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Simple Summary: This paper investigates the antioxidant and hepatoprotective potential of berberine
and silymarin against acetaminophen-induced damage in common carp (Cyprinus carpio L.). The
findings provide insights regarding the potential use of berberine and silymarin as therapeutic agents
against hepatotoxicity in fish, with implications for understanding the protective mechanisms of these
substances in the context of environmental and pharmaceutical-induced stress on aquatic organisms.

Abstract: Berberine (BBR) and silymarin (SM) are natural compounds extracted from plants known
for their antioxidant and chemoprotective effects on the liver. The present study aimed to investigate
the beneficial properties of BBR and SM and the association of BBR with SM on liver function
using fish as “in vivo” models. Moreover, the study investigated their hepatoprotective role after
acetaminophen (APAP) exposure. For this purpose, the fish (N = 360; 118.4 ± 11.09 g) were fed with
control or experimental diets for 9 weeks. In the experimental diets, the feed was supplemented
with either SM (1 g/kg feed), BBR (100 and 200 mg/kg feed), or a combination of BBR with SM (SM
1 g/kg feed + BBR 100 mg/kg feed and, respectively, SM 1 g/kg feed + BBR 200 mg/kg feed). After
the feeding trial, seven fish from each tank were randomly selected and exposed to a single APAP
dose. The selected serum biochemical markers, oxidative stress markers, and lysozyme activity were
used to evaluate the efficiency of the supplements on carp’s health profile, particularly regarding
the hepatopancreas function. Our results showed that the inclusion of SM and BBR (either as a
single or in combination) reduced the serum contents of total cholesterol, triglyceride, and alanine
transaminase. An increase in the high-density cholesterol was observed after the administration of
BBR or BBR in association with SM. Both supplements showed hepatoprotective activity against
APAP-induced hepatotoxicity, especially BBR. The ameliorative effects of SM (1 g) in association with
BBR (100 mg) were highlighted by the modulation of the nonspecific immune system and oxidative
stress alleviation after APAP exposure.

Keywords: carp; nutraceutical synergy; liver health; hepatotoxicity; paracetamol

1. Introduction

In recent years, global farmed fish production has experienced significant growth
due to increased seafood demand. This is driven by the consideration that fish meat
consumption is a healthier alternative to other types of meat. With a total production of
87.5 million tons of aquatic animals [1], aquaculture has become an important sector in the
global food industry.
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However, the intensification of aquaculture is often associated with increased stocking
densities and confined spaces that may contribute to the occurrence of diseases and health
issues in farmed fish [2,3]. In some cases, this situation demands therapeutic treatments that
are aggressive to fish. Besides that, in open production systems such as cage farms located
in natural water bodies, there is a high risk of fish exposure to various environmental
contaminants, including pharmaceutical residues that could concentrate in their plasma [4].

Pharmaceutical residues, including emerging compounds such as painkillers, antibi-
otics, cytostatic drugs, hormones, anticonvulsants, and antihistamines, can enter aquatic
environments through multiple pathways. These pathways include wastewater discharges
from human populations, agricultural runoff, and the release of pharmaceuticals from
aquaculture operations themselves [5].

Certain pharmaceuticals, such as antibiotics, antiparasitic drugs, and some non-
steroidal anti-inflammatory drugs (NSAIDs), have been associated with hepatotoxic effects
in fish [6–8]. These compounds can rapidly reach fish through contaminated water.

The liver plays a vital role in detoxification processes, including metabolizing and
eliminating foreign substances from the body [9]. Exposure to hepatotoxic pharmaceutical
residues can disrupt liver function and induce liver damage in fish [2]. Pharmaceutical
residues can cause, among other effects, cellular damage [10], inflammation [11], oxidative
stress of liver cells and different tissues [12], activity alteration of the liver enzymes involved
in detoxification and metabolic processes [13], or disturbance of intestinal microbiota [14].
All these effects can interfere with important liver functions, such as protein synthesis, lipid
metabolism, and detoxification processes [15]. This disruption can have systemic effects on
fish health and overall metabolism [16].

Acetaminophen (also known as paracetamol or N-acetyl-para-aminophenol; APAP) is
commonly used as a pain reliever and fever reducer in humans, and it can enter aquatic
environments through wastewater effluents and improper disposal [17]. Fish can come
into contact with APAP through two primary pathways: waterborne exposure (bioconcen-
tration) and dietary intake. This exposure can lead to detrimental impacts on the structure
and function of fish liver [2,10,18], affecting also other aquatic organisms such as inver-
tebrates [19]. Exposure of fish to APAP has been demonstrated to impact the activity of
liver enzymes, including glutathione S-transferase (GST) and catalase. These enzymes play
crucial roles in detoxification and antioxidant defense mechanisms [18]. Changes in the
activities of these enzymes can compromise the liver’s ability to neutralize and eliminate
toxins, leading to liver dysfunction [9,10]. Histological studies have revealed pathological
changes in the liver of fish exposed to APAP, including cellular damage, vacuolation, and
alterations in liver architecture [20,21]. In fish, APAP induces hepatotoxicity and oxidative
stress under chronic or acute exposure, to relevant environmental concentrations [2,18],
respectively, to a high single dose (e.g., 500 mg/kg body weight) [21]. Therefore, APAP
was selected as the drug to challenge the fish after long-time administration of SM and BBR
(as single supplements or nutraceutical combinations) in the carp feed.

In the general context of climate change, the adverse impact of pharmaceutical residues
on fish is expected to intensify [22]. Therefore, it is crucial to identify methods for reducing
the risk of exposure of aquatic animals contaminants or finding nutritional solutions to
improve aquatic animals’ health and achieve better quality of aquatic feed in the aqua-
culture sector. Recently, herbal plants have been incorporated into aquafeeds due to their
capacity and favorable attributes that enhance growth, immunological and antioxidative
responses, and resilience to different diseases [23]. They also help alleviate the negative
effects of exposure to aquatic pollutants in various fish species [24]. Silymarin is a natural
compound extracted from the milk thistle plant (Silybum marianum L.) comprising, prin-
cipally, active molecules, such as flavonolignans (isosilibinin A and B, silibinin A and B,
silydianin, and silychristin) or small amounts of flavonoids [25]. Known especially for
its antioxidant and chemoprotective effects on the liver [26–28], SM is also studied for its
protective and regenerative properties for other tissue, such as nervous, renal, and cardiac
muscle tissues [29].
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Regarding its use in fish farming, some studies investigated the potential effects of
silymarin on fish growth, health, and disease prevention. The results showed that dietary
supplementation with silymarin improved the growth performance and health status of fish
in several species (e.g., Pangasianodon hypophthalmus [30], Scophthalmus maximus [31], Ore-
ochromis niloticus [32], or Oncorhynchus mykiss [26], Paralichthys olivaceus [33], Dicentrarchus
labrax [34], or Cyprinus carpio [35]).

Berberine has been used in traditional medicine for its beneficial effects on liver health.
Numerous studies have investigated the hepatoprotective effects of BBR in both animal
models and human subjects [36]. In fish, BBR has been previously tested, especially for its
capacity to alleviate stress induced by a high-fat or high-carbohydrate diet.

