Advances in Research on Pig Salivary Analytes: A Window to Reveal Pig Health and Physiological Status
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods of Saliva Collection and Detection
3. Overview of Saliva
3.1. Function of Saliva
3.2. Biomarkers in Saliva
4. The Use of Saliva for Disease Diagnosis
4.1. Application of Porcine Salivary Protein Analytes for Disease Diagnosis
4.2. Application of Porcine Salivary Nucleic Acid Analytes for Disease Diagnosis
4.3. Application of Metabolites in Pig Saliva to Disease
4.4. Application of Microorganisms in Pig Saliva to Disease
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ceron, J.J. Acute Phase Proteins, Saliva and Education in Laboratory Science: An Update and Some Reflections. BMC Vet. Res. 2019, 15, 197. [Google Scholar] [CrossRef]
- Mese, H.; Matsuo, R. Salivary Secretion, Taste and Hyposalivation. J. Oral Rehabil. 2007, 34, 711–723. [Google Scholar] [CrossRef]
- Humphrey, S.P.; Williamson, R.T. A Review of Saliva: Normal Composition, Flow, and Function. J. Prosthet Dent. 2001, 85, 162–169. [Google Scholar] [CrossRef]
- Roblegg, E.; Coughran, A.; Sirjani, D. Saliva: An All-Rounder of Our Body. Eur. J. Pharm. Biopharm. 2019, 142, 133–141. [Google Scholar] [CrossRef]
- Ortin-Bustillo, A.; Escribano, D.; Lopez-Arjona, M.; Botia, M.; Fuentes, P.; Martinez-Miro, S.; Rubio, C.P.; Garcia-Manzanilla, E.; Franco-Martinez, L.; Pardo-Marin, L.; et al. Changes in a Comprehensive Profile of Saliva Analytes in Fattening Pigs during a Complete Productive Cycle: A Longitudinal Study. Animals 2022, 12, 1865. [Google Scholar] [CrossRef]
- Martinez-Miro, S.; Tecles, F.; Ramon, M.; Escribano, D.; Hernandez, F.; Madrid, J.; Orengo, J.; Martinez-Subiela, S.; Manteca, X.; Ceron, J.J. Causes, Consequences and Biomarkers of Stress in Swine: An Update. BMC Vet. Res. 2016, 12, 171. [Google Scholar] [CrossRef]
- Bandhakavi, S.; Stone, M.D.; Onsongo, G.; Van Riper, S.K.; Griffin, T.J. A Dynamic Range Compression and Three-Dimensional Peptide Fractionation Analysis Platform Expands Proteome Coverage and the Diagnostic Potential of Whole Saliva. J. Proteome Res. 2009, 8, 5590–5600. [Google Scholar] [CrossRef]
- Ortin-Bustillo, A.; Botia, M.; Lopez-Martinez, M.J.; Martinez-Subiela, S.; Ceron, J.J.; Gonzalez-Bulnes, A.; Manzanilla, E.G.; Goyena, E.; Tecles, F.; Munoz-Prieto, A. Changes in S100a8/A9 and S100a12 and Their Comparison with Other Analytes in the Saliva of Pigs with Diarrhea Due to E. coli. Animals 2023, 13, 2556. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, A.M.; De La Cruz-Sanchez, E.; Montes, A.; Sotillo, J.; Gutierrez-Panizo, C.; Fuentes, P.; Tornel, P.L.; Cabezas-Herrera, J. Easy and Non-Invasive Disease Detection in Pigs by Adenosine Deaminase Activity Determinations in Saliva. PLoS ONE 2017, 12, e0179299. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Martinez, M.J.; Ornelas, M.A.S.; Amarie, R.E.; Manzanilla, E.G.; Martinez-Subiela, S.; Tecles, F.; Tvarijonaviciute, A.; Escribano, D.; Gonzalez-Bulnes, A.; Ceron, J.J.; et al. Changes in Salivary Biomarkers of Stress, Inflammation, Redox Status, and Muscle Damage Due to Streptococcus Suis Infection in Pigs. BMC Vet. Res. 2023, 19, 100. [Google Scholar] [CrossRef] [PubMed]
