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Simple Summary: The present study aimed to detail the vaginal microbiome of mares on the
post-delivery day under field conditions using the next-generation sequencing technique (NGS).
This method allows for the determination of bacterial species composition at multiple levels and
enables the assessment of biological diversity in the examined environment. It is believed that
greater bacterial diversity is more beneficial for the physiology of the organ. The bacteria colonizing
the vagina may include both saprophytic and potentially pathogenic microorganisms. Bacteria
inhabiting the mucous membranes engage in constant dialogue with the host’s immune system and
are essential for maintaining balance on the mucous membranes. In the present study, various species
of Corynebacterium spp. and Streptococcus spp. were identified, and their potential pathogenicity to
the endometrium should be considered.

Abstract: The vaginal bacteria are critical for neonatal immunity, as well as for further infections and
pathologies in foals and mares during the postpartum period. The vaginal microbiota was examined
in six mares. Swabs were taken from the vaginal caudal wall within 12 h after natural delivery.
Next-generation sequencing was used to analyze the composition of the vaginal microbiota and
identify shared bacterial taxa. The post-delivery vaginal microbiome of mares included 18 identified
families, 25 genera, and 33 species. The core families of the mares’ microbiome comprised Leptotrichi-
aceae (21.72%), Peptostreptococcaceae/Tisserellales (15.54%), Corynebacteriaceae (13.32%), Aerococcaceae
(10.84%), and Campylobacteraceae (4.26%). Shared bacterial species included Corynebacterium kutsheri,
Campylobacter spp., Facklamia spp., and Oceanivirga uncultured bacteria. We found the presence of
various Corynebacterium and Streptococcus species that could be involved in uterine disorders. Further
research should focus on the possible pathogenicity of these bacteria for mares in the postpartum
period and newborn foals.

Keywords: mare; microbiota; vagina; perinatal period; next-generation sequencing

1. Introduction

The uterine microenvironment has long been considered germ-free, although the
likely existence of commensal microbiota within the uterine compartment was assumed.
In recent years, thanks to the use of next-generation sequencing techniques (NGS), it has
become obvious that the endometrium and placenta host distinct microbiota [1,2]. Some
authors dispute the possibility of viable bacterial communities inhabiting the placenta and
suggest that the detected molecular signals of bacteria in the placenta are background DNA
contaminants or they may reflect bacterial products present in the maternal blood [3,4].
The nature of the colonization of the uterus, cervical canal, and oviduct remains even
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less precisely explored, especially in species other than humans. Besides a few studies
concerning the microbiome of the equine reproductive tract, there is still scarce information
regarding equine uterine microbiota [5,6]. The taxonomic representation of the uterine mi-
crobiome was found to be similar to that found at the external cervical ostium [7], although
samples taken from the placenta have indicated that this microbiome was significantly
different from the microbiome found in the vagina, mouth, and feces [6]. The bacterial
flora of the vagina in mares is very rich, as proven by ordinary bacterial culture [8,9] or
identified with MALDI-TOF [10]. A large number of bacteria colonizing the vagina may
be due to its location near the anus, and, therefore, possible contamination of this area
with feces. During mating, bacteria located on the stallion’s penis enter the vagina, and
bacteria located on the mare’s external genital organs may also be introduced. Most uterine
infections develop as a result of the transfer of pathogenic microflora through the vagina,
so the composition of the microbiome of this organ is crucial. Previous studies indicate
that the vagina may be a source of bacteria that reach the placenta, amniotic fluid, and
infant through the choriodecidual plate in humans [11,12]. However, vaginal bacteria are
critical for neonatal immunity, as demonstrated by comparisons between caesarean- and
vaginal-delivery offspring, highlighting the key role of vaginal microbiota in immune edu-
cation in infants [13–15]. We chose a period of up to 12 h after natural birth, without human
manipulation, to examine the microbiome because it may be crucial for the foal’s health
during this time. It is well known that, due to the tight placental barrier, antibodies do
not enter the blood of the fetus in horses [16]; therefore, the newborn foal is susceptible to
so-called environmental infections. Only the proper intake of colostrum rich in antibodies
by the foal largely guarantees its resistance to bacteria found in the environment [17]. For
this reason, the presence of pathogenic bacteria in the mare’s reproductive tract, which can
be transferred to the foal during delivery, is significant for the foal’s development.