In fish species like Siberian sturgeon (Acipenser baeri) [37] or Nile tilapia (Oreochromis
niloticus) [38], BBR acted as an appetizer and growth promotor. BBR has also been found to
exhibit anti-inflammatory and anti-fibrotic properties, contributing to its hepatoprotective
actions [39,40]. Moreover, BBR can protect liver cells from damage by scavenging free
radicals and inhibiting oxidative stress [41]. Berberine suppressed inflammation in the liver
of yellow drum (Nibea albiflora) fed a soybean-oil-based diet by inhibiting pro-inflammatory
cytokines and signaling pathways, preventing further injury [42].

Overall, these studies suggest that both SM and BBR may have potential benefits for
the growth and health of different fish aquaculture species. Nevertheless, there are no
available studies using the combination of BBR and SM in fish feed.

Although the threats related to pharmaceutical residues in surface waters are real,
as they can affect fish health, studies investigating the potential of supplements such as
BBR or SM to counteract their effects are scarce. Thus, it has been demonstrated that
SM reduced negative effects induced by a sublethal level of deltamethrin in common
carp [43] and ameliorated the lesions caused by oxidative stress and hepatotoxicity in
common carp exposed to sublethal cadmium chloride toxicity [44] or in African catfish
(Clarias gariepinus) subjected to fluoride toxicity [45]. Likewise, BBR has demonstrated
protective effects in chronic copper-induced liver and gill injury in freshwater grouper
(Acrossocheilus fasciatus), through enhanced antioxidant capacity, reduced inflammation
responses, and mitigation of the liver and gill’s structure damage [46]. Starting from the
premise that both compounds have, in general, detoxifying potential and that some medical
studies on mice highlighted the potential of SM [27,47,48] or BBR [49,50] to protect the liver
against acetaminophen-induced damage, we directed the current study to evaluate these
nutraceuticals in mitigating APAP toxicity in carp.

In summary, this research seeks to assess, through hemato-biochemical, immunolog-
ical, and antioxidant responses, the effects of BBR, SM, and their synergistic activity to
enhance the growth performance and health status of Cyprinus carpio fingerlings (1) and to
evaluate their potential to mitigate the toxic effects induced by APAP (2).

2. Materials and Methods
2.1. Experimental Design and Fish Maintenance

All experiments and animal care procedures were approved by the Ethics Committee
of the “Dunărea de Jos” University of Galat,i (Experimental Certificate of Animal Use No.
783/2022). The experimental fish (common carp fingerlings) were purchased from a local
farm and transported to the Romanian Center for Modeling of Recirculating Aquaculture
Systems, facilities at “Dunărea de Jos” University of Galat,i. The RAS was previously
described by Dediu et al. [51]. All fish were managed following the guidelines outlined
in the EC Directive 86/609/EEC [52], which addresses to the welfare of animals used for
experimental and scientific purposes.

Fish were acclimatized in RAS conditions for 2 weeks; during the acclimation period,
no mortality occurred. After this period, a total number of 360 fish, common carp, Cyprinus
carpio, with mean body weight of 118.40 ± 11.09 g/fish were stocked in 18 fiberglass tanks
(water volume 500 L) to create six experimental groups with triplicates for each group:
M (control group fed with normal diet), SM (fish fed with a diet supplemented with SM
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1 g/kg feed), BBR100 (fish fed with diet supplemented with BBR 100 mg/kg feed), BBR200
(fish fed with a diet supplemented with BBR 200 mg/kg feed), SM + BBR100 (fish fed with a
diet supplemented with SM 1 g/kg feed and BBR 100 mg/kg feed), and SM + BBR200 (fish
fed with a diet supplemented with SM 1 g/kg feed and BBR 200 mg/kg feed) (Figure 1).
The photoperiod was 16 h of light and 8 h of darkness. The commercial diet had a content
of 40% protein, 10% fat, 1.5% fiber, and 6.8% ash. (Skretting, Mozzecane, Italy). The fish
were fed to apparent satiation twice per day for 9 weeks.
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Silymarin and berberine were purchased from Swanson Health Products (SHP), (Swan-
son Health Products, Fargo, ND, USA). To incorporate the specified supplement into the
meal, the basal diet was initially ground and then combined with the designated sup-
plements, processed into pellets, and dried. Following the drying process, the pellets
were transferred into plastic bags and subsequently stored in a freezer at a temperature of
−20 ◦C until they were ready for feeding.

After 9 weeks, 7 fish from each tank were randomly selected and retained for a “chal-
lenge test” consisting in a dose of 500 mg/kg body weight of acetaminophen administered
orally via gavage. The test was conducted to assess whether the supplements ameliorate
the deleterious effects caused by APAP in carp. The “challenge test” was performed in
18 glass aquariums, each with a volume of 130 L.

2.2. Water Quality Parameters

During the experimental period, daily monitoring of water quality parameters was con-
ducted. The Endress+Hauser monitoring system (Endress+Hauser AG, Reinach, Switzer-
land) was employed to automatically measure water temperature, dissolved oxygen, and
pH. Probes were placed in each tank for this purpose. Additionally, the concentrations
of nitrogen compounds were quantified weekly using a Skalar SAN++ analyzer from
Skalar Analytical, Breda, The Netherlands. Therefore, during the experiment, the wa-
ter quality parameters were monitored daily. The average values maintained within the
optimal range for carp growth [53]: temperature 21.8 ± 3.14 ◦C; pH = 7.41 ± 1.04; dis-
solved oxygen 7.29 ± 1.13 mg/L; ammonium 0.09 ± 0.05 mg/L; nitrates < 0.16 mg/L; and
nitrite < 0.09 mg/L.

2.3. Growth Performance and Organosomatic Indices

At the end of the trial, all fish were weight and measured. Growth performance and
feed utilization parameters were calculated according to the following equations:

• Weight gain (WG, g) = final body weight (g) − initial body weight (g);
• Specific growth rate (SGR, %/day) = 100 × [Ln (final body weight) − Ln (initial body

weight)]/days;
• Feed conversion ratio (FCR) = Consumed feed (g)/WG (g).
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To calculate organosomatic indices, at the end of the experiment fish were sacrificed
and the weight of the liver, gonads, and spleen were assessed.

• Hepatosomatic index (HSI, %) = [liver weight (g)/body weight (g)] × 100;
• Gonadosomatic index (GSI, %) = [gonads weight (g)/body weight (g)] × 100;
• Spleen somatic index (SSI, %) = [spleen weight (g)/body weight (g)] × 100.

2.4. Biochemical Composition of Carp Muscle

The biochemical determinations were performed on muscle tissue samples, following
the procedures outlined by the Association of Official Analytical Chemists [54]. The ash
content (%) of the sample was determined using a muffle furnace (Nabertherm, Lilienthal,
Germany, Applied Scientific Instruments Co., Ltd., Bangkok, Thailand) at 525 ± 25 ◦C for
8 h. The moisture content (% dry weight) was determined by drying the meat samples at
105 ◦C in a convection oven (Jeiotech, Jeio Tech Co., Inc., Seoul, Republic of Korea) until
a constant weight was obtained. After determining the moisture content, dry samples
were finely ground and used to determine of protein and fats. Crude protein content (%)
was calculated by converting the nitrogen content (using the common conversion factor of
N × 6.25), quantified by Dumas’s method, through combustion of dry samples at 1100 ◦C
(Primacs SNC 100, Skalar Analytical B.V., Breda, The Netherlands). Lipid content (%) in
fish tissue was analyzed using the Soxhlet extraction method with petroleum ether as the
solvent (C. Gerhardt GmbH & Co. KG, Königswinter, Germany).