- Ceron, J.J.; Contreras-Aguilar, M.D.; Escribano, D.; Martinez-Miro, S.; Lopez-Martinez, M.J.; Ortin-Bustillo, A.; Franco-Martinez, L.; Rubio, C.P.; Munoz-Prieto, A.; Tvarijonaviciute, A.; et al. Basics for the Potential Use of Saliva to Evaluate Stress, Inflammation, Immune System, and Redox Homeostasis in Pigs. BMC Vet. Res. 2022, 18, 81. [Google Scholar] [CrossRef] [PubMed]
- Groschl, M. Current Status of Salivary Hormone Analysis. Clin. Chem. 2008, 54, 1759–1769. [Google Scholar] [CrossRef] [PubMed]
- Pfaffe, T.; Cooper-White, J.; Beyerlein, P.; Kostner, K.; Punyadeera, C. Diagnostic Potential of Saliva: Current State and Future Applications. Clin. Chem. 2011, 57, 675–687. [Google Scholar] [CrossRef] [PubMed]
- Almeida, M.N.; Rotto, H.; Schneider, P.; Robb, C.; Zimmerman, J.J.; Holtkamp, D.J.; Rademacher, C.J.; Linhares, D.C.L. Collecting Oral Fluid Samples from Due-to-Wean Litters. Prev. Vet. Med. 2020, 174, 104810. [Google Scholar] [CrossRef] [PubMed]
- Rubio, C.P.; Mainau, E.; Ceron, J.J.; Contreras-Aguilar, M.D.; Martinez-Subiela, S.; Navarro, E.; Tecles, F.; Manteca, X.; Escribano, D. Biomarkers of Oxidative Stress in Saliva in Pigs: Analytical Validation and Changes in Lactation. BMC Vet. Res. 2019, 15, 144. [Google Scholar] [CrossRef]
- Merlot, E.; Mounier, A.M.; Prunier, A. Endocrine Response of Gilts to Various Common Stressors: A Comparison of Indicators and Methods of Analysis. Physiol. Behav. 2011, 102, 259–265. [Google Scholar] [CrossRef]
- Bushong, D.M.; Friend, T.H.; Knabe, D.A. Salivary and Plasma Cortisol Response to Adrenocorticotropin Administration in Pigs. Lab. Anim. 2000, 34, 171–181. [Google Scholar] [CrossRef]
- Krahel, A.; Hernik, A.; Dmitrzak-Weglarz, M.; Paszynska, E. Saliva as Diagnostic Material and Current Methods of Collection from Oral Cavity. Clin. Lab. 2022, 68, 2072. [Google Scholar] [CrossRef]
- Norgaard, P.; Grondahl-Nielsen, C.; Grovum, W.L. Technical Note: Reversible Re-Entrant Cannulation of the Parotid Duct in Cattle Using a New Injection Anesthesia Regimen. J. Anim. Sci. 1996, 74, 1716–1719. [Google Scholar] [CrossRef]
- Ornelas, M.A.S.; Lopez-Martinez, M.J.; Franco-Martinez, L.; Ceron, J.J.; Ortin-Bustillo, A.; Rubio, C.P.; Manzanilla, E.G. Analysing Biomarkers in Oral Fluid from Pigs: Influence of Collection Strategy and Age of the Pig. Porcine Health Manag. 2023, 9, 39. [Google Scholar] [CrossRef]
- Song, M.; Bai, H.; Zhang, P.; Zhou, X.; Ying, B. Promising Applications of Human-Derived Saliva Biomarker Testing in Clinical Diagnostics. Int. J. Oral Sci. 2023, 15, 2. [Google Scholar] [CrossRef] [PubMed]
- Aloe, L.; Rocco, M.L.; Bianchi, P.; Manni, L. Nerve Growth Factor: From the Early Discoveries to the Potential Clinical Use. J. Transl. Med. 2012, 10, 239. [Google Scholar] [CrossRef] [PubMed]
- Trang, N.T.; Hirai, T.; Yamamoto, T.; Matsuda, M.; Okumura, N.; Giang, N.T.; Lan, N.T.; Yamaguchi, R. Detection of Porcine Reproductive and Respiratory Syndrome Virus in Oral Fluid from Naturally Infected Pigs in a Breeding Herd. J. Vet. Sci. 2014, 15, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Farooq, I.; Bugshan, A. The Role of Salivary Contents and Modern Technologies in the Remineralization of Dental Enamel: A Narrative Review. F1000Research 2020, 9, 171. [Google Scholar] [CrossRef] [PubMed]
