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Simple Summary: This study presents a novel algorithm to enhance object-based image segmentation
for machine learning applications. The algorithm achieves precise object delineation by integrating
convolutional operations, quantization techniques, and polynomial adjustments and generates rich
metadata. This methodology improves feature extraction accuracy and ensures consistent object
representation across diverse conditions. The empirical results demonstrate substantial advancements
in object identification and classification accuracy, particularly in complex scenarios. Compared to
traditional methods, the proposed algorithm offers superior computational efficiency. This research
provides a scalable and effective preprocessing pipeline that significantly enhances the performance of
machine learning models. Future efforts will focus on optimizing dynamic parameters and extending
the algorithm’s application to broader datasets.

Abstract: A critical issue in image analysis for analyzing animal behavior is accurate object detection
and tracking in dynamic and complex environments. This study introduces a novel preprocessing al-
gorithm to bridge the gap between computational efficiency and segmentation fidelity in object-based
image analysis for machine learning applications. The algorithm integrates convolutional opera-
tions, quantization strategies, and polynomial transformations to optimize image segmentation in
complex visual environments, addressing the limitations of traditional pixel-level and unsupervised
methods. This innovative approach enhances object delineation and generates structured metadata,
facilitating robust feature extraction and consistent object representation across varied conditions. As
empirical validation shows, the proposed preprocessing pipeline reduces computational demands
while improving segmentation accuracy, particularly in intricate backgrounds. Key features include
adaptive object segmentation, efficient metadata creation, and scalability for real-time applications.
The methodology’s application in domains such as Precision Livestock Farming and autonomous
systems highlights its potential for high-accuracy visual data processing. Future work will explore
dynamic parameter optimization and algorithm adaptability across diverse datasets to further refine
its capabilities. This study presents a scalable and efficient framework designed to advance machine
learning applications in complex image analysis tasks by incorporating methodologies for image
quantization and automated segmentation.

Keywords: automated feature extraction; computational efficiency; image quantization; image
segmentation; machine learning optimization; metadata generation; precision livestock farming;
object-based preprocessing

1. Introduction

A significant challenge in image analysis for studying animal behavior is achieving
precise object detection and tracking, particularly within dynamic and complex environ-
ments [1,2]. This involves identifying and following individual animals across scenes,
including erratic movements, varying postures, and interactions with other animals or
environmental elements. The complexity is further compounded by overlapping objects,
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occlusions, and visually cluttered backgrounds, which hinder the algorithm’s ability to
consistently and accurately isolate and monitor the target animal or its particular feature [3].

The rapid advancements in machine learning (ML) and computer vision have under-
scored the critical importance of precise image segmentation as a precursor to robust model
training and reliable predictive performance. Object-based segmentation, emphasizing the
identification of distinct objects instead of individual pixels, has become a critical research
focus. This approach is particularly valuable in complex and dynamic visual settings, where
traditional pixel-based methods often fail to maintain object-specific details, resulting in
reduced classification accuracy and higher computational demands. While advancements
in machine learning have significantly enhanced image analysis, ensuring reliable and effi-
cient segmentation in these contexts remains a persistent challenge. Previous studies have
explored various preprocessing and segmentation techniques to address these challenges.
Convolutional neural networks (CNNs) and transfer learning models have proven their
efficacy in structured environments. However, the process often demands extensive com-
putational resources, limiting their scalability for real-time applications [4–6]. On the other
hand, unsupervised approaches, such as K-means clustering and principal component
analysis (PCA), offer computational efficiency but lack the adaptability required for highly
variable visual contexts [7–10]. While quantization and mathematical morphology have
shown promise in simplifying image complexity and enhancing feature extraction, their
integration into a cohesive preprocessing pipeline remains an open challenge [11,12].

In contrast to conventional methods that primarily depend on pixel-level modifi-
cations or computationally intensive processes, we propose an algorithm that combines
convolutional operations, quantization strategies, and polynomial transformations to en-
hance segmentation accuracy while minimizing computational complexity. Such a move
addresses a critical gap in literature by proposing an innovative preprocessing algorithm
tailored for object-based image segmentation in complex visual environments. By gen-
erating metadata for each object, the framework enables enhanced interpretability and
manageability of training datasets, providing a scalable solution for machine learning
applications requiring precise object classification.

The current study aims to develop a systematic preprocessing pipeline that bridges
the gap between computational efficiency and segmentation fidelity. The proposed ap-
proach aims to improve machine learning model performance in real-time and resource-
constrained environments through adaptive object delineation and feature extraction. By
addressing the limitations of existing methods, this research contributes a novel framework
that paves the way for advancements in automated image processing and its applica-
tion to high-stakes domains such as medical diagnostics, environmental monitoring, and
autonomous systems.

2. Background
2.1. Image Preprocessing and Segmentation in Machine Learning

Image preprocessing plays a pivotal role in optimizing data quality, enhancing the
accuracy of machine learning models, and ensuring robust image analysis workflows. Ef-
fective preprocessing techniques, such as image resizing, color adjustment, and noise
reduction, enable the extraction of salient features, which are particularly critical in
domains like medical imaging and autonomous systems [8,13,14]. These methods re-
duce computational overhead and standardize datasets, contributing to more reliable
model performance.

Modern approaches frequently incorporate convolutional operations to normalize
pixel intensities, thereby improving segmentation efficacy and the reliability of downstream
predictions [15,16]. For instance, techniques such as histogram equalization have been
widely applied to enhance contrast in low-light environments, while Gaussian smoothing
is often used to suppress noise without compromising structural details [17].

Boundary delineation is another essential preprocessing step, with algorithms like
the Canny edge detector and Sobel filter being commonly employed to extract structural
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contours critical for accurate segmentation [18,19]. This step ensures that models can
identify object boundaries in diverse contexts, from biomedical imaging to remote sensing
applications. Optimized preprocessing has been shown to significantly boost machine
learning model performance in complex visual environments, such as those characterized
by high object density, low contrast, or overlapping objects [6,20].