Another important issue is the possibility of transmitting pathogenic bacteria ascend-
ing into the uterine lumen and causing postpartum metritis, which is quite common in
cows [18]. In mares, uterine involution occurs much more quickly compared to that ob-
served in other species of domestic animals; however, infection of the uterus during the
perinatal period can negatively affect the mare’s ability to conceive.

The aim of our research was to investigate and characterize the composition of the
vaginal microbiome of mares up to 12 h post-delivery under field conditions through the
sequencing of 16S rRNA in order to determine the core microbiome and the presence of
potentially pathogenic microorganisms.

2. Materials and Methods
2.1. Animals

The procedures conducted in these studies are routine veterinary activities and do
not require the consent of the Institutional Animal Care and Use Committee, which was
confirmed by the Local Ethical Committee at the University of Warmia and Mazury in
Olsztyn with decision #LKE.31.01.2020.

The research was conducted on six mares of Konik Polski Horses, born and raised
at a Stud Farm (the Research Station of the Institute of Animal Reproduction and Food
Research, Polish Academy of Sciences) in Popielno (53◦45′16.4′′ N, 21◦37′42.1′′ E). All mares
were mated naturally to the same stallion, following an ultrasound examination. The mares
were aged 5 to 16 years and weighed between 360 and 430 kg. The reproductive history of
the mares showed no pathologies in the past. The mare’s reproductive organs displayed
no abnormalities before mating, and the ultrasound images revealed no visible fluid or
other signs of inflammation. The mares gave birth in stalls under supervision, but without
human intervention, in the evening or late evening. The first postpartum check-up took
place two hours after delivery and aimed to determine whether the placenta had separated,
the foal had stood up and collected colostrum, and whether it had expelled meconium. A
complete clinical examination, including main vitals (pulse, temperature, and number of
breaths), was performed the next morning, approximately 12 h after delivery, to rule out
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any disease factors. Before a routine rectal examination of the mare’s reproductive organs
was conducted, a swab was taken after dilating the labia with a gloved hand. Five of the
six mares delivered in mid-March and one on the 15th of April. The inclusion criteria for
mares were as follows: use of the same stallion for mating, no signs of inflammation before
mating in the ultrasound examination, and no general diseases. The exclusion criteria for
the mares used in this study were as follows: a history of retained placenta and clinical
signs of endometritis before mating.

The mares were kept in a traditional stable system. During winter and spring, each
mare was housed in a single box and released to pasture in a group for 8 h per day. All
mares were fed with 8–10 kg of mixed grass–hay/horse/day while in the stable. The hay
used for the horses was sourced from cultivable meadows and pastures. The botanical
analysis of the forage, as well as the chemical analysis of the hay, has been presented
elsewhere [19]. When the horses were in the pasture, they had ad libitum access to grass,
water, and mineral licks. When housed in the boxes, they also consumed straw from the
bedding material and drank water twice daily in the stable. Licks containing NaCl 94%, Mg
2000 mg/kg, Co 18 mg/kg, Zn 810 mg/kg, Mn 830 mg/kg, I 100 mg/kg, and Se 10 mg/kg
were provided to the horses throughout the year.

2.2. Sampling

Before a routine rectal examination of the mare’s reproductive organs was performed,
a swab was taken after dilating the labia with a gloved hand without prior perineal cleaning.
The samples were taken with a sterile swab dipped in sterile 0.9% saline (Sarsted, Copan,
Brescia, Italy) [20] after opening the labia with a gloved hand. Swabs from each mare
were collected once, in duplicate, by rubbing the vaginal wall (caudal vagina) for 30 s
with the swab. A total of 12 swabs (2 per animal) were collected during sampling. The
specimens were quickly placed in cryogenic tubes at a temperature of −20 ◦C for freezing
and storage. After the collection of vaginal swabs was completed, the samples were shipped
in a styrofoam box with a cooler (at a temperature of 2–4 ◦C) by a courier service directly
for analysis (Genomed, Warsaw, Poland). The swabs were not refrozen.