- Omar, S.A.; Webb, A.J.; Lundberg, J.O.; Weitzberg, E. Therapeutic Effects of Inorganic Nitrate and Nitrite in Cardiovascular and Metabolic Diseases. J. Intern. Med. 2016, 279, 315–336. [Google Scholar] [CrossRef]
- Gilchrist, M.; Winyard, P.G.; Fulford, J.; Anning, C.; Shore, A.C.; Benjamin, N. Dietary Nitrate Supplementation Improves Reaction Time in Type 2 Diabetes: Development and Application of a Novel Nitrate-Depleted Beetroot Juice Placebo. Nitric Oxide 2014, 40, 67–74. [Google Scholar] [CrossRef]
- Lundberg, J.O.; Carlstrom, M.; Weitzberg, E. Metabolic Effects of Dietary Nitrate in Health and Disease. Cell Metab. 2018, 28, 9–22. [Google Scholar] [CrossRef]
- Qin, L.; Liu, X.; Sun, Q.; Fan, Z.; Xia, D.; Ding, G.; Ong, H.L.; Adams, D.; Gahl, W.A.; Zheng, C.; et al. Sialin (Slc17a5) Functions as a Nitrate Transporter in the Plasma Membrane. Proc. Natl. Acad. Sci. USA 2012, 109, 13434–13439. [Google Scholar] [CrossRef]
- Feng, X.; Wu, Z.; Xu, J.; Xu, Y.; Zhao, B.; Pang, B.; Qu, X.; Hu, L.; Hu, L.; Fan, Z.; et al. Dietary Nitrate Supplementation Prevents Radiotherapy-Induced Xerostomia. elife 2021, 10, e70710. [Google Scholar] [CrossRef]
- Franco-Martinez, L.; Martinez-Subiela, S.; Ceron, J.J.; Tecles, F.; Eckersall, P.D.; Oravcova, K.; Tvarijonaviciute, A. Biomarkers of Health and Welfare: A One Health Perspective from the Laboratory Side. Res. Vet. Sci. 2020, 128, 299–307. [Google Scholar] [CrossRef]
- Hall, S.A.; Farish, M.; Coe, J.; Baker, E.; Camerlink, I.; Lawrence, A.B.; Baxter, E.M. Minimally Invasive Biomarkers to Detect Maternal Physiological Status in Sow Saliva and Milk. Animal 2021, 15, 100369. [Google Scholar] [CrossRef] [PubMed]
- Kingsbury, D.L.; Rawlings, N.C. Effect of Exposure to a Boar on Circulating Concentrations of Lh, Fsh, Cortisol and Oestradiol in Prepubertal Gilts. J. Reprod. Fertil. 1993, 98, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Sankarganesh, D.; Kirkwood, R.N.; Nagnan-Le Meillour, P.; Angayarkanni, J.; Achiraman, S.; Archunan, G. Pheromones, Binding Proteins, and Olfactory Systems in the Pig (Sus scrofa): An Updated Review. Front. Vet. Sci. 2022, 9, 989409. [Google Scholar] [CrossRef] [PubMed]
- Alagendran, S.; Saibaba, G.; Muthukumar, S.; Rajkumar, R.; Guzman, R.G.; Archunan, G. Characterization of Salivary Protein during Ovulatory Phase of Menstrual Cycle through Maldi-Tof/Ms. Indian J. Dent. Res. 2013, 24, 157–163. [Google Scholar] [PubMed]
- Li, C.; Song, C.; Qi, K.; Liu, Y.; Dou, Y.; Li, X.; Qiao, R.; Wang, K.; Han, X.; Li, X. Identification of Estrus in Sows Based on Salivary Proteomics. Animals 2022, 12, 1656. [Google Scholar] [CrossRef] [PubMed]
- Goudet, G.; Nadal-Desbarats, L.; Douet, C.; Savoie, J.; Staub, C.; Venturi, E.; Ferchaud, S.; Boulot, S.; Prunier, A. Salivary and Urinary Metabolome Analysis for Pre-Puberty-Related Biomarkers Identification in Porcine. Animal 2019, 13, 760–770. [Google Scholar] [CrossRef]