Advanced adaptive preprocessing techniques have further enhanced segmentation ca-
pabilities. As Zhou et al. [20] demonstrated, convolutional kernels tailored to the dataset’s
specific characteristics can achieve high-fidelity segmentation in multidimensional data, en-
abling accurate feature extraction even in highly heterogeneous datasets. These approaches
align with the broader shift toward computationally efficient preprocessing strategies that
integrate seamlessly with sophisticated machine learning architectures, such as convolu-
tional neural networks (CNNs) and transformers [21,22].

Furthermore, recent developments in unsupervised and semi-supervised learning
have expanded the role of preprocessing in segmentation tasks. Techniques such as
clustering-based preprocessing or generative adversarial networks (GANs) for data aug-
mentation have proven effective in addressing data scarcity and improving segmen-
tation performance across diverse applications, including agricultural monitoring and
industrial inspection [23–25].

In summary, image preprocessing and segmentation form the foundation of effective
machine learning pipelines for image analysis. By adopting adaptive and computationally
efficient strategies, researchers can ensure robust model training and deployment across a
wide range of challenging visual contexts.

2.2. Mathematical Morphology and Image Feature Extraction

Mathematical morphology, utilizing operators such as dilation, erosion, and convo-
lutional structuring elements, is fundamental in analyzing object shapes and sizes within
images. As pioneered by Serra [26], morphological operations offer a systematic method-
ology for isolating salient image features, thereby refining segmentation and enhancing
classification accuracy [27]. This technique has proven particularly valuable in delineat-
ing structures within medical images, underscoring its suitability for tasks demanding
precise object identification [28]. Contemporary applications have successfully integrated
morphological transformations with machine learning models, augmenting feature clarity
and model interpretability [12]. This synergistic approach streamlines the workflow from
feature extraction to model training, a process integral to the present study’s method-
ology [29]. Furthermore, novel methods combining morphological thresholding with
contextual features demonstrate considerable promise in complex segmentation tasks,
including ultrasound imaging [29] and optic disc detection [30]. Figure 1 represents the
image and the shape definition calculation.
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components, adapting to the unique requirements of the dataset. 

This example underscores the versatility and precision of mathematical morphology 
when used in conjunction with tailored structuring elements. By enabling targeted pixel-
level analysis, this methodology enhances the robustness of image segmentation processes 
across diverse applications. Some structures of morphology are shown in Figure 3. 

Figure 3 represents the application of cross, ellipse, and rectangle morphology. 

Figure 1. Example of the image pixels. (a) Example of the shape of the image (b). Source: Adapted
from Ledda [31].

Mathematical morphology is a powerful framework for image segmentation and
feature extraction, utilizing mathematical models to process and analyze the geometric
and spatial structures within images. By defining shapes and leveraging set theoretical
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and topological operations, mathematical morphology enables precise identification and
characterization of features in complex datasets.

For instance, as illustrated in Figure 1, the segmentation process begins with the
definition of a target shape within the image. In Figure 1a, the target feature is identified by
calculating pixel distances relative to a central pixel. Specifically, two pixels are measured
from the bottom to the central pixel, two pixels from the central pixel to the top, and
two pixels each from the east and west. This structured approach facilitates the accurate
delineation of the desired feature’s shape.

Another practical application of mathematical morphology involves leveraging mor-
phological operations available in libraries such as OpenCV. As demonstrated in Figure 2,
morphological operations can employ various structuring elements, including cross, el-
liptical, or rectangular shapes. These structuring elements determine the regions where
morphological operations are applied, with pixels denoted by 1 indicating areas of opera-
tion and pixels denoted by 0 representing non-operational areas. The adaptability of these
structuring elements enhances the flexibility and robustness of morphological analysis,
allowing it to be tailored to a wide range of image-processing tasks.
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These examples underscore the significance of mathematical morphology in improving
the accuracy and efficiency of image segmentation, making it an indispensable tool in
applications such as medical imaging, industrial inspection, and remote sensing. Figure 2
represents the structuring of cross, ellipse, and rectangle morphology and the image base
to apply these morphologies.

In Figure 2, the structuring elements—cross, ellipse, and rectangle—are presented,
with each element defining regions of interest for morphological operations. Pixels assigned
a value of 1 denote areas where measurements or transformations will be applied, whereas
pixels assigned a value of 0 indicate regions excluded from these operations. This binary
representation forms the basis for precise and targeted feature analysis within images.

When these morphological structuring elements are applied to the original image, as
demonstrated in Figure 3, the resulting transformations highlight specific spatial features
and geometries. This approach allows for the effective segmentation and analysis of image
components, adapting to the unique requirements of the dataset.
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This example underscores the versatility and precision of mathematical morphology
when used in conjunction with tailored structuring elements. By enabling targeted pixel-
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level analysis, this methodology enhances the robustness of image segmentation processes
across diverse applications. Some structures of morphology are shown in Figure 3.

Figure 3 represents the application of cross, ellipse, and rectangle morphology.
As depicted in Figure 3, the application of different morphological structuring

elements—cross, ellipse, and rectangle—results in distinct transformations of the original
image. These transformations demonstrate the adaptability of mathematical morphology
in tailoring image analysis to specific spatial patterns and features.

The benefits of employing morphology in image processing include its ability to
enhance the extraction of geometric features and improve the segmentation of complex
structures. For instance, cross morphology (Figure 3a) emphasizes linear and intersecting
features, making it suitable for detecting narrow, grid-like patterns. Ellipse morphology
(Figure 3b), on the other hand, is effective in isolating rounded or elliptical shapes, optimiz-
ing the segmentation of circular regions. Rectangular morphology (Figure 3c) is particularly
advantageous for detecting elongated or rectangular structures, such as edges or contours.