2.3. DNA Extraction

Genomic DNA was isolated immediately after sample delivery using Genomic Mini
AX Bacteria (A&A Biotechnology, Gdansk, Poland), according to the manufacturer’s in-
structions, with an additional mechanical lysis of each sample facilitated by zircon balls in a
FastPrep® homogenizer (MP Biomedicals, Santa Ana, CA, Poland), following a previously
reported procedure [21]. The concentration of DNA was measured using the fluoromet-
ric method with a Qubit 4 fluorometer (Thermo Fisher Scientific, Gdynia, Poland). The
presence of bacterial DNA was confirmed with the qPCR reaction, using universal primers
1055F (5′-ATGGCTGTCGTCAGCT-3′) and 1392R (5′-ACGGGCGGTGTGTAC-3′) for 16S
rRNA [22]. Demineralized water was used as a negative control. The metagenomic analy-
sis of Bacteria and Archaea was based on the hypervariable region V3-V4 (encompassing
approximately 469 bp) of the amplification of the 16S rRNA gene. For the amplification of
the selected region and the preparation of DNA libraries, a pair of primers (341F and 785R),
along with NEBNext Q5 Hot Start High-Fidelity DNA Polymerase (NEB) (New England,
Biolabs, Ipswich, MA, USA), were used. For the measurement of DNA concentration,
1 µL of a reaction mixture was taken immediately after the PCR. The unpurified product
contained the reaction mixture with primers/dimer primers; therefore, the result for the
negative control was not zero. A concentration of up to a value of about 1.5 ng/µL was
considered acceptable. When the negative control was above this value (indicative of
contamination of PCR reagents), the reaction was repeated. Arbitrarily, it was assumed
that the lowest DNA concentration for the testing sample should be twice that of the
minimal concentration of the negative control. Finally, purification of the samples was
performed with AMPure XP (Fisher Scientific, Gdynia, Poland), followed by final DNA
measurement using the fluorometric method on the Tecan reader. PCR was conducted to
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index DNA in 50 µL reaction volumes. Next-generation sequencing was carried out on the
MiSeq sequencer (Illumina) using paired-end technology (PE300) by Genomed (Warsaw,
Poland). MiSeq Reporter (MSR) software v.2.6 was utilized for data analysis. To ensure
the classification of reads at the species level, bioinformatic analysis was conducted using
QIIME 2 software, a semiquantitative approach to microbial ecology based on the database
of reference sequences SILVA v.138. Data analysis from the NGS was performed, including
protocols with all sequences obtained after filtering. The diversity of the vaginal microbiota
was analyzed using alpha (Shannon and Simpson) and beta (Bray–Curtis) diversity in-
dices [23]. The diversity indices were calculated for all six mares. The Wilcoxon signed-rank
test was applied to compare the microbiota of every two mares. The calculations were
performed separately at the family, genus, and species taxonomic levels. All calculations
were performed in the MATLAB R2020a environment. Taxa present in amounts equal to
or greater than 1% of the total identified DNA sequences in at least one of the individuals
were classified as ‘abundant,’ as proposed by Kim et al. [24]. If the proportion of identified
sequences was <1%, taxa were classified as ‘nonabundant’.

2.4. Alpha Diversity

The diversity of the microbiota in mares was analyzed using two standard alpha
diversity indices (Shannon and Simpson) [23].

The Shannon diversity index is the standard statistical measure of diversity within a
given community. It is defined as follows:

DSh = −
R

∑
i=1

pi ln pi . (1)

In the above formula, R is the richness of the community, i.e., the total number of
types in the community. Moreover, pi is the relative abundance of the i-th type, i.e., the
proportion of individuals of the i-th type found divided by the total number of individuals
observed. Note that some authors define DSh as the exponent of (1).

The Simpson diversity index is defined as follows:

DSi =
1

∑R
i=1 pi

2
. (2)

Here, the notation is the same as that in Formula (1). DSi measures the degree
of concentration of the community. The calculations were performed in the MATLAB
R2022b environment.

2.5. Beta Diversity

Beta diversity was analyzed using the Bray–Curtis index, which is the standard and
well-established tool for comparing microbiota. The Bray–Curtis distance between two
communities, A and B, is defined as follows:

BC = 1 − 2CAB
SA + SB

. (3)

Here, SA is the total number of specimens counted in community A, SB is the total
number of specimens counted in community B, and CAB is the sum of only the lesser counts
for each species found in both communities.

Principal Component Analysis (PCA) was applied to the Bray–Curtis distances in
order to detect subgroups of mares with similar characteristics of their microbiota. The
calculations were performed in the MATLAB R2022b environment.
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2.6. Statistical Analysis

Since the analyzed data were not Gaussian, the Wilcoxon signed-rank test was applied,
and the corresponding p-value was calculated to compare the microbiota of each pair
of mares.