- Wong, D.T. Salivaomics. J. Am. Dent. Assoc. 2012, 143, 19S–24S. [Google Scholar] [CrossRef]
- Prims, S.; Van Raemdonck, G.; Vanden Hole, C.; Van Cruchten, S.; Van Ginneken, C.; Van Ostade, X.; Casteleyn, C. On the Characterisation of the Porcine Gland-Specific Salivary Proteome. J. Proteom. 2019, 196, 92–105. [Google Scholar] [CrossRef]
- Campanati, A.; Martina, E.; Diotallevi, F.; Radi, G.; Marani, A.; Sartini, D.; Emanuelli, M.; Kontochristopoulos, G.; Rigopoulos, D.; Gregoriou, S.; et al. Saliva Proteomics as Fluid Signature of Inflammatory and Immune-Mediated Skin Diseases. Int. J. Mol. Sci. 2021, 22, 7018. [Google Scholar] [CrossRef]
- Hopkins, D.; Poljak, Z.; Farzan, A.; Friendship, R. Factors Contributing to Mortality during a Streptoccocus Suis Outbreak in Nursery Pigs. Can. Vet. J. 2018, 59, 623–630. [Google Scholar]
- Fittipaldi, N.; Segura, M.; Grenier, D.; Gottschalk, M. Virulence Factors Involved in the Pathogenesis of the Infection Caused by the Swine Pathogen and Zoonotic Agent Streptococcus Suis. Future Microbiol. 2012, 7, 259–279. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Martinez, M.J.; Beletic, A.; Kules, J.; Resetar-Maslov, D.; Rubic, I.; Mrljak, V.; Manzanilla, E.G.; Goyena, E.; Martinez-Subiela, S.; Ceron, J.J.; et al. Revealing the Changes in Saliva and Serum Proteins of Pigs with Meningitis Caused by Streptococcus Suis: A Proteomic Approach. Int. J. Mol. Sci. 2022, 23, 13700. [Google Scholar] [CrossRef] [PubMed]
- Augustine, S.A.J.; Eason, T.N.; Simmons, K.J.; Griffin, S.M.; Curioso, C.L.; Ramudit, M.K.D.; Sams, E.A.; Oshima, K.H.; Dufour, A.; Wade, T.J. Rapid Salivary IgG Antibody Screening for Hepatitis A. J. Clin. Microbiol. 2020, 58, e00358-20. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Sharples, R.A.; Scicluna, B.J.; Hill, A.F. Exosomes Provide a Protective and Enriched Source of miRNA for Biomarker Profiling Compared to Intracellular and Cell-Free Blood. J. Extracell. Vesicles 2014, 3, 23743. [Google Scholar] [CrossRef] [PubMed]
- Gai, C.; Camussi, F.; Broccoletti, R.; Gambino, A.; Cabras, M.; Molinaro, L.; Carossa, S.; Camussi, G.; Arduino, P.G. Salivary Extracellular Vesicle-Associated miRNAs as Potential Biomarkers in Oral Squamous Cell Carcinoma. BMC Cancer 2018, 18, 439. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Cao, L.; Zhou, R.; Yang, X.; Wu, M. The lncRNA Neat1 Promotes Activation of Inflammasomes in Macrophages. Nat. Commun. 2019, 10, 1495. [Google Scholar] [CrossRef]
- Kao, C.F.; Chiou, H.Y.; Chang, Y.C.; Hsueh, C.S.; Jeng, C.R.; Tsai, P.S.; Cheng, I.C.; Pang, V.F.; Chang, H.W. The Characterization of Immunoprotection Induced by a cDNA Clone Derived from the Attenuated Taiwan Porcine Epidemic Diarrhea Virus Pintung 52 Strain. Viruses 2018, 10, 543. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.; Perez, P.; Kato, T.; Mikami, Y.; Okuda, K.; Gilmore, R.C.; Conde, C.D.; Gasmi, B.; Stein, S.; Beach, M.; et al. SARS-CoV-2 Infection of the Oral Cavity and Saliva. Nat. Med. 2021, 27, 892–903. [Google Scholar] [CrossRef]
- Samiei, M.; Ahmadian, E.; Eftekhari, A.; Eghbal, M.A.; Rezaie, F.; Vinken, M. Cell Junctions and Oral Health. EXCLI J. 2019, 18, 317–330. [Google Scholar]