These morphological operations provide a robust framework for preprocessing and
feature extraction in machine learning workflows. By enabling targeted and adaptive
image transformations, mathematical morphology facilitates improved accuracy in down-
stream classification and analysis tasks, especially in scenarios involving diverse and
complex datasets.

2.3. Quantization Techniques in Image Processing

Quantization techniques reduce image complexity by clustering pixel values, allowing
for efficient data processing while minimizing information loss. Among these techniques,
K-means clustering is widely recognized for its effectiveness in simplifying image data [11].
Recent studies have shown that quantization reduces data volume and enhances feature vis-
ibility, which is essential in classification tasks [30]. This method enables the management
of complex visual scenes by standardizing pixel representation, lowering computational
requirements, and facilitating further model analysis [31]. Kalake et al. [32] combined quan-
tization with feature labeling to optimize data preparation for segmentation, showcasing
its potential in automated, large-scale image analysis. Additionally, advanced quantization
methods, such as those incorporating cellular automata and quantum dots, have opened
new avenues for nanoscale image processing [33], while innovative approaches in water-
level recognition and object tracking have demonstrated the versatility of quantization
across various applications [34,35].

2.4. Convolutional and Clustering Methods for Segmentation Enhancement

Convolutional and clustering methods play crucial roles in machine learning-based
image segmentation, where convolutional operations help detect spatial hierarchies, and
clustering techniques refine segmented areas. Convolutional networks filter image features
effectively, establishing a foundation for robust image analysis [36]. Meanwhile, clustering
techniques, such as K-means++, enhance differentiation within segmented regions, making
these approaches valuable in medical and technical imaging [37]. Previous studies have
confirmed that using convolutional and clustering methods together improves object local-
ization and feature mapping accuracy, which is critical for applications requiring detailed
segmentation, such as in robot-assisted surgery and regenerative medicine imaging [38,39].
The approach proposed in the current study employs a convolution-clustering approach,
showcasing its potential to enhance segmentation accuracy, especially in complex image
datasets characterized by high variability [39,40].

2.5. Applications of Image Processing in Machine Learning

Image processing is a cornerstone of automated object detection and classification in
machine learning, enabling the extraction of meaningful patterns and features from visual
data. Modern advancements, particularly in convolutional neural networks (CNNs) and
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transfer learning, have significantly improved the ability of models to identify intricate
patterns within extensive datasets, enhancing performance across numerous domains [41,42].

In the medical field, image processing techniques have been instrumental in develop-
ing systems for early disease detection and diagnosis. Applications such as breast cancer
prediction using mammographic images, leukemia classification through blood smear
analysis, and brain imaging for Alzheimer’s detection highlight the critical role of image
processing in improving healthcare outcomes [43,44]. Veterinary science also benefits from
these advancements, with applications including livestock health monitoring [45,46].

Beyond healthcare, the applications of image processing extend into industrial, agricul-
tural, and environmental domains. For instance, textile quality control utilizes image-based
techniques for defect identification and fiber composition analysis [42,43]. In agriculture,
image processing aids in tasks such as crop disease detection, weed identification, and yield
prediction [46,47]. Meanwhile, remote sensing applications leverage high-resolution satel-
lite imagery for urban planning, environmental monitoring, and disaster management [47].

The integration of preprocessing, quantization, and feature extraction methodologies
in image processing pipelines has further expanded the practical scope of machine learning
in complex visual data applications. These techniques optimize model training workflows,
reduce computational overhead, and enhance interpretability, making them indispensable
for handling high-dimensional and heterogeneous data [8].

Table 1 includes a list of applications by domain of uses of image processing and
machine learning.

Table 1. Applications by domain of uses of image processing and machine learning.

Description References

Articles exploring machine learning and image processing applications in monitoring livestock
health, behavior, and stress. [1,3,7,12,15]

Research focused on classifying, segmenting, and analyzing agricultural products like fruits,
vegetables, and herbs using ML techniques. [4,8,11,16,19]

Papers that discuss the role of image processing in detecting diseases or analyzing medical images for
diagnosis and treatment planning. [2,5,9,13,17]

Studies on the use of machine learning to monitor wildlife, assess ecological conditions, or detect
environmental changes. [6,10,14,18,20]

Studies on the use of machine learning to monitor wildlife, assess ecological conditions, or detect
environmental changes. [21,24,26,29,30]

Articles with focus on urban planning, infrastructure management, or traffic analysis using advanced
image processing techniques. [22,23,27,28,31]

As illustrated in Table 1, image processing and machine learning demonstrate diverse
applications across various domains. These include monitoring livestock health, behavior,
and stress; advancing urban planning, infrastructure management, and traffic analysis
through sophisticated image processing techniques; and contributing to medical fields
by facilitating disease detection and the analysis of medical images for diagnosis and
treatment planning.

3. Methods

A structured research design was applied to the present study (Figure 4), progressing
through six stages to address the research objectives effectively. Each stage was designed to
ensure a systematic approach to image preprocessing, segmentation, and feature extraction,
which is critical for enhancing machine learning applications in image analysis. The
following sections outline each phase in detail, making the methodology replicable and
aligned with the research question.
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3.1. Theme Definition and Background

The initial stage involves identifying the research problem and defining the research
topic. This step narrows the study’s scope by pinpointing specific challenges in automated
image processing for machine learning applications. Through thoroughly examining exist-
ing research gaps, this phase establishes the research objectives and justifies the necessity of
further investigation into advanced preprocessing and segmentation techniques. The defi-
nition of the research problem is guided by preliminary observations and trends in image
processing applications, ensuring a clear foundation for subsequent stages. Our hypothesis
is that it is possible to create a framework able to apply quantization and segmentation
processes on images with complex backgrounds, such as images of cattle in nature.