2.5. Hematological Analysis

Hematological, biochemical, and antioxidant assays were conducted on blood samples
collected from ten fish per treatment at the end of the 9-week feeding trial and after the
administration of APAP dose. Before blood collection, all fish were anesthetized in water
with 0.3 mL/L of 2-phenoxyethanol, until reaching a state of deep anesthesia [55].

Blood was sampled from the fish caudal vein using heparinized syringes and trans-
ferred to Eppendorf sterilized tubes. The process was conducted under chilled conditions
until the samples were treated in the laboratory for additional analysis. Plasma was
acquired through blood centrifugation at 3500 rpm (1166× g) for 10 min, and it was subse-
quently utilized for additional biochemical analyses.

Hematological parameters such as red blood cell count (RBC × 106/µL) were assessed
following the method described by Svoboda et al. [56], using a Neubauer hemocytometer,
glass blood diluting pipette and Vulpian diluting solution, prepared in the laboratory from
sodium citrate, potassium iodide, and metallic iodine (Sigma-Aldrich, St. Louis, MO, USA).

Hemoglobin (Hb, g/dL) levels were determined using the cyanmethemoglobin method [57]
with Drabkin’s reagent (DIALAB, Wiener Neudorf, Austria). The absorbance was subse-
quently measured at a wavelength of 540 nm using a Specord 210 UV–Vis spectrophotome-
ter (Analytic Jena, Jena, Germany).

For hematocrit measurement (Ht, %), 30 µL of heparinized blood was transferred
into hematocrit microcapillary tubes. After that, the tubes were centrifuged for 5 min
at 12,000 rpm (13,709× g) with the centrifuge (Hettich Haematokrit 210, Andreas Het-
tich GmbH & Co. KG, Tuttlingen, Germany). The values were evaluated by using the
centrifuge’s integrated measuring lid.

Also, the other hematological indices like mean corpuscular volume (MCV, fL), mean
corpuscular hemoglobin (MCH, pg), and mean corpuscular hemoglobin concentration
(MCHC, g/dL) were calculated from the Ht, Hb, and RBC [58,59].

2.6. Analysis of Blood Biochemistry

For the biochemical analyses, we used the VetTest® Chemistry Analyzer and IDEXX
VetTest kits (IDEXX Laboratories, Inc., Westbrook, ME, USA) for triglyceride (TG, mg/dL),
cholesterol (CHOL, mg/dL), low-density lipoprotein (LDL, mg/L), high-density lipopro-
tein (HDL, mg/dL), alanine amino-transferase (ALT, U/L), aspartate amino-transferase
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(AST, U/L), alkaline phosphatase (ALP, U/L), gamma glutamyl-transferase (GGT, U/L),
direct bilirubin (BILD, mg/dL), and total bilirubin (BILT, mg/dL).

2.7. Analysis of Oxidative Stress, Lyzozyme Activity, and Total Antioxidant Capacity

Lipid peroxidation concentrations were quantified using the Ohkawa method [60] by
reading the optical density of samples at 532 nm. The results were reported as nmol of
malondialdehyde (MDA) per mL of plasma or gram of liver homogenate (nmol/g liver).

Lysozyme activity (LYZ, U/mL) was assessed using the Enzymatic Activity of Lysozyme
Protocol (Sigma, EC 3.2.1.17, Sigma-Aldrich, St. Louis, MO, USA).

The total antioxidant capacity (TAC, mMol Trolox) was determined using the method
described by Roberta et al. [61]. The spectrophotometric measurement was conducted at
an optical density of 734 nm.

2.8. Data Analysis

The statistical analyses were conducted utilizing the SPSS statistical software for
Windows, Version 26.0, Chicago, IL, USA, SPSS Inc. Data examination was made using
one-way ANOVA, followed by Duncan’s post hoc test for multiple group comparisons
(p < 0.05). Before statistical analyses, normality and homogeneity of variance were ensured
by performing Shapiro–Wilk and, respectively, Levene’s tests. Additionally, the differences
in the means of hematological and plasma biochemical parameters at the two sampling
time points (before and after the challenge test) were compared using a T-dependent test
(p < 0.05) for each treatment diet.

3. Results
3.1. Evaluation of Growth Performance

At the beginning of the experiment, the average initial body mass of the carp specimens
did not show statistically significant differences (p > 0.05) among the six experimental
variants. By the end of the feeding trial, the mean weight of the carp registered significantly
different values (p < 0.05) among these six experimental variants (Table 1).

Table 1. Specific growth rate (SGR) and feed conversion ratio (FCR) for carp reared in different
experimental conditions.

Growth
Parameters M SM BBR100 BBR200 SM + BBR100 SM + BBR200

IW (g) 122.70 ± 10.25 a 121.60 ± 9.12 a 113.10 ± 7.16 a 124.50 ± 5.2 a 115.10± 6,2 a 117.40 ± 4.65 a

FW(g) 179.15 ± 18.61 a 195.60 ± 10.12 b 180.40 ± 19.65 a 198.70 ± 18.16 b 179.03± 17.46 a 180.61 ± 10.12 a

SGR (%/day) 0.69 ± 0.02 a 0.74 ± 0.01 b 0.73 ± 0.04 b 0.73 ± 0.02 b 0.69± 0.03 a 0.68 ± 0.03 a

FCR (g/g) 2,21 ± 0.04 b 1.47 ± 0.08 a 1.61 ± 0.05 b 1.46 ± 0.03 a 1.68± 0.02 b 2.10 ± 0.05 c

Note: IW—initial average weight; FW—final average weight; SGR—specific growth rate; FCR—feed conversion
ratio; values represent the mean of triplicates ± SE. Values with different letters in a row indicate significant
differences (ANOVA, p < 0.05) among experimental variants.

The highest average body mass was observed in the BBR200 and SM experimental
variants. In terms of specific growth rate (SGR), the groups fed only with SM or BBR
performed similarly, with significantly higher values than the control groups (M) or the
groups fed with SM + BBR association. The lowest feed conversion ratio (FCR) was also
found in SM and BBR200 variants.

3.2. Evaluation of Organosomatic Indices and Muscle Biochemical Composition of Carp

At the end of the experiment, a significant lower HSI (p < 0.05) was calculated for SM,
BBR100, BBR200, and SM + BBR100, while for GSI, the lowest values were observed for SM
and BBR200. No significant differences (p > 0.05) between variants were detected for SSI
(Table 2).
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Table 2. Somatic indices of Cyprinus carpio at the end of the experiment.

Body Indices M SM BBR100 BBR200 SM + BBR100 SM + BBR200

HSI (%) 2.29 ± 0.18 b 1.91 ± 0.24 a 1.92 ± 0.38 a 1.69 ± 0.68 a 1.65 ± 0.21 a 2.38 ± 0.74 b

GSI (%) 5.07 ± 2.36 b 3.03 ± 2.35 a 4.32 ± 1.43 b 2.96 ± 0.09 a 5.40 ± 1.80 b 7.28 ± 5.68 c

SSI (%) 0.27 ± 0.07 a 0.28 ± 0.06 a 0.28 ± 0.01 a 0.33 ± 0.19 a 0.24 ± 0.06 a 0.23 ± 0.08 a

Note: Values represent the mean of triplicates ± SE. Values with different letters in a row indicate significant
differences (ANOVA, p < 0.05) among experimental variants.

