, D.J.; Yoon, K.J. Behavioral Monitoring Tool for Pig Farmers: Ear Tag
Sensors, Machine Intelligence, and Technology Adoption Roadmap. Animals 2021, 11, 2665. [CrossRef]

12. Wang, H.; Zhang, S.; Zhao, S.; Wang, Q.; Li, D.; Zhao, R. Real-time detection and tracking of fish abnormal behavior based on
improved YOLOV5 and SiamRPN++. Comput. Electron. Agric. 2022, 192, 106512. [CrossRef]

13. Ma, J.; Liu, D.; Qin, S.; Jia, G.; Zhang, J.; Xu, Z. An Asymmetric Feature Enhancement Network for Multiple Object Tracking of
Unmanned Aerial Vehicle. Remote Sens. 2023, 16, 70. [CrossRef]

14. Mar, C.C.; Zin, T.T.; Tin, P.; Honkawa, K.; Kobayashi, I.; Horii, Y. Cow detection and tracking system utilizing multi-feature
tracking algorithm. Sci. Rep. 2023, 13, 17423. [CrossRef]

15. Myat Noe, S.; Zin, T.T.; Tin, P.; Kobayashi, I. Comparing State-of-the-Art Deep Learning Algorithms for the Automated Detection
and Tracking of Black Cattle. Sensors 2023, 23, 532. [CrossRef] [PubMed]

16. Xu, Q.; Lin, X.; Cai, M.; Guo, Y.-a.; Zhang, C.; Li, K.; Li, K.; Wang, J.; Cao, D. End-to-End Joint Multi-Object Detection and Tracking
for Intelligent Transportation Systems. Chin. J. Mech. Eng. 2023, 36, 138. [CrossRef]

17. Zhang, K.; Liu, Y.; Mei, F.; Jin, J.; Wang, Y. Boost Correlation Features with 3D-MiIoU-Based Camera-LiDAR Fusion for MODT in
Autonomous Driving. Remote Sens. 2023, 15, 874. [CrossRef]

18. Guo, Q.; Sun, Y.; Orsini, C.; Bolhuis, J.E.; de Vlieg, J.; Bijma, P.; de With, P.H.N. Enhanced camera-based individual pig detection
and tracking for smart pig farms. Comput. Electron. Agric. 2023, 211, 108009. [CrossRef]

19. Zheng, Z.; Qin, L. PrunedYOLO-Tracker: An efficient multi-cows basic behavior recognition and tracking technique. Comput.
Electron. Agric. 2023, 213, 108172. [CrossRef]

20. Lu, J.; Chen, Z.; Li, X.; Fu, Y.; Xiong, X.; Liu, X.; Wang, H. ORP-Byte: A multi-object tracking method of pigs that combines
Oriented RepPoints and improved Byte. Comput. Electron. Agric. 2024, 219, 108782. [CrossRef]

21. Zou, X.; Yin, Z.; Li, Y.; Gong, F.; Bai, Y.; Zhao, Z.; Zhang, W.; Qian, Y.; Xiao, M. Novel multiple object tracking method for yellow
feather broilers in a flat breeding chamber based on improved YOLOv3 and deep SORT. Int. J. Agric. Biol. Eng. 2023, 16, 44–55.
[CrossRef]

22. Alameer, A.; Buijs, S.; O’Connell, N.; Dalton, L.; Larsen, M.; Pedersen, L.; Kyriazakis, I. Automated detection and quantification
of contact behaviour in pigs using deep learning. Biosyst. Eng. 2022, 224, 118–130. [CrossRef]

23. Huang, L.; Xu, L.; Wang, Y.; Peng, Y.; Zou, Z.; Huang, P. Efficient Detection Method of Pig-Posture Behavior Based on Multiple
Attention Mechanism. Comput. Intell. Neurosci. 2022, 2022, 1759542. [CrossRef]

24. Huang, Y.; Xiao, D.; Liu, J.; Tan, Z.; Liu, K.; Chen, M. An Improved Pig Counting Algorithm Based on YOLOv5 and DeepSORT
Model. Sensors 2023, 23, 6309. [CrossRef] [PubMed]

https://doi.org/10.3390/s22176541
https://www.ncbi.nlm.nih.gov/pubmed/36080994
https://doi.org/10.1007/s11263-021-01513-4
https://doi.org/10.1016/j.heliyon.2020.e04854
https://doi.org/10.3390/ani11082343
https://doi.org/10.3390/ani11113089
https://doi.org/10.3390/ani11092665
https://doi.org/10.1016/j.compag.2021.106512
https://doi.org/10.3390/rs16010070
https://doi.org/10.1038/s41598-023-44669-4
https://doi.org/10.3390/s23010532
https://www.ncbi.nlm.nih.gov/pubmed/36617130
https://doi.org/10.1186/s10033-023-00962-x
https://doi.org/10.3390/rs15040874
https://doi.org/10.1016/j.compag.2023.108009
https://doi.org/10.1016/j.compag.2023.108172
https://doi.org/10.1016/j.compag.2024.108782
https://doi.org/10.25165/j.ijabe.20231605.7836
https://doi.org/10.1016/j.biosystemseng.2022.10.002
https://doi.org/10.1155/2022/1759542
https://doi.org/10.3390/s23146309
https://www.ncbi.nlm.nih.gov/pubmed/37514604


Animals 2024, 14, 3299 16 of 16

25. Tu, S.; Zeng, Q.; Liang, Y.; Liu, X.; Huang, L.; Weng, S.; Huang, Q. Automated Behavior Recognition and Tracking of Group-
Housed Pigs with an Improved DeepSORT Method. Agriculture 2022, 12, 1907. [CrossRef]

26. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

27. Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271.

28. Psota, E.T.; Schmidt, T.; Mote, B.; Pérez, L.C. Long-Term Tracking of Group-Housed Livestock Using Keypoint Detection and
MAP Estimation for Individual Animal Identification. Sensors 2020, 20, 3670. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/agriculture12111907
https://doi.org/10.3390/s20133670
https://www.ncbi.nlm.nih.gov/pubmed/32630011

	Introduction 
	Method 
	Pig-ByteTrack Algorithm of Group-Housed Pigs 
	The Original ByteTrack Algorithm 
	The Pig-ByteTrack Algorithm 

	The Behavioral Analysis Algorithm 

	Experiment 
	Dataset 
	Experimental Results and Performance Comparison 
	Results Comparison of Pig-ByteTrack, ByteTrack, and TransTrack 
	Results of Pig-ByteTrack for 1 min Video in Private Dataset 
	Results of Pig-ByteTrack for 10 min Video Dataset 
	Behavioral Analysis for Four Video Segments in Private Dataset Algorithm 


	Conclusions 
	References