Following the theme definition, a comprehensive literature review involves gathering
the relevant literature on crucial topics, including image preprocessing, segmentation,
quantization, machine learning in image analysis, and mathematical morphology. Sources
are selected based on their contributions to these subfields, providing theoretical grounding
and identifying established methodologies, tools, and unresolved challenges. The findings
from the literature review informed the design of processing stages and helped justify the
choice of analytical tools and approaches (Figure 5).
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A systematic search of the Scopus and Web of Science databases was conducted
using keywords related to image preprocessing and machine learning. An initial pool of
507 records, filtering by article type to include only peer-reviewed academic articles, was
reduced to 257. Applying a language filter to select articles written in English further
narrowed the selection to 231 articles. Restricting the publication date to the period
between 2022 and 2024 yielded 62 articles, a timeline chosen to capture the most recent
advancements in the field. After removing duplicates and conducting a detailed screening
of titles and abstracts, 56 articles were subjected to a quality assessment. Ultimately,
47 articles were selected based on their relevance to the research topic. This systematic
and rigorous selection process ensured a high-quality and focused dataset of studies,
providing studies that met specific quality and relevance criteria in image preprocessing,
segmentation, quantization, feature extraction, and mathematical morphology within the
context of machine learning and image analysis.

3.2. Image Preprocessing

In the image preprocessing phase, contemporary methodologies often integrate con-
volutional operations to normalize pixel intensities, thereby enhancing segmentation accu-
racy and improving the reliability of downstream predictive tasks [15,16]. Furthermore,
advanced adaptive preprocessing techniques have significantly improved segmentation
performance, as highlighted by Zhou et al. [20].

In this context, a series of raw images are provided and undergo initial processing
of pixel median calculation to generate an image with less noise and reduce the number
of cores in the original image. A new image with a single-color channel was generated
through an initial convolution from the image transmitted in memory to unify the channels
to ensure better results, preparing the images for more advanced processing in subsequent
stages. The initialization of all models was also performed at this stage. This step is
crucial to standardizing input data and reducing core variability. Preprocessing procedures
minimize potential biases in the data, such as lighting or image quality inconsistencies,
which can influence the protection of segmentation and feature extraction.

3.3. Image Quantization

The image quantization process, as highlighted in the literature, plays a critical role
in reducing data volume while enhancing the visibility of salient features, a crucial aspect
of classification tasks [30]. K-means clustering, in particular, is widely acknowledged
for its efficiency in simplifying image data by grouping similar pixels into clusters [11].
Additionally, Kalake et al. [32] demonstrate the integration of quantization with feature
labeling as an effective strategy to optimize data preparation for segmentation, further
improving the accuracy and efficiency of subsequent processing steps.

In this context, image quantization is a critical step in the preprocessing pipeline,
aimed at reducing the complexity of visual data by limiting the number of unique colors
while retaining the essential features required for subsequent machine learning tasks.
The process begins with reshaping the image into a one-dimensional array, where the
multidimensional pixel data are transformed into a single column with multiple rows. This
adjustment standardizes the data structure, enabling efficient input into clustering models.
The next step, fitting the model, involves defining the number of clusters that represent
the desired palette of colors. The fitting process generates an array containing the selected
colors or centroids, representing the image’s dominant tones.

Subsequently, each pixel is assigned a label corresponding to the nearest centroid
through a prediction phase, effectively mapping the image to its reduced color space. The
image is reconstructed to its original dimensions using these labels and centroids, ensuring
that the spatial arrangement of pixels remains intact while adhering to the simplified color
scheme. Finally, the processed image is converted into a positive integer format (Uint32),
which optimizes computational storage and compatibility for downstream tasks.
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3.4. Convolution Features

Convolutional neural networks effectively extract and filter image features, providing
a robust foundation for advanced image analysis [36]. Their demonstrated potential
to enhance segmentation accuracy is particularly significant in complex image datasets
characterized by high variability [39,40].

In this context, convolution feature extraction underpins the algorithm, enabling
region segmentation through edge detection and feature localization. Horizontal edges are
emphasized using convolutional kernels to detect vertical pixel intensity changes, while
vertical edges are highlighted by detecting horizontal variations. Merging these outputs
provides a comprehensive representation of the image’s structural features.

Edge pixels are zeroed to isolate contiguous regions, creating well-defined segments
by distinctly separating adjacent areas. Detected features are loaded into the segmented
image, preserving spatial and contextual relationships, with centers of mass calculated
and included as precise reference points for analysis or classification. This standardized
approach ensures replicability through consistent convolutional operations and parame-
ter settings while enhancing machine learning training via structured feature extraction.
Potential biases from specific kernel designs are mitigated by diverse feature detection
strategies, ensuring robustness across visual contexts. Integrating edge detection, segmen-
tation, and feature localization provides a solid framework for interpreting visual data in
complex environments.

3.5. Completion and Delivery

The final stage of the preprocessing algorithm consolidates the segmented features and
prepares the processed data for machine learning applications by applying mathematical
validations, annotations, and segmentation refinement. This phase ensures that each
segment is accurately defined, annotated, and primed for iterative or subsequent processing
if required.

The process begins with applying a morphological shape definition, which validates
that each segment aligns with the desired mathematical representation of its shape. This
validation uses the object’s center of mass as the origin point and accepts as parameters
two kernels—one for the X-axis and one for the Y-axis. These kernels define the transforma-
tion required to confirm the segment’s adherence to its expected geometrical properties.
Following this, the image annotation step is executed. A square with a specified radius is
drawn around the feature’s center of mass, serving as an automated bounding box. This
annotation provides a visual marker for the machine learning model, acting as a consistent
reference point for feature learning and classification. The model gains a precise spatial
context by leveraging these bounding boxes, enhancing its capacity to generalize and
interpret the features in diverse visual scenarios.

The final step extracts regions of interest from the original image based on the vali-
dated segments defined in the preceding stage. This method returns a tuple containing the
segmented regions, ensuring that the extracted data aligns with the algorithm’s predefined
structure. If the segmentation results require refinement, the process can be restarted
seamlessly, providing an iterative framework for optimization. This structured approach
ensures that the completion and delivery stage align with the overarching research objec-
tives and facilitates replicability and robustness in handling complex image environments.
Biases, such as errors in kernel selection or segmentation boundaries, are mitigated through
parameter flexibility and iterative validation, ensuring reliable delivery of high-quality
data to downstream machine learning processes.