3. Results
3.1. DNA Sequence Data

A total of 5041 evaluated qualitatively operational taxonomic units (OTU) generated
using the Illumina MiSeq platform (16S rDNA) were obtained for the mares. The mean
OTU per sample for mares was 81,490, ranging from 45,116 to 115,563.

3.2. Alpha Diversity Analysis
3.2.1. Species Level

We observed large differences in the biodiversity of the microbiomes of the six mares.
Based on the results obtained for the Shannon and Simpson indices (see Figures 1 and 2), it
is noteworthy that by far the highest biodiversity is observed in Mare 4, while the lowest is
found in Mares 5 and 6. None of the examined mares have coexisting, apparent diseases,
and we did not find or estimate any rational reason why No 4 and 5 create a separate
cluster, differing strongly from the other mares.
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3.2.2. Age of Mares

We also checked the dependence between the age of the mares and the corresponding
alpha diversities. Using the Pearson correlation coefficient, we tested the null hypothesis of
no correlation between age and Shannon/Simpson index. In the case of the Shannon index,
the p-value is p = 0.3858. For the Simpson index, p = 0.2873. Therefore, we conclude that
there is no dependence between the age and the alpha diversity indices.

3.3. Beta Diversity Analysis—Species Level

The analysis of Bray–Curtis distances (see Figure 3) also indicates significant differ-
ences between the microbiomes of the mares. By far, the largest Bray–Curtis index values
(i.e., the greatest differences) are observed between Mares 5 and the others. Additionally,
Mare 4 shows a strong difference from the others.

Animals 2024, 14, x FOR PEER REVIEW 6 of 16 
 

 
Figure 2. Simpson index calculated for all six mares on the species level. 

3.3. Beta Diversity Analysis—Species Level 
The analysis of Bray–Curtis distances (see Figure 3) also indicates significant differ-

ences between the microbiomes of the mares. By far, the largest Bray–Curtis index values 
(i.e., the greatest differences) are observed between Mares 5 and the others. Additionally, 
Mare 4 shows a strong difference from the others. 

We found confirmation of the above observation in the PCA (see Figure 4). It can be 
seen that Mares 1, 2, 3, and 6 form a single cluster, while Mares 4 and 5 significantly differ 
in their microbiome characteristics from the rest. 

 
Figure 3. Bray–Curtis distances between all six mares calculated on the species level. Figure 3. Bray–Curtis distances between all six mares calculated on the species level.

We found confirmation of the above observation in the PCA (see Figure 4). It can be
seen that Mares 1, 2, 3, and 6 form a single cluster, while Mares 4 and 5 significantly differ
in their microbiome characteristics from the rest.
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3.4. Statistical Tests
Species Level

The paired Wilcoxon signed-rank test was used to compare the microbiomes of each
pair of mares. Only taxa with non-zero abundance for at least one individual were ana-
lyzed. The p-values obtained (see Table 1) confirm that the microbiomes of the mares are
significantly different. For all pairs, except two pairs (1–2 and 4–5), the test showed that the
microbiome distributions are significantly different from each other. Here, the so-called
exponential notation is used, e.g., notation of the form 3.74E−52 means 3.74 × 10−52.

Table 1. p-values of the paired Wilcoxon test applied to every two mares. Red indicates p-values
below the significance level α = 0.05.

p-Values of
Wilcoxon Test Mare 1 Mare 2 Mare 3 Mare 4 Mare 5 Mare 6

Mare 1 1
Mare 2 0.216 1
Mare 3 3.74E−52 8.59E−36 1
Mare 4 1.88E−23 1.10E−15 5.78E−16 1
Mare 5 3.22E−15 3.84E−14 1.21E−06 0.204 1
Mare 6 2.85E−04 0.038 1.12E−50 3.86E−32 7.02E−25 1

3.5. Microbial Community Composition

The microbial community structures were analyzed for all mares at 12 h post-delivery,
including the averages for all animals, as well as individually significant differences. At
the kingdom level, the vaginal microbiome predominantly consists of bacteria, for which
the average percentage of identified sequences clearly exceeds 90% (97.69%), while the par-
ticipation of archaea was classified as nonabundant (<1%). Among the identified phyla, the
most abundant in the vaginal mucosa were Firmicutes (41.48%), followed by Fusobacteriota
(25.29%), Actinobacteriota (16.80%), Bacteroidota (7.69%), and Campylobacterota (4.26%).
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The most abundant classes inhabiting the vagina were Fusobacteria (25.29%), Clostridia
(22.26%), and Bacilli (19.01%), however, Campylobacteria were identified in small percent-
ages (4.26%).