- Rizzo, C.; Grasso, G.; Destro Castaniti, G.M.; Ciccia, F.; Guggino, G. Primary Sjogren Syndrome: Focus on Innate Immune Cells and Inflammation. Vaccines 2020, 8, 272. [Google Scholar] [CrossRef]
- Hyvarinen, E.; Kashyap, B.; Kullaa, A.M. Oral Sources of Salivary Metabolites. Metabolites 2023, 13, 498. [Google Scholar] [CrossRef]
- Fujii, J.; Otsu, K.; Zorzato, F.; de Leon, S.; Khanna, V.K.; Weiler, J.E.; O’Brien, P.J.; MacLennan, D.H. Identification of a Mutation in Porcine Ryanodine Receptor Associated with Malignant Hyperthermia. Science 1991, 253, 448–451. [Google Scholar] [CrossRef] [PubMed]
- Chaloupkova, H.; Illmann, G.; Neuhauserova, K.; Tomanek, M.; Valis, L. Preweaning Housing Effects on Behavior and Physiological Measures in Pigs during the Suckling and Fattening Periods. J. Anim. Sci. 2007, 85, 1741–1749. [Google Scholar] [CrossRef] [PubMed]
- Jama, N.; Maphosa, V.; Hoffman, L.C.; Muchenje, V. Effect of Sex and Time to Slaughter (Transportation and Lairage Duration) on the Levels of Cortisol, Creatine Kinase and Subsequent relationship with Pork Quality. Meat Sci. 2016, 116, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Rey-Salgueiro, L.; Martinez-Carballo, E.; Fajardo, P.; Chapela, M.J.; Espineira, M.; Simal-Gandara, J. Meat Quality in Relation to Swine Well-Being after Transport and during Lairage at the Slaughterhouse. Meat Sci. 2018, 142, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, J. Systems Biology of Metabolism. Annu. Rev. Biochem. 2017, 86, 245–275. [Google Scholar] [CrossRef]
- Hyvarinen, E.; Savolainen, M.; Mikkonen, J.J.W.; Kullaa, A.M. Salivary Metabolomics for Diagnosis and Monitoring Diseases: Challenges and Possibilities. Metabolites 2021, 11, 587. [Google Scholar] [CrossRef]
- Jarvis, M.J.; Primatesta, P.; Erens, B.; Feyerabend, C.; Bryant, A. Measuring Nicotine Intake in Population Surveys: Comparability of Saliva Cotinine and Plasma Cotinine Estimates. Nicotine Tob. Res. 2003, 5, 349–355. [Google Scholar] [CrossRef]
- Jacob, P., 3rd; Yu, L.; Duan, M.; Ramos, L.; Yturralde, O.; Benowitz, N.L. Determination of the Nicotine Metabolites Cotinine and Trans-3′-Hydroxycotinine in Biologic Fluids of Smokers and Non-Smokers Using Liquid Chromatography-Tandem Mass Spectrometry: Biomarkers for Tobacco Smoke Exposure and for Phenotyping Cytochrome P450 2a6 Activity. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2011, 879, 267–276. [Google Scholar]
- Esteban, M.; Castano, A. Non-Invasive Matrices in Human Biomonitoring: A Review. Environ. Int. 2009, 35, 438–449. [Google Scholar] [CrossRef]
- Quehenberger, O.; Armando, A.M.; Brown, A.H.; Milne, S.B.; Myers, D.S.; Merrill, A.H.; Bandyopadhyay, S.; Jones, K.N.; Kelly, S.; Shaner, R.L.; et al. Lipidomics Reveals a Remarkable Diversity of Lipids in Human Plasma. J. Lipid. Res. 2010, 51, 3299–3305. [Google Scholar] [CrossRef] [PubMed]
- Agatonovic-Kustrin, S.; Morton, D.W.; Smirnov, V.; Petukhov, A.; Gegechkori, V.; Kuzina, V.; Gorpinchenko, N.; Ramenskaya, G. Analytical Strategies in Lipidomics for Discovery of Functional Biomarkers from Human Saliva. Dis. Markers 2019, 2019, 6741518. [Google Scholar] [CrossRef] [PubMed]