Using libraries (SciPy, NumPy, OpenCV, Matplotlib, WebAgg, and Scikit-Learn), the
stepwise methodology flow is shown in Figure 6. The automated segmentation algorithm’s
pipeline integrates structured and automated processes to enable efficient image prepro-
cessing, feature extraction, and segmentation. This methodology ensures high replicability
and alignment with the research objectives, delivering a robust foundation for object-based
image analysis in complex visual environments.
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4. Results

The proposed preprocessing algorithm improved object segmentation, feature extrac-
tion, and computational efficiency across complex image backgrounds. The implementation
employed multiple computational tools to facilitate image segmentation and feature extrac-
tion in complex backgrounds.

4.1. Load Image

Each pipeline component uses an image of a cow (Figure 7a). The pipeline begins
by loading the input image using robust image-handling libraries. This step ensures
compatibility with downstream operations by standardizing input dimensions, resolution,
and intensity distributions. Images are resized to a fixed resolution, and pixel intensity
normalization is applied to create a consistent dataset for processing. These adjustments
mitigate variability across input images, reducing preprocessing overhead.
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Figure 7b shows the preprocessed image loaded via OpenCV’s function in the RGB
color model. In contrast, Figure 7c uses the BGR model, highlighting the impact of color
channel ordering on visual interpretation. Scale invariance was maintained by standardiz-
ing all images to ensure consistent feature extraction and analysis. These were reshaped
into a tabular format using NumPy’s ‘reshape’ function, converting the 2D image array
into a 1D array, where each row represents a pixel’s RGB values.

4.2. Generate Median-Filtered Image

A median filter was applied to the input image to reduce high-frequency noise while
preserving edge details, enhancing object boundaries crucial for segmentation. Replacing
each pixel’s intensity with the median value of its neighborhood eliminated slight isolated
noise without compromising boundary integrity, as shown in Figure 7c.

A 3D median filter with a kernel size of (5,5,5) was used to process RGB images,
ensuring noise reduction across all channels while maintaining inter-channel consistency.
Unlike traditional 2D filters applied separately to each channel, this method minimizes
artifacts and preserved color data integrity. The kernel size (5,5,5) balanced effective noise
suppression with edge preservation, which is critical for segmentation, feature extraction,
and classification. This configuration ensured robust processing by maintaining object
details and reducing noise interference.

In this study, the kernel size of 5 × 5 × 5 was selected to align with the desired size of
the features to be extracted. This choice directly relates to the dimensions of the features we
aim to preserve and analyze. If smaller features are of interest, a smaller kernel size should
be configured. Conversely, to focus only on features larger than 5 × 5 × 5 pixels, a larger
kernel size should be set.

4.3. Generate Single-Channel Image

The image is converted into a single-channel representation to simplify computational
requirements and streamline analysis. Selecting the most prominent or frequently occurring
color channel shifts the focus to the features most pertinent to segmentation. This dimen-
sionality reduction strategy enhances computational efficiency while preserving essential
visual information. Figure 8a shows the image after the conversion into a single-channel
representation, while Figure 8b illustrates the image using a median filter.
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The analysis targets key visual features by isolating the dominant color channel. The
image was linearized and reshaped into a two-dimensional array while maintaining the
BGR channel structure, enabling the application of a computationally efficient single-
channel convolution kernel. Dimensionality reduction preserves essential visual features
while improving efficiency for segmentation. Figure 8 illustrates the original image (a), its
single-channel representation, and the median-filtered version (b). The median-filtered im-
age (b) proves more effective for segmentation, particularly in distinguishing the cow from
the background by homogenizing grass texture, thereby enhancing object differentiation.
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4.4. Initialize Quantization Models

A K-means clustering algorithm was employed to segment the image into discrete
clusters based on color or intensity values. This process involves identifying representative
centroids that define the clusters to which pixels are assigned. The model adapts to various
image types and lighting conditions by initializing the K-means algorithm. We created two
separate K-means instances: one for the original image and another for the median-filtered
image. This study employed K-means clustering using Scikit-learn to reduce the image’s
color palette and simplify subsequent processing.

In this module, the number of clusters was initialized to eight, corresponding to the
total number of colors that the algorithm applies to the image following the quantization
process. The algorithm is configured to partition the image pixels into eight distinct clusters
by defining this hyperparameter as eight. Each cluster encapsulates a unique color or
a specific range of similar colors, effectively reducing the image’s color palette while
preserving its essential visual information.

4.5. Perform Image Quantization

Image quantization is performed by mapping each pixel to the nearest cluster centroid
using the initial model. This process reduces color or intensity variability across the image,
simplifying the segmentation task while maintaining essential features. The resulting quan-
tized image serves as a foundation for detecting meaningful object boundaries. Figure 9
presents the subprocess, including the performed image quantization.
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A K-means clustering-based quantization technique was applied to reduce the image’s
color palette and simplify subsequent analysis, involving the following steps in Table 2.

Figure 10 illustrates the image after the quantization stage was performed.
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Table 2. The steps that were applied to reduce the image’s color palette and simplify subsequent
analysis.

Step Description

Reshape the image into a one-dimensional array.

The image is reshaped into a one-dimensional array, forming a single
column of pixel values. This linearization optimizes processing for the

K-means algorithm, enabling efficient clustering of pixel values into
distinct groups while ensuring accuracy and scalability in the image

processing pipeline.

Adjust the model based on the number of clusters.

Initially, with a predefined number of clusters, the K-means algorithm was
trained on the reshaped image data to identify centroids representing color

clusters. This process was applied to both original and median-filtered
images, enabling a comparative analysis to assess the impact of median

filtering on clustering performance.

Identify the label of each pixel.