At the family level, all mares shared 5 of the 18 identified families, including Lep-
totrichiaceae (21.72%), Peptostreptococcaceae/Tisserellales (15.54%), Corynebacteriaceae (13.32%),
Aerococcaceae (10.84%), and Campylobacteraceae (4.26%) (see Figure 5). Surprisingly, the
family Streptococcaceae was present as abundant in only two of the six examined mares,
varying from 3.14% to 40.43%.
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The genera representative for all mares include Oceanivirga (21.72%), Corynebacterium
(12.94%), Facklamia (9.73%), and Campylobacter (4.26%) (see Figure 6). At the species level,
all mares had Corynebacterium kutsheri (2.79%), Campylobacter spp. (3.95%), Facklamia spp.
(9.65%), and Oceanivirga uncultured bacteria (21.72%) (see Figure 7). It should be noted that
the composition of the microbiome in two of the six examined mares is clearly distinguished
from the others. Mare No.4 displayed the most diverse microbiome, with 20 identified
abundant genera, whereas the range of the same taxa in the remaining four varies from 8 to
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12. On the other hand, Mare No.5 demonstrated extremely poor diversity of microbiome,
with a high percentage participation of only six genera, while the sequences identified for
Streptococcus (40.43%) in this mare were the most abundant of all identified in this study.
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4. Discussion

The mare’s vagina, as expected, was found to be richly inhabited by bacteria. The
results obtained through the use of NGS techniques showed that, at the kingdom level, the
vaginal microbiome primarily comprises Bacteria, while Archaea was classified as nonabun-
dant (<1%). The timing of this study is crucial due to the risk of infection passing through
the reproductive tract onto the foal during delivery, as well as the potential for developing
postpartum metritis, difficulties in uterine involution, and successful conception of a mare
during post-foal heat. There has been an increasing interest in characterizing the nature of
microbial colonization within the uterus and lower genitourinary tract and its apparent
impact on fertility and pregnancy [25]. The mucosal immune system is responsible for
interfacing with the outside world, where pathogens can pose a primary challenge. It has
been proven that microbiota are involved in the anatomical and functional development of
mucosal adaptive immunity [26]. In cows, the predominant bacteria in puerperal metritis,
as well as in the normal bovine microflora, were found in the environment. It was believed
that the uterine microbiota enriches from the environment when the dam calves [18,27]. It
has, however, been shown that the same bacteria that cause metritis are part of the normal
bovine bacterial community [18]. Bacteria commonly implicated in equine endometritis
include Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus aureus,
Streptococcus equi subsp. zooepidemicus, and other β-haemolytic Streptococcus spp. [28,29].
This variety of bacteria, which may be pathogenic, but also includes commensals inhab-
iting the reproductive tract in mares, causes great diagnostic difficulties. A new player
has emerged in horse reproduction, Corynebacterium uterequi, which is isolated from the
endometrium of mares suffering from clinical and chronic endometritis and experiencing
difficulties in becoming pregnant [30] and has been isolated from the discharge of the mare’s
genital tract and uterus [31]. Members of the Corynebacterium genus are known to exist as
commensals, forming part of the normal host microbiota [32]; however, Corynebacterium
spp. are increasingly recognized as pathogens [33]. Representatives of the Corynebacterium
genus were isolated from the reproductive tract and placenta of mares in cases of inflamma-
tion and abortion [31]. Corynebacterium spp. were present in the mare’s vaginal microflora
in the current study and constituted the vaginal ‘core.’ Further research is necessary to
more precisely determine the pathogenicity of the bacteria in this genus.

In healthy mares, the bacterial culture showed that there are changes in the bacte-
rial microbiota of the mare’s vagina throughout the normal estrous cycle. The dominant
bacteria were Escherichia coli and Streptococcus zooepidemicus. E. coli was especially dom-
inant in maiden mares compared to those that had foaled [9]. These results are very
significant considering that these bacteria are the main source of infection in equine en-
dometritis [28,34,35].