Regarding muscle biochemical composition, the statistical analysis did not reveal
significant differences (p > 0.05) in terms of water, protein, and ash content. In contrast,
lipid content was significantly lower (p < 0.05) in all the variants in which the bioactive
compounds were supplemented in the fish feed (Table 3).

Table 3. Effects of SM and BBR inclusion on Cyprinus carpio muscle proximate compositions.

Composition M SM BBR100 BBR20 SM + BBR100 SM + BBR200

Water (%) 78.44 ± 1.26 a 78.52 ± 0.64 a 79.30 ± 0.22 a 79.04 ± 1.32 a 79.09 ± 1.32 a 79.54 ± 0.26 a

Protein (%) 17.06 ± 0.73 a 18.63 ± 0.17 a 17.54 ± 0.47 a 17.94 ± 0.53 a 17.69 ± 0.61 a 17.42 ± 0.56 a

Lipids (%) 2.44 ± 0.88 b 1.44 ± 0.46 a 1.39 ± 0.08 a 1.32 ± 0.22 a 1.68 ± 0.28 a 1.31 ± 0.13 a

Ash (%) 1.12 ± 0.07 a 1.29 ± 0,09 a 1.26 ± 0.05 a 1.07 ± 0.05 a 1.72 ± 0.65 a 1.20 ± 0.24 a

Note: Values represent the mean of triplicates ± SE. Values with different letters in a row indicate significant
differences (ANOVA, p < 0.05) among experimental variants.

3.3. Evaluation of Hematological and Biochemical Blood Parameters

At the end of the feeding trial and after the APAP challenge, fish hematological
parameters were determined, and the results are presented in Table 4. Thus, after the
feeding experiment, statistical analysis revealed significant differences (p < 0.05) only in
terms of RBC values, with higher values for SM + BBR200, while Ht, Hb, VEM, HEM, and
CHEM values did not show significant differences (p > 0.05) among the six experimental
variants. Similarly, after the APAP test, the values of hematological parameters did not
indicate significant differences (p > 0.05) among the six experimental variants. However,
the statistical comparison (dependent T-test) before and after the challenge test revealed
a significant decrease in Ht mean values in all experimental variants, with the obtained
values falling within the optimal range found in the literature (Table 5).

Table 4. Hematological parameters of C. carpio in different treatments.

Time Exp.
Variants

Ht
(%)

Hb
(g/dL)

RBC
(×106/mm3)

MCV
(µm3)

MCH
(pg)

MCHC
(g/dL)

Before
challenge

M 43.15 ± 2.94 a* 10.09 ± 3.24 a* 1.28 ± 0.22 b* 340.84 ± 35.37 a* 82.90 ± 35.96 a* 24.22 ± 4.22 a*
SM 36.62 ± 0.31 a* 8.79 ± 0.49 a* 1.23 ± 0.14 a* 299.70 ± 32.24 a* 72.10 ± 10.92 a* 24.00 ± 1.42 a*

BBR100 42.14 ± 3.80 a* 10.36 ± 0.38 a* 1.34 ± 0.10 b* 318.73 ± 53.26 a* 78.13 ± 8.95 a* 24.66 ± 1.38 a*
BBR200 44.36 ± 1.11 a* 11.88 ± 1.18 a* 1.42 ± 0.47 b* 333.38 ± 98.70 a* 88.13 ± 22.24 a* 26.83 ± 7.42 a*

SM + BBR100 43.98 ± 3.78 a* 12.70 ± 3.25 a* 1.40 ± 0.08 b* 315.58 ± 39.75 a* 97.41 ±20.10 a* 31.55 ± 8.61 a*
SM + BBR200 44.11 ± 3.63 a* 12.44 ± 2.12 a* 1.91± 0.39 c* 240.85 ± 58.82 a* 67.04 ± 14.48 a* 28.17 ± 3.81 a*

After
challenge

M 31.86 ± 4.75 a** 12.67 ± 2.33 a* 1.52 ± 0.14 a** 206.95 ± 37.10 a** 80.95 ± 10.40 a* 40.55 ± 9.76 a*
SM 28.57 ± 2.76 a** 13.77 ± 4.70 a* 1.31 ± 0.26 a* 235.44 ± 49.96 a* 105.66 ± 25.77 a* 49.43 ± 7.16 a**

BBR100 24.41 ± 3.63 a** 10.33 ± 5.03 a* 1.44 ± 0.28 a* 180.50 ± 31.01 a** 84.21 ± 22.22 a* 49.38 ± 5.74 a**
BBR200 28.13 ± 6.05 a** 12.52 ± 0.70 a* 1.30 ± 0.27 a* 225.99 ± 74.15 a* 91.63 ± 18.34 a* 42.11 ± 8.41 a*

SM + BBR100 23.99 ± 5.88 a** 12.99 ± 1.57 a* 1.32 ± 0.48 a* 215.07 ± 79.54 a** 91.94 ± 28.43 a* 48.21 ± 6.16 a**
SM + BBR200 26.75 ± 8.19 a** 13.40 ± 3.37 a* 1.19 ± 0.23 a** 247.57 ± 94.17 a* 109.65 ± 13.83 a* 52.35 ± 4.66 a*

Note: Values represent the mean of triplicates ± SE. Values with different letters in a column indicate significant
differences (ANOVA, p < 0.05) among experimental variants. Values with different symbols */** in a column
differ significantly after the challenge test (T-dependent, p < 0.05). RBC—red blood cell (erythrocyte) count;
Hb—hemoglobin; Ht—hematocrit; MCV—mean corpuscular volume; MCH—mean corpuscular hemoglobin;
MCHC—mean corpuscular hemoglobin content.
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Table 5. Values of hematological parameters of Cyprinus carpio under normal conditions.

Carp Body
Weight

(g)

Ht
(%)

Hb
(g/dL)

RBC
(×106/mm3)

MCV
(µm3)

MCH
(pg)

MCHC
(g/dL) References

138.3 ± 28.7 29 ± 3 8.63 ± 0.76 1.64 ± 0.14 180.30 ±15.3 52.9 ± 4.7 29 ± 2.0 [62]
200 31.8 ± 5.5 6.94 ± 1.6 1.81 ± 0.2 178.2 ± 31.7 40.2 ± 6.5 21.6 ± 3.3 [63]

61.2 ± 7.3 22–39 3.76–8.76 0.90–2.02 133.7–248.4 36.9–57.8 15–32 [64]
138 ± 28.7 26 ± 3 6.84 ± 0.9 1.05 ± 0.03 248.1 ± 36 65.2 ± 10 26.3 ± 0.13 [65]

297.4 ± 55.6 29.2 ± 2.7 7.43 ± 0.7 1.63 ± 0.13 179.5 ± 13.5 45.8 ± 4.2 25.5 ± 0.78 [66]
41 ± 0.20 42.2 ± 0.5 11.24 ± 0.41 1.80 ± 0.02 234.5 ± 2.0 62.5 ± 1.6 26.67 ± 0.7 [67]
67.5 ± 9.1 30.9 ± 3.5 7.18 ± 0.13 1.40 ± 0.09 217.2 ± 24.2 51.9 ± 8.2 24.1 ± 0.31 [68]
61.9 ± 2.4 42.8 ± 4 9.4 ± 0.8 1.37 ± 0.19 317.9 ± 60.9 - 22.2 ± 3.3 [69]

3.4. Blood Metabolic Profile

At the end of the feeding trial and after the APAP challenge, the metabolic blood
profile was analyzed for all experimental variants, and the results are presented in Table 6.