- Gardner, A.; Parkes, H.G.; Carpenter, G.H.; So, P.W. Developing and Standardizing a Protocol for Quantitative Proton Nuclear Magnetic Resonance (1H NMR) Spectroscopy of Saliva. J. Proteome Res. 2018, 17, 1521–1531. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, S.; Sugimoto, M.; Kitabatake, K.; Sugano, A.; Nakamura, M.; Kaneko, M.; Ota, S.; Hiwatari, K.; Enomoto, A.; Soga, T.; et al. Identification of Salivary Metabolomic Biomarkers for Oral Cancer Screening. Sci. Rep. 2016, 6, 31520. [Google Scholar] [CrossRef]
- Schroder, S.A.; Bardow, A.; Eickhardt-Dalboge, S.; Johansen, H.K.; Homoe, P. Is Parotid Saliva Sterile on Entry to the Oral Cavity? Acta Otolaryngol. 2017, 137, 762–764. [Google Scholar] [CrossRef]
- Hasan, N.A.; Young, B.A.; Minard-Smith, A.T.; Saeed, K.; Li, H.; Heizer, E.M.; McMillan, N.J.; Isom, R.; Abdullah, A.S.; Bornman, D.M.; et al. Microbial Community Profiling of Human Saliva Using Shotgun Metagenomic Sequencing. PLoS ONE 2014, 9, e97699. [Google Scholar] [CrossRef]
- Leake, S.L.; Pagni, M.; Falquet, L.; Taroni, F.; Greub, G. The Salivary Microbiome for Differentiating Individuals: Proof of Principle. Microbes Infect. 2016, 18, 399–405. [Google Scholar] [CrossRef]
- van Gelder, S.; Rohrig, N.; Schattenberg, F.; Cichocki, N.; Schumann, J.; Schmalz, G.; Haak, R.; Ziebolz, D.; Muller, S. A Cytometric Approach to Follow Variation and Dynamics of the Salivary Microbiota. Methods 2018, 134–135, 67–79. [Google Scholar] [CrossRef]
- Li, J.; Quinque, D.; Horz, H.P.; Li, M.; Rzhetskaya, M.; Raff, J.A.; Hayes, M.G.; Stoneking, M. Comparative Analysis of the Human Saliva Microbiome from Different Climate Zones: Alaska, Germany, and Africa. BMC Microbiol. 2014, 14, 316. [Google Scholar] [CrossRef]
- Mboko, W.P.; Chhabra, P.; Valcarce, M.D.; Costantini, V.; Vinje, J. Advances in Understanding of the Innate Immune Response to Human Norovirus Infection Using Organoid Models. J. Gen. Virol. 2022, 103, 001720. [Google Scholar] [CrossRef]
- Banyai, K.; Estes, M.K.; Martella, V.; Parashar, U.D. Viral Gastroenteritis. Lancet 2018, 392, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Nyblade, C.; Zhou, P.; Frazier, M.; Frazier, A.; Hensley, C.; Fantasia-Davis, A.; Shahrudin, S.; Hoffer, M.; Agbemabiese, C.A.; LaRue, L.; et al. Human Rotavirus Replicates in Salivary Glands and Primes Immune Responses in Facial and Intestinal Lymphoid Tissues of Gnotobiotic Pigs. Viruses 2023, 15, 1864. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Jiang, S.; Koh, D.; Hsu, C.Y. Salivary Biomarkers for Dental Caries. Periodontol. 2000 2016, 70, 128–141. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, J.; Matas, M.; Ibanez-Lopez, F.J.; Hernandez, I.; Sotillo, J.; Gutierrez, A.M. The Connection between Stress and Immune Status in Pigs: A First Salivary Analytical Panel for Disease Differentiation. Front. Vet. Sci. 2022, 9, 881435. [Google Scholar] [CrossRef] [PubMed]
- Carro, E.; Bartolome, F.; Bermejo-Pareja, F.; Villarejo-Galende, A.; Molina, J.A.; Ortiz, P.; Calero, M.; Rabano, A.; Cantero, J.L.; Orive, G. Early Diagnosis of Mild Cognitive Impairment and Alzheimer’s