Each pixel is labeled based on the nearest centroid identified during
clustering, categorizing it into a predefined color group. This process
quantizes the image’s color space, reducing it to representative colors,

simplifying interpretation, and enabling efficient comparison of results
across preprocessing methods, such as median filtering versus the

original image.

Rebuild the image to its original dimensions.

The image is reconstructed by mapping each pixel’s label to its centroid
color, restoring spatial structure with a reduced color palette. This

quantization simplifies the image while preserving critical visual features,
enabling efficient analysis of color patterns and comparison between

preprocessing techniques, such as the original and median-filtered images.

Convert the result to uint32.
The quantized image is converted to a 32-bit unsigned integer (Uint32)

data type to ensure compatibility with subsequent processing steps. This
conversion allows for a precise representation of the reduced color palette.

After K-means quantization (Figure 10a,b), the original and median-filtered images
were reduced to an eight-color palette. While both showed reduced color complexity, the
median-filtered image exhibited a more explicit feature definition, notably enhancing the
cow’s contours and its distinction from the background. This improvement was particularly
evident in the sky and cloud regions, where quantization produced a more coherent
representation. The process improved efficiency for subsequent tasks like segmentation
and feature extraction by reducing the color palette while retaining key visual details.

4.6. Apply Convolution Features

The pipeline employs convolutional operations to extract spatial features from the
quantized image, such as edges and textures. Horizontal and vertical edge detection filters
are applied to capture directional patterns, which are then merged to form a comprehensive
feature map. These operations enhance the differentiation of objects within the image,
enabling robust segmentation. Figure 11 presents the subprocess, including the applied
convolution features.
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A convolutional filter-based approach was employed to extract salient features from
the image. As displayed, this technique involves applying filters to detect specific im-
age patterns. A horizontal edge detection filter was applied to identify horizontal lines
and edges within the image. This filter highlights areas of rapid intensity change in the
horizontal direction (Figure 12a,b). The median-filtered image significantly enhances the
detectability of horizontal edges, which are crucial for defining the contours of features.
By reducing noise and smoothing the image, the median filter improves the signal-to-
noise ratio, making it easier to identify and extract relevant features. This enhanced edge
information facilitates more accurate segmentation and analysis of the image content.
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Figure 12. The horizontal feature detection of the original image (a) and median filtered (b), the
vertical feature detection of the original image (c) and median filtered (d), and the combination of
edges of the original (e) and the median filtered (f). Source: the authors.

A vertical edge detection filter was applied to detect vertical lines and edges. This
filter emphasizes areas of rapid intensity change in the vertical direction. As illustrated in
Figure 12c,d, the median-filtered image enhances the detectability of vertical edges, which
are crucial for defining the contours of features.



Animals 2024, 14, 3626 15 of 23

The outputs of the horizontal and vertical filters were merged into a single feature map,
representing the image’s overall edge and line structure. This combined map (Figure 12e,f)
comprehensively depicts structural features, enhancing edge and contour accuracy. In-
tegrating these complementary edge maps enables the detection of complex shapes and
patterns not evident in individual maps. Edge pixels were set to zero to isolate objects or
regions of interest, creating clear segment boundaries. As shown in Figure 13a, this separa-
tion enhances segment distinction, minimizing interference from neighboring regions and
improving the accuracy of tasks like segmentation and feature extraction.
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Extracted features were integrated into the segmented image, creating a comprehen-
sive representation for further analysis. Overlaying these features onto the original image
highlights critical regions of interest, enabling tasks such as object recognition and scene
understanding. The center of mass was calculated for each feature, providing a quantitative
measure of spatial location for tasks like object tracking and shape analysis. The median-
filtered image significantly enhanced the accuracy of these calculations (Figure 13b,c).

By enhancing feature delineation and reducing noise, the median filter enabled more
precise localization of the center of mass, particularly for objects with complex shapes or
indistinct boundaries. This improvement is evident in the more accurate representation of
the cow’s center of mass in the median-filtered image, as the enhanced feature definition
allows for a more reliable calculation.

Figure 14 shows each feature annotated with a square marking its center of mass, the
weighted average position of all pixels within the feature. This geometric representation
clarifies spatial distribution, enabling the identification of relative positions and aiding
tasks, like feature tracking, object recognition, and segmentation. Highlighting centers of
mass provides a concise, computationally efficient representation for further analysis.
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4.7. Applying the Morphological Shape Definition

A morphological validation step ensures that the detected segments represent valid
objects by analyzing geometric properties, like shape, size, and center of mass, discarding
non-conforming segments. The method uses the center of mass as the origin for mapping
along the X and Y axes, guided by kernels defined as pixel ranges before and after the center.
Morphological shape criteria determine whether a segment matches the expected charac-
teristics, returning a Boolean value: valid if it aligns with the target feature’s morphology,
otherwise invalid. This process filters noise and irrelevant regions, ensuring segmentation
integrity. Figure 15a shows an example of the dimensions of the shape of the front head
feature, and Figure 15b shows the extraction of the feature with the same dimensions
of shape.
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Figure 15a illustrates an example of the morphological shape definition applied to
identify a specific feature on the forehead of a cattle. In this case, the feature’s center of
mass, determined by the central pixel, served as the reference point for defining its spatial
dimensions. The region of interest was delineated by extending 43 pixels upward and
60 pixels downward along the y-axis, with 7 pixels to the left and 15 pixels to the right along
the x-axis. This precise bounding allowed for accurate identification and isolation of the
feature, demonstrating the effectiveness of the morphological shape definition technique
in segmentation tasks, while Figure 15b illustrates the segmented feature based on the
shape definition.

The desired pattern is defined based on the feature’s center of mass to detect a specific
feature, such as a cow’s forehead. From this central point, pixel extensions to the boundary
are calculated in all cardinal directions—up, down, left, and right—to delineate the feature’s
structure. The method scans the image for regions matching the defined morphology. If a
segment, such as the belly instead of the forehead, does not align with the target pattern, it
is deemed invalid. This validation step ensures that only features matching the defined
shape advance to further processing (Figure 15).