Table 6. Blood metabolic profile parameters of Cyprinus carpio.

Parameter
After the Feeding Experiment/Before APAP Challenge Test

M SM BBR100 BBR200 SM + BBR100 SM + BBR200

TG (mg/dL) 458 ± 81.93 c 370.33 ± 76.44 b 367.00 ± 67.39 b 347.29 ± 45.74 b 343.5 ± 53.78 a 342.6+ ± 48.71 a

CHOL (mg/dL) 268.33 ± 33.07 c 234.00 ± 16.7 b 206.75 ± 9.81 a 225.00 ± 22.99 b 225.66 ± 12.5 b 214.5 ± 20.69 a

LDL (mg/dL) 115.10 + 4.56 d 98.22 ± 11.22 c 53.67 ± 7.55 b 46.67 ± 9.34 a 64.34 ± 8.56 b 54.76 ± 6.55 b

HDL (mg/dL) 44.71 ± 6.32 a 42.73 ± 8.12 a 77.50 ± 9.10 b 89.88 ± 8.45 c 75.43 ± 6.77 b 82.12 ± 7.45 b

ALT (U/L) 10.25 ± 1.25 b 10.00 ± 3.00 b 8.00 ± 1.82 a 8.12 ± 0.63 a 9.33 ± 4.03 a 8.33 ± 1.96 a

AST (U/L) 174 ± 19.71 a 142.67 ± 49.03 a 134.79 ± 8.86 a 188.67 ± 37.11 a 199.5 ± 55.47 a 147.8 ± 22.81 a

ALP (U/L) 186 ± 48.46 a 158.33 ± 27.28 a 144.67 ± 20.71 a 147 ± 54.72 a 185.66 ± 68.19 a 155.25 ± 77.10 a

GGT (U/L) 1.33 ± 0.47 a 1.23 ± 0.75 a 0.92 ± 0.09 a 1.00 ± 0.44 a 1.38 ± 0.33 a 1.45 ± 0.32 a

BILD (mg/dL) 0.18 ± 0.05 a 0.13 ± 0.03 a 0.15 ± 0.01 a 0.18 ± 0.04 a 0.12 ± 0.03 a 0.15 ± 0.02 a

BILT (mg/dL) 0.31 ± 0.06 b 0.20 ± 0.02 a 0.21 ± 0.06 a 0.23 ± 0.09 a 0.19 ± 0.02 a 0.21 ± 0.01 a

Parameter
After APAP Challenge Test

M SM BBR100 BBR200 SM + BBR100 SM + BBR200

TG (mg/dL) 141.00 ± 29.81 a** 189.25 ±38.59 b* 186.75 ± 41.55 b* 181.75 ± 38.81 b* 182.25 ± 28.50 b* 163.25 ± 27.73 b*
CHOL (mg/dL) 187.25 ± 32.01 a** 173.25 ± 14.10 a** 196.50 ± 27.19 a* 188.25 ± 24.40 a* 156.00 ± 25.17 a** 170.50 ± 18.77 a*
LDL (mg/dL) 95.10 + 4.56 d** 78.22 ± 11.22 c** 44.67 ± 7.55 b** 39.61 ± 7.24 a* 44.98 ± 7.65 b** 39.16 ± 8.34 b**
HDL (mg/dL) 34.71 ± 6.32 a** 35.73 ± 8.12 a** 68.20 ± 9.10 b* 82.33 ± 4.95 c* 70.43 ± 7.37 b* 77.12 ± 7.45 b*

ALT (U/L) 42.50 ± 8.58 b** 25.50 ± 8.54 a* 26.00 ± 2.58 a* 29.75 ± 12.39 a* 25.30 ± 0.57 a* 29.75 ± 4.71 a*
AST(U/L) 364.25 ± 78.88 b** 218.00 ± 44.21 a* 295.25 ± 88.68 a** 304.50 ± 32.27 a** 242.00 ± 24.12 a* 273.20 ± 79.95 a*
ALP (U/L) 294.50 ± 15.02 c** 183.67 ± 64.01 b* 173.33 ± 49.80 a* 154.00 ± 77.6 a* 199.5 ± 23.01 b* 179.25 ± 78.54 b*
GGT (U/L) 2.90 ± 0.85 c** 1.55 ± 0.42 b* 1.27 ± 0.25 a* 1.15 ± 0.20 a* 1.50 ± 0.57 b* 2.00 ± 1.55 b*

BILD (mg/dL) 0.26 ± 0.04 c** 0.16 ± 0.03 a* 0.22 ± 0.01 b* 0.24 ± 0.05 b* 0.15 ± 0.04 a* 0.20 ± 0.01 b*
BILT (mg/dL) 0.46 ± 0.06 c** 0.27 ± 0.04 a* 0.31 ± 0.04 a* 0.35 ± 0.10 b* 0.25 ± 0.10 a* 0.34 ± 0.09 b*

Note: Values are Mean ± S.E., n = 3. Values with different superscripts in a row differ significantly (ANOVA,
p < 0.05). Values with different symbols */** in a column differ significantly after treatment (T dependent,
p < 0.05). ALT—alanine amino-transferase; AST—aspartate amino-transferase; ALP—alkaline phosphatase;
GGT—gamma glutamyl-transferase; BILD—direct bilirubin concentration; BILT—total bilirubin concentration;
HDL—high-density lipoprotein; LDL—low-density lipoprotein; CHOL—cholesterol; TG—triglycerides.

After the feeding trial, the TG, CHOL, and LDL values reduced significantly (p < 0.05)
compared to the control variant. HDL increased significantly (p < 0.05) in BBR200 followed
by BBR100 and SM + BBR200 and SM + BBR100. No significant differences (p > 0.05) were
detected between all tested variants, for AST, ALP, and GGT. However, significantly lower
(p < 0.05) ALT values are observed in all variants where BBR was supplemented in the feed.
The values of tested biomarkers varied within the range considered normal for the studied
species [70].

After the APAP administration, significant changes were noticed in all analyzed
metabolic markers (p < 0.05) for the control variant (M), indicating liver toxicity reflected
mainly by the hepatic enzymes released in higher amounts into the blood stream, up to
400% (i.e., ALT). Most hepatic biomarkers registered insignificant increased values (p > 0.05)
after exposure for groups receiving BBR or a BBR + SM enriched diet.
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3.5. Oxidative Stress Parameters and Lysozyme Activity

Oxidative stress parameters and lysozyme activity were assessed after the feeding trial,
as well as after the APAP challenge test. After the feeding trial, MDA serum concentration
had the lowest mean value in SM + BBR100, followed by BBR100, BBR200, SM + BBR200,
SM, and M variants (Figure 2). SM and BBR administration significantly reduced serum
MDA contents elevated by acetaminophen exposure (p < 0.05); the association of SM with
100 mg BBR reduced MDA production more effectively compared with the other treatments.
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Figure 2. MDA Variation—Boxplot (median, minimum, maximum, and quartiles). Values with
different letters indicate significant differences (ANOVA, p < 0.05) between experimental variants.
Values with ** indicate significant differences after the APAP test (T-dependent, p < 0.05).