The core equine vaginal microbiome, examined during the estrous cycle in Arabian
mares, consisted of Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria at the phy-
lum level, which aligns with the results obtained in the mares in the present study. At
the genus level, it was characterized by Porphyromonas, Campylobacter, Arcanobacterium,
Corynebacterium, Streptococcus, Fusobacterium, Kiritimatiaellae, and Akkermansia [5]. How-
ever, at the genus level, we found some differences, and the dominant genera identified
in the vaginal samples were Oceanivirga, followed by Corynebacterium and Helcococcus.
Porphyromonas and Campylobacter described in Arabian mares were less prevalent in our
study, as well as Mobiluncus, Globicatella, Streptococcus, and Peptostreptococcus, along with
uncultured genera from Peptostreptococcaceae, Peptoniphilus, and Fusobacterium. Comparing
the results at the genus level regarding the core microbiome, it was found that the genera
Campylobacter and Corynebacterium constituted the core microbiome in all tested individuals.
In our own research, the genera Facklamia and Oceanivirga also formed part of the core
microbiome, while, in the study by Barba et al., they constituted less than 85% [5]. We
used six individuals in our research, while Barba et al.’s study was carried out on eight
mares [5]. Therefore, in the case of our tests, it is impossible to achieve a threshold above
85% if the same bacteria were not found in all tested mares. The genus Porphyromonas,
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which in Barba et al.’s study was the core microbiome in 87.5% of the tested mares [5],
was present in 83.33% in our study. It is possible that if our research included a larger
number of individuals, the results would be even more similar. Lactic acid bacteria, which
dominate human vaginal microbiota [36], do not dominate in equines and were shown
to comprise only 0.18% of the taxonomic composition in estrus and 0.37% in diestrus [5].
The vaginal bacterial community reported in Barba et al.’s study [5] shows similarities to
the previously described equine distal gastrointestinal tract fecal microbiome [37], which
may lead to the conclusion that the colonization of the vaginal tract occurs mainly due to
fecal contamination [5]. In another study conducted on pregnant mares, the most abundant
phyla, including Firmicutes, Proteobacteria, and Bacteroidetes, were shared among vaginal,
placental, oral, and fecal microbiomes [38].

The composition of the vaginal microbiome is also important due to the possibility of
developing placentitis during pregnancy through the ascending route. The microorganisms
associated with ascending placentitis include Streptococcus equi subspecies zooepidemicus,
E. coli, Streptococcus equisimilis, Klebsiella pneumoniae, and Pseudomonas aeruginosa [29]. In
the study by Beckers et al. [6], samples were collected from the oral cavity, vagina, anus,
and placenta of five pregnant mares between 96 and 120 days of gestation to examine the
core bacterial communities. Alpha diversity was significant, with the body sites being a
compounding variable, indicating there was a difference in richness and evenness in the
different microbial populations [6].

During pregnancy, the amnion is the innermost extra-embryonic membrane that
surrounds the fetus, forming an amniotic sac that contains the amniotic fluid. An amniotic
sac usually breaks spontaneously during parturition, when a shoulder of a crowded equine
fetus passes through the pelvic canal. For this reason, the question arises of when the
mucous membranes of the newborn are colonized by the microbiota and where they
originate from. In human medicine, it has been demonstrated that the microbial flora of the
maternal vagina affects the flora of the early period in babies delivered via spontaneous
vaginal delivery [39,40].

The limitation of microbiome research based on the 16S subunit is that species-related
results, analyzed below the genus level, involve margins of error. Therefore, we are cautious
in drawing conclusions about which of the identified bacteria are clearly pathogenic and
undesirable. Nevertheless, the determination of the vaginal microbiological core, due to
both the potential risk of infection in the foal and the possibility of postpartum complica-
tions in the form of postpartum metritis, is crucial for protecting the health of the mare and
the foal.

The equine vagina harbors a distinct resident microbiome during the perinatal period,
characterized by metagenetics, that may settle the foal’s mucosa during parturition or
cause postpartum uterine infection. On the other hand, the vagina may contain commensal
bacteria that, after colonizing the mucous membranes of the newborn during delivery,
will be responsible for maintaining the proper microbiological balance and enhancing the
immunity of the host’s mucous membranes.

5. Conclusions

An in-depth analysis of the obtained results allows us to conclude that shared mi-
croorganisms, which may be included in the early post-foaling core microbiome of mares,
represent bacteria from the families Corynebacteriaceae, Campylobacteraceae, Aerococcaceae,
Leptotrichiaceae, and Peptostreptococcales-Tissierellales, all of which were present in all indi-
viduals as abundant taxa. However, marked individualization characterizes all taxonomic
levels, where the number of identified taxa differed among the mares.
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