Morphological shape definition in segmentation enhances precision, efficiency, and
feature extraction accuracy. Specifying the expected shape of the cow’s forehead ensures
that only relevant segments are selected, reducing false positives by filtering out irrelevant
regions like the neck or body. This approach provides an apparent geometric reference,
improving robustness and enabling reliable distinction of the forehead from similar features.
It also optimizes computational efficiency by focusing analysis on pertinent regions, reduc-
ing processing time and computational costs while supporting tasks like feature tracking
and classification.

Validated segments were annotated with bounding boxes, using the center of mass as
the reference point. These annotations delineate the feature’s boundaries, aiding machine
learning models in interpreting the location and shape for object recognition and classifica-
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tion. They also provide visual feedback for validating segmentation accuracy and enhance
model training by supplying labeled data, improving generalization to unseen images and
optimizing pipeline performance.

Figure 16b shows the automated bounding box precisely delineating the cow’s fore-
head, streamlining object detection by consistently identifying and annotating the region of
interest. This provides a clear spatial representation for tasks like classification or tracking.
Automated bounding boxes reduce manual annotation, saving time and effort while en-
hancing pipeline efficiency. They ensure uniformity and reproducibility across datasets,
supporting scalable and reliable machine learning training. In Figure 15b, the bounding box
serves as both a visual aid and a precise reference, improving the accuracy and effectiveness
of subsequent processing steps.
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The final stage refines the segmentation output, ensuring coherence and completeness
through morphological operations that resolve overlaps and gaps, creating a compre-
hensive segmentation map for downstream tasks. This method returns a tuple of valid
image regions defined by coherent, non-overlapping segments from the refinement process
(Figure 16c). Each tuple includes spatial boundaries and associated features, preserving seg-
mentation integrity and compatibility with further steps. The process allows for iterative
adjustments, enabling parameter refinement or addressing issues like over- or under-
segmentation, improving accuracy and robustness for complex or application-specific
data (Figure 16d).

The fulfill segmentation method enhances segmentation adaptability and precision
by returning a tuple of high-quality, coherent image regions, reducing noise and errors in
subsequent analyses. Optional bounding boxes provide flexibility for spatial localization,
or a generalized segmentation map based on task requirements. The method’s iterative
capability allows for parameter adjustments and tailored refinements, addressing chal-
lenges like irregular boundaries or complex images. This flexibility improves segmentation
accuracy, robustness, and scalability, making it suitable for diverse applications, such as
object recognition, pattern analysis, and machine learning data preparation.

Figure 17 compares the original cow photograph (a) with the segmented feature (b),
where the detected feature is highlighted in its original color, preserving detail. This
segmentation isolates relevant features precisely, enabling accurate analysis while retaining
critical information for further classification.
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By employing the proposed automated segmentation algorithm, as illustrated in
Figure 3, the segmentation process yielded significantly enhanced results, even for cattle
breeds with uniform coat colors. Texture-less breeds, such as Nelore (Figure 17) and
Black Angus (Figure 18), present inherent challenges due to the lack of distinct patterns
or markings. Despite these difficulties, the framework demonstrated its robustness by
effectively identifying features through variations in color pigmentation. Even in texture-
less breeds, subtle pigmentation differences enabled accurate detection of features, as
evidenced by the calculated centers of mass. This performance underscores the framework’s
adaptability to a wide range of visual complexities.
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Figure 18 shows an example using a texture-less breed Nelore to capture the segmentations.
Figure 19 shows an example using a texture-less breed Black Angus to capture

the segmentations.
The proposed automated segmentation algorithm offers several notable benefits, par-

ticularly in the context of livestock monitoring and management. Its ability to effectively
handle texture-less breeds, such as Nelore and Black Angus, addresses a critical challenge
in image analysis, where uniform coat colors typically hinder feature extraction. By lever-
aging subtle differences in pigmentation, the framework ensures precise and automated
segmentation, enabling accurate identification of key features like the centers of mass.

Additionally, the algorithm’s robustness across diverse visual conditions highlights
its potential for scalability and integration into broader applications, such as drone-based
livestock monitoring and precision agriculture initiatives.
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5. Discussion

The findings of this study underscore the significant advancements achieved by the
proposed preprocessing algorithm in addressing the challenges of object-based segmenta-
tion in complex visual environments. The algorithm effectively delineates objects while
maintaining computational efficiency by integrating convolution operations, quantization
techniques, and polynomial transformations. The results demonstrate that this approach
enhances segmentation accuracy and reduces computational overhead, paving the way for
broader adoption of machine learning (ML) models in resource-constrained and real-time
applications. Such an approach represents a significant step in bridging the gap between
computational feasibility and the demand for high-fidelity object segmentation, a persistent
challenge in computer vision.

The proposed algorithm demonstrates superior performance in several key areas com-
pared with the existing literature. Traditional methods, such as CNN-based segmentation
or transfer learning, often rely heavily on pixel-level adjustments, which, while effective
in controlled scenarios, become computationally prohibitive in real-time or large-scale
applications [6]. Similarly, while computationally efficient, unsupervised methods like
K-means clustering fail to adapt to dynamic backgrounds and object variability [8]. The
innovation of the current study lies in its ability to synergize these approaches, employing
quantization to simplify image complexity and convolutional operations to enhance feature
extraction, thereby offering a balanced solution that is both scalable and accurate. This
improvement aligns with recent findings, emphasizing the need for preprocessing pipelines
capable of handling diverse and intricate visual datasets [11].