Regarding the MDA values in the liver, there were no significant differences (p > 0.05)
among treatments, both after the feeding experiment and the challenge test. Moreover,
the comparison of MDA values before and after the challenge test revealed insignificant
differences (p > 0.05) for all treatments (Figure 3).
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After the feeding trial, the level of total antioxidant capacity (TAC) quantified for the
plasma did not show significant differences (p > 0.05) between the six experimental variants
(Figure 3). However, after APAP exposure, TAC had the lowest mean values in the control
variant and the highest in the SM variant (Figure 4).
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Regarding the LZM activity, at the end of the feeding experiment, the statistical
analysis revealed significant differences (p < 0.05) between the six experimental variants,
with the LZM activity from the BBR200 and SM + BBR200 variants being significantly
higher compared to SM + BBR100, BBR100, and SM variants. The lowest activity of LZM
was observed in the control variant (Figure 5).
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After the challenge test, individuals from the M variant had significantly lower
(p < 0.05) LZM activity, compared to experimental groups receiving BBR as the sole sup-
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plement or in combination with SM; LZM activity for groups receiving only SM was
significantly lower (p < 0.05) than other groups receiving BBR in the diet.

4. Discussion

The use of plants or plant extracts in fish feed has become a widely accepted practice
due to their benefits in enhancing fish growth, improving immunity, and increasing sur-
vival rates [71–73]. Although there are numerous reports regarding the immunostimulant
properties of plants and plant extracts (including algae) and the utilization of plant addi-
tives for pathogen control [74], data related to their protective role against the toxicity of
different compounds are still limited.

Among other plants or plant extracts, SM and BBR have been used in aquaculture as
functional feed additives to enhance growth, improve immune response and antioxidative
capacity, or increase disease resistance of the fish [26,30,32,38–40,75–77]. However, there is
limited information regarding the supplementation of carp feed with SM and BBR, and
no information regarding their combination. The present study has assessed the impacts
of BBR-, SM-, and SM + BBR-supplemented diets, after 9 weeks of feeding, on the overall
growth performance and health profile of the C. carpio juveniles and investigated the
alleviation of APAP-induced toxic effects. To achieve this objective, growth performance,
serum biochemical variables, immune and antioxidant biomarkers have been assessed.

After 9 feeding weeks, the results highlighted that SGR values were significantly
higher in the groups where SM and BBR were administered as sole supplements, while
the combination of SM with BBR did not result in superior growth performance compared
with the control variant. In other studies, including SM in the diet of aquatic organisms led
to different results depending on the species, the SM concentration, or the feed formulation.
Thus, SM improved the growth performance of turbot (Scophthalmus maximus), when the
plant protein diet was supplemented with 100 mg/kg [31], and of grass carp juvenile
(Ctenopharyngodon idella) at a 60 mg/kg feed concentration [78]. In a similar trial, it was
found that SM at 100–200 mg/kg can significantly improve the growth performance and
health status of juvenile grass carp, with better results for 100 mg/kg than 200 mg/kg [79].
On the other hand, in contrast with our results, in a trial on common carp (Cyprinus carpio)
the growth parameters including final weight, final weight gain, FCR, and survival rate
showed no significant difference between all groups after feeding SM in concentrations
ranging from 400 to 2400 mg SM/kg diet [44], while for rainbow trout (Oncorhynchus mykiss),
the oral administration of 800 mg SM/kg feed caused cytotoxicity and modifications in
blood biochemical parameters of the fish [26].

Historically, BBR has also been investigated for its potential to address metabolic dis-
orders linked to high-lipid or high-carbohydrate diets in fish. In recent years, the positive
effects of berberine on the productive performance of fish have been highlighted in several
studies. In our study, the administration of BBR in carp diet resulted in superior SGR, for
both concentrations (100 and 200 mg/kg feed), compared with the control variants; never-
theless, better feeding efficiency was observed in groups fed with higher BBR concentration
(in BBR200). A comparable improvement in growth performance was documented for
black carp (Mylopharyngodon piceus), which had a superior growth performance after ad-
ministration of BBR (98.26 mg/kg and 196.21 mg/kg) in feeds with a high lipid content [80],
for largemouth bass (Micropterus salmoides) provided with 1 g/kg berberine [81] or for Nile
tilapia (Oreochromis niloticus) receiving up to 9 g/kg berberine as supplements in normal
diets [38]. However, an excessive intake of dietary BBR has been observed to impede fish
growth, as evidenced in black carp fed with 392.07 mg/kg berberine [80] or blunt snout
bream (Megalobrama amblycephala) fed with 100 mg/kg berberine [75]. In a similar study,
the supplementation of high-lipid feed with 50 mg BBR/kg was conducted to improve
growth performance and feed consumption for blunt snout bream, while administration
of 100 mg BBR/kg led to the rejection of the feed by the fish and, respectively, to poorer
growth performance, the result being attributed to the bitter taste of BBR [75]. High variable
results reported in the literature suggest that the growth-promoting effect of BBR varies
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greatly among species. Some authors have reported that the long-term use of BBR in fish
feed may even reduce its beneficial effect [82]. This effect has been reported inclusively for
mammals, with the hypothesis being issued that intestinal expression of P-glycoprotein
is overwhelmed by high doses or long-term administration of BBR, which inhibits the
intestinal absorption of berberine [80]. However, this mechanism has not been reported
in fish and should be further studied. Across fish species, feeding methods, basal diet
compositions, and other unidentified factors also affected the variability of the results.

Regarding organosomatic indices, in the present experiment, significant differences
were detected among experimental variants. Thus, compared with the control, a decrease
in the HSI index can be observed in the variants in which the feed was supplemented with
bioactive ingredients, except for the SM + BBR200 variant. A lower HSI indicates a reduction
in fat accumulation in the liver [42], suggesting that SM and BBR had a beneficial effect on
the liver health of the fish. It is known that fatty liver can lead to metabolic pathologies in
mammals, from steatosis to hepatocellular damage, fibrosis, or liver failure [83]. On the
other hand, fish are more susceptible to fat accumulation in the liver because the liver is the
main storage location for lipids. In recent years, in aquaculture, increasing deficiencies and
a high mortality rate caused by fatty liver have been reported, causing significant economic
consequences [84].

In general, the biochemical composition of the meat reflects the quality of the fish
and is influenced by several factors, such as feed composition and feeding method [85].
Although the protein values did not register significant differences among the experimental
variants, a slight increase in the protein percentage can be observed in the variants in
which food additives were used in the carp feed; a significant reduction in lipids was
also observed in these variants. Thus, these results suggest that food additives can be
effectively used to improve the quality of fish meat and satisfy the nutritional requirements
of the consumers.

The general health profile of the fish is assessed through various instruments, with
hematological parameters occupying an important position [26]. In our study, the analysis
of hematological parameters did not reveal major changes, after the administration of
the selected food supplements, except for RBC, which significantly increased in the SM
+ BBR200 variant, registering the highest value. The administration of SM alone slightly
decreased RBC, Ht, and Hb, while in combination with BBR, it increased Hb and RBC.
However, the comparison of mean values did not show statistical differences among
treatments, and the parameters were within the range of values considered normal for the
species under study. Our results are thus only partially supported by similar studies. In
rainbow trout, after the administration of SM (0.1, 0.4, and 0.8 g/kg food), a significant
increase in the number of erythrocytes, hematocrit, and hemoglobin concentration was
observed, highlighting the influence of SM on hematopoietic organs, such as the spleen and
kidney, which play an essential role in the formation of blood cells [86]. The administration
of 500 mg/kg of barberry root extract significantly increased WBC, RBC, Hb, and MCHC
in rainbow trout [87] and increased MCV and Ht in yellow catfish, Pelteobagrus fulvidraco,
fed with a diet containing 400 mg berberine/kg for 60 days [88].

Regarding the influence of APAP on hematological parameters, a significant decrease
in Ht was observed in all experimental variants after the challenge test. Moreover, an
increase in RBC and a decrease in MCV were registered in the control variant, while for
the SM + BBR200 experimental variant, a significant decrease in RBC was observed. This
aspect could suggest different mechanisms of the blood system of fish fed with different
diets in order to cope with the toxic agent.

Plants and plant extracts like SM or BBR often possess natural compounds that can
help mitigate the harmful effects of toxic compounds in fish. Thus, it has already been
demonstrated that SM or BBR has protective effects against different toxic compounds like
cadmium chloride [44], paraquat [89], and deltamethrin [43] in fish species. In this context,
it was hypothesized that SM and BBR could have stronger protection against the toxicity of
pharmaceutical drugs when administrated in a combination.
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APAP is often selected as a hepatotoxicant for inducing liver injury, as it is known to
cause hepatotoxicity when taken in overdose, leading to the elevation of liver enzymes in
experimental animals [90,91] including fish [92].

AST is an enzyme found in the mitochondria and cytoplasm of all cells, while ALT
is a hepatocellular cytoplasmic enzyme whose elevation in blood indicates liver damage.
Elevated levels of AST and ALT in the blood may indicate cellular leakage and loss of
functional integrity of the hepatocyte cell membrane induced by any toxic substance [93].
Elevated serum ALP levels can indicate kidney and liver damage [94] and increased biliary
pressure [95].

According to our findings, after the administration of SM and BBR doses, no significant
differences were noticed between the tested variants regarding the level of AST and ALT
enzymes in the blood; these levels fell within the range of values considered normal for
carp [70]. However, the administration of BBR in both concentrations (100 and 200 mg/kg)
resulted in lower ALT values, suggesting an improved liver function. After APAP admin-
istration, the levels of plasma liver enzymes (ALT, AST, and ALP) increased significantly
for the control, emphasizing liver dysfunction. ALT values for SM and all BBR treatments
increased insignificantly (p > 0.05), while AST values had an insignificant increase in SM
and BBR + SM treatments in comparison with the control. These results indicate a reduction
in ALT and AST enzyme activities for SM, SM + BBR100, and SM + BBR200 treatments,
suggesting an alleviation of APAP detrimental effects for these treatments.

Oral SM in other species, such as Oncorhynchus mykiss, stabilized cell membrane struc-
ture and regulated AST, ALT, and ALP activity levels at concentrations up to 400 mg/kg
body weight [26]. A similar study, carried out on the species Cyprinus carpio, showed
that SM protects hepatocytes against tissue damage induced by cadmium chloride only at
concentrations of 2400 mg/kg diet [44].

In various laboratory animal studies, the administration of BBR has been shown to
reduce hepatotoxicity induced by various pharmaceutical compounds such as methotrex-
ate [41], metformin [96], and gentamicin [97]. The hepatoprotective effect of berberine
derives from the fact that this isoquinoline alkaloid compound is biologically active with
antihyperglycemic, antioxidant, anti-inflammatory, antimicrobial, anticarcinogenic, and
renoprotective properties [98]. At the same time, the obtained results can also be supported
by the protective effect that BBR has against free radicals, being a good scavenger for
reactive nitrogen species [39].

Throughout the history of medicine, the fruits of plants such as Berberis vulgaris
have also been used for beneficial effects on the biological function of the liver and the
cardiovascular system by reducing triglycerides, cholesterol, low-density lipoproteins, and
blood pressure due to its unique bioactive compounds, such as BBR [99,100].

Triglycerides (TG) are the main form in which lipids are stored to provide energy to
fish [101], bringing information on lipid energy reserves. Thus, the plasma triglyceride
(TG) level can be used as an indicator of nutritional status, as well as the total plasma
protein and cholesterol level. In our study, plasma TG levels of the fish fed with BBR, SM,
and BBR + SM enriched feed decreased significantly (p < 0.05) compared to the control
group. The lowest TG values were found in the SM + BBR100 and SM + BBR200 variants
suggesting the synergistic effect of SM and BBR. Similar results were reported for the
sturgeon Acipenser baeri [37], whose diet, supplemented with BBR in concentrations of
150, 300, 600, and 750 mg/kg, was negatively correlated with the fish plasma TG values.
BBR has also been reported to be an effective serum lipid-lowering agent by reducing TG
synthesis through stimulating the activity of adenosine monophosphate (AMP)-activated
protein kinase, which plays a key role in cellular energy homeostasis [102].

Regarding total cholesterol (CHOL), after the feeding experiment, the mean plasma
values were significantly lower in the experimental variants in which food was enriched
with SM, BBR, or both supplements. However, it should be noted that CHOL had the
lowest values in the groups receiving BBR, either as a single supplement (in BBR100) or
in a nutraceutical combination with SM (in SM + BBR200). Additionally, the cholesterol
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fraction values show that BBR positively influenced the HDL/LDL ratio; the best ratio was
found for BBR200 and BBR100. Similar results, consistent with the present study, were
obtained for black carp (Mylopharyngodon piceus) [80] and black sea bream [103], after BBR
supplementation in a high-lipid diet, when reduced TG, CHOL, and LDL concentrations
were registered and HDL concentration increased.

A high APAP dose rapidly depleted liver levels of triglycerides and cholesterol, indi-
cating the impairment of carbohydrate and lipid metabolism. A loss of glycogen or lipids
may occur as a direct effect of intoxication or may occur secondarily, as a result of altered
general body condition caused by starvation, stress, or concomitant illness [104].

Both subtoxic and toxic doses of APAP have also been shown to downregulate
genes of energy-consuming biochemical pathways, including gluconeogenesis (glucose-
6-phosphatase), fatty acid synthesis (sterol-C4-methyl oxidase), and cholesterol synthesis
(3-hydroxy-3-methylglutaryl-coenzyme A synthase 1) and regulate energy-producing bio-
chemical genes such as glycolysis/gluconeogenesis (6-phosphofructo-2-kinase/fructose-
2,6-bisphosphatase 1) [105]. In the case of fish fed with SM and BBR (experimental variants
SM and BBR100), the level of triglycerides decreased insignificantly (p > 0,05) after exposure
to APAP, suggesting the regulatory action of these supplements.