Another contribution of this research is its capacity to generate structured metadata
alongside segmented images. Unlike traditional methods focusing solely on segmenta-
tion, the proposed framework produces metadata that enhances the interpretability and
reusability of the segmented objects. This advancement is particularly beneficial for appli-
cations requiring dynamic object classification, such as autonomous systems and medical
diagnostics, where interpretability and accuracy are paramount. The algorithm improves
classification performance by treating each object as an independent training unit. It sup-
ports iterative model refinement, aligning with calls in the literature for more modular and
adaptive preprocessing techniques [2].

Despite its advancements, the algorithm has certain limitations. It relies on the initial
calibration of convolutional and quantization parameters, which vary based on dataset
complexity and application and require manual intervention. The future integration
of adaptive parameter optimization, such as reinforcement learning or dynamic kernel
adjustments, could address this challenge. Furthermore, while this study focused on static
image datasets, extending the framework to video or temporal datasets remains an area for
further research. Another limitation of these algorithms lies in their initiation of processing
static images.

Overcoming this constraint could significantly enhance the algorithm’s versatility and
scalability, paving the way for its application in dynamic contexts such as video analytics
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and real-time monitoring systems. A potential solution to address this limitation involves
upgrading the process to automate the segmentation of video frames, thereby expanding
the framework’s applicability to more complex and real-time scenarios.

Overall, the findings highlight the practical and theoretical contributions of the pro-
posed preprocessing pipeline. By combining computational efficiency with high segmen-
tation fidelity, this research provides a scalable and effective solution for object-based
segmentation in machine learning. The implications of this work extend to various fields,
including environmental monitoring, autonomous vehicles, and quality control in manu-
facturing, offering a robust foundation for future innovations in image preprocessing and
analysis. Its practical implications are vast, spanning domains, such as autonomous sys-
tems, medical diagnostics, environmental monitoring, and manufacturing quality control.

As shown in Figure 13, the developed approach is essential in complex image process-
ing tasks, where the ability to retain fine details can significantly enhance the performance
of machine learning models, leading to improved accuracy and robustness in subsequent
analyses. Such high-fidelity feature detection is crucial to advancing automated systems
for object recognition and analysis, particularly in Precision Livestock Farming.

To implement the framework illustrated in Figure 6 using the Python programming
language, the process involves a sequence of structured steps, each employing specific
libraries and methodologies to achieve robust image processing and segmentation.

The first step involves loading the input image for processing. This can be achieved
using widely adopted Python libraries such as OpenCV or PIL, which provide versatile
functions for reading and handling image data. Once the image is loaded, the next step
applies a median filter to reduce noise while preserving edge details. This operation is
crucial for enhancing object boundaries and can be efficiently executed using the OpenCV
library through its medianBlur function.

Subsequently, the multi-channel RGB image is converted into a single-channel im-
age to simplify subsequent processing steps. This can be performed using the OpenCV
cvtColor function, which transforms the image representation while retaining essential
structural information.

To prepare the image for quantization, clustering algorithms such as k-means are
utilized to categorize pixel values into distinct clusters. This step requires specifying the
number of clusters, which determines the quantization level. For instance, in this study,
the number of clusters was set to eight, effectively reducing the image to a palette of
eight colors. The quantization process itself involves replacing each pixel’s value with the
corresponding cluster centroid, thereby simplifying the image while maintaining critical
features. This can be implemented using the KMeans module from the scikit-learn library.

Feature extraction is a pivotal step for identifying patterns and objects within the
image. This can be achieved using convolutional operations, such as edge detection filters,
available in OpenCV through functions like Sobel or Canny. These filters highlight the
transitions in intensity, delineating object boundaries and facilitating segmentation.

Mathematical morphology is then applied to validate segments and refine identified
features or patterns. This involves the use of morphological operations, such as closing
or opening, to enhance or suppress specific structures within the image. The OpenCV
morphologyEx function is particularly suited for this purpose, allowing for the precise
manipulation of shapes based on structural elements.

Annotations are added around identified features or regions of interest to facilitate
visualization and further analysis. Circles or bounding boxes can be drawn using functions
such as circles or rectangles from the OpenCV library. Finally, segmentation is completed
by mapping the processed features back onto the original image. This is achieved through
bitwise operations, such as OpenCV’s bitwise_and, which merge segmented masks with
the input image to produce the final segmented output.

By leveraging Python libraries such as OpenCV and scikit-learn, the implementation
of this framework ensures a systematic and reproducible workflow. Each step is designed
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to enhance the quality and interpretability of the processed image, providing a robust
foundation for feature extraction, segmentation, and subsequent analyses.

To conclude this manuscript, the implementation of the proposed framework inte-
grates advanced Python libraries and tools to streamline image preprocessing, segmen-
tation, and feature extraction for machine learning applications. The implementation
leverages key libraries and their respective modules to create a modular, scalable, and effi-
cient system. For instance, numpy handles array management, while scipy provides robust
statistical, convolutional, and optimization functions. Machine learning functionalities are
integrated using sklearn, and data visualization is facilitated through matplotlib.pyplot.

Image processing is managed with OpenCV (cv2), while dynamic module handling
and asynchronous execution are supported by importlib and asyncio, respectively. The
clustering and quantization processes are built on KMeans from sklearn, ensuring robust
and adaptable data segmentation capabilities. By combining these tools, the framework
achieves efficient preprocessing, accurate segmentation, and reliable feature extraction,
laying a strong foundation for applications in complex datasets, such as animal behavior
analysis and precision livestock farming. This implementation demonstrates the versatility
of the framework and its potential to address a wide range of challenges in image-based
machine learning workflows.

6. Conclusions

This study introduces a novel preprocessing algorithm tailored for object-based im-
age segmentation in complex visual environments, addressing a critical gap in machine
learning (ML) applications. The algorithm integrates convolution operations, quantization
techniques, and polynomial transformations to achieve precise object delineation while
maintaining computational efficiency. The proposed method enhances interpretability,
facilitates data management, and improves ML training performance by systematically gen-
erating structured metadata alongside segmented images. These contributions significantly
advance computer vision, particularly for applications demanding high segmentation
fidelity under challenging visual conditions.
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