Cholesterol has also been used in numerous previous research studies as a diagnostic
tool for biological monitoring of the condition of farmed fish [106]. Consequently, ele-
vated energy metabolites such as CHOL, HDL, and LDL may indicate lipid or lipoprotein
metabolic problems or liver dysfunction. The results obtained after the toxic challenge
test revealed that the level of total cholesterol and cholesterol fractions decreased for all
experimental variants. However, it can be easily noted that, from the perspective of lipid
metabolism, the control variant was the most exposed to the negative effect of APAP-
induced hepatotoxicity, while the variants with insignificant decreases in HDL were those
fed with diet containing BBR. Also, BBR100, BBR200, and SM + BBR2000 variants recorded
the least depreciation of CHOL values, while BBR200 had the least HDL depreciation.

GGT (γ-glutamyl transferase), also known as gamma-glutamyl transpeptidase, is an
enzyme present mainly in the liver, but also in other tissues such as the kidneys, pancreas,
and spleen. High concentrations of GGT in the blood can indicate various liver diseases,
especially damage to the bile ducts. Bilirubin is a yellow-orange pigment resulting from
the breakdown of hemoglobin in old erythrocytes.

In the present study, after the feeding experiment, no significant differences were
found between the mean GGT and BILD values of the tested experimental groups (p > 0.05
in the ANOVA test). However, the BILT value, increased significantly in the control group
compared to the experimental groups (p < 0.05). After APAP exposure, the values of
GGT, BILD, and BILT increased significantly (p < 0.05) in the control groups, while for the
experimental variants in which the bioactive compounds were tested, the mean GGT, BILD,
and BILT showed an insignificant (p > 0.05) increase.

The ameliorative effects of BBR and SM were thus highlighted by modulating the
activity of GGT and bilirubin. Bilirubin is considered one of the most potent endogenous
antioxidants, and its serum concentrations are predominantly affected by hepatic bilirubin
activity. Thus, bilirubin intervenes in the protection of the cells when they are exposed to
the negative effects of toxic compounds [107]. High bilirubin values in the control variant
indirectly reflect the impairment of liver function due to APAP-induced hepatotoxicity. At
the same time, the protection provided by SM against APAP-induced liver toxicity can
be generally related to several beneficial properties, including free radical scavenging,
increased cellular growth somatic hormone content, and membrane permeability regula-
tion [47]. Moreover, in the present case, combining SM with 100 mg BBR/kg feed resulted
in a better status due to the additional contribution of BBR.

MDA is a commonly used indicator to assess lipid peroxidation. Lipid peroxidation
is a chemical process by which lipids are exposed to oxidative factors, generating free
radicals and toxic compounds that can damage the cellular structure, oxidative stress, and
negative effects on the physiology of aquatic organisms [108,109]. In our study, a higher
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level of plasma MDA in the control variant, after the feeding trial, may indicate a slight
imbalance between the generation and elimination of reactive oxygen species (ROS). The
results showed that supplementing feed with BBR or a nutraceutical mixture of BBR and
SM reduced oxidative damage in plasma by diminishing MDA production (the MDA had
the lowest values in BBR100, BBR200, and SM + BBR100). However, the combination of
SM with a higher BBR concentration did not yield better results. Similar results were
also reported for yellow catfish (Pelteobagrus fulvidraco), fed with BBR 100 and 400 mg/kg
feed [88], where MDA registered higher values in the BBR400 variant. In the present study,
after the challenge test, the lowest MDA mean value was obtained in the SM + BBR100
variant, followed by BBR100 < BBR200 < SM + BBR200 < SM.

Regarding MDA values in the liver, although a slight decrease was observed in
treatment groups, they did not show significant differences (p > 0.05) either after the
feeding experiment or after the APAP test. In line with our findings, BBR supplementation
(50 mg/kg) reduced hepatic MDA in blunt snout bream [109] and in largemouth bass fed
with BBR-supplemented high-starch diets [81]. BBR supplementation in a high starch diet
of black sea bream also reduced MDA content after the ammonia challenge [110]. Similarly,
a reduction in MDA level and increase in antioxidant capacity after the administration of
SM (0, 0.1, 0.5, and 1 g/kg feed) in feed were also reported for carp [111].

In the current study, after the feeding experiment, the total antioxidant capacity at
the plasma level showed no significant differences (p > 0.05) between the six experimental
variants. However, a slight increase in TAC values can be observed in the control. After the
administration of a single dose of APAP, significantly higher TAC values were noticed in
the variant in which SM was administered, followed by the variants SM + BBR200, BBR100,
BBR200, and SM + BBR10.

The inverse relationship between lipid peroxidation and total antioxidant capacity,
reflected by decreasing the MDA and increasing the percentage of antioxidants in the body,
has also been reported in fish [112]. In our study, after the toxicity test, the concentration
of plasma MDA increased, while the TAC values decreased in all groups; however, the
positive effect of the supplements in alleviating oxidative stress was highlighted by the
lower increase rate of MDA and, respectively, the decreased rate of TAC (especially in the
SM + BBR100 group). Therefore, adding SM and BBR in carp feed can help maintain a
balanced ratio between oxidants and antioxidants, thus preventing oxidative stress.

Regarding the LZM activity, after the feeding experiment, statistical analysis revealed
significant differences (p < 0.05) between the six experimental variants; the lowest activity
of LZM was observed in the control variant followed by the SM variant. The increase in
plasma lysozyme activity contributes to the acceleration of the phagocytosis process [111].
Phagocytosis is a process by which specialized cells, called phagocytes, engulf and destroy
bacteria and other foreign particles. By improving this process, the fish’s immunity is
strengthened, facilitating the elimination of pathogens and reducing the risk of infections.
It was suggested that BBR could promote the innate immune system as it exhibited a
strong anti-bacterial effect in both fish [76] and rats [113,114]. In our study, after the
feeding trial, the highest LZM concentration was detected in the BBR200 variant. After
the APAP stress test, the statistical analysis revealed significant differences (p < 0.05)
among the experimental variants emphasizing significantly lower activity of LZM in the
control variant followed by SM < BBR100 < BBR200 < SM + BBR200 < SM + BBR100.
Our results are aligned with similar reports for common carp [77] and other fish species,
such as blunt snout bream [115] or Nile tilapia [38], in which it was emphasized that BBR
administration improved nonspecific immune status (highlighted by LZM activity) of the
fish. Nevertheless, the mechanism induced by BBR in modulating the nonspecific immune
system is not fully understood. In the present study, the beneficial effects of SM and
BBR association were highlighted; however, to understand the physiological mechanisms
behind the results, further investigations should be carried out.
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5. Conclusions

The general health profile of the fish improved when the diet was enriched with either
SM, BBR, or a combination of both. BBR and SM enhanced the growth performance in carp
when administered individually as supplements, whereas their combined use did not lead
to superior performance. Feeding carp with specific supplements over an extended period
significantly decreased hepatotoxicity following acetaminophen exposure. The addition of
SM and BBR in the carp juvenile feed highlighted the positive effect of these additives in
combating oxidative stress. Our research demonstrated that administering SM 1 g/kg feed
in combination with BBR 100 mg/kg feed resulted in the mitigation of oxidative stress and
modulation of the nonspecific immune system, providing evidence for the strengthening
effect of this nutraceutical combination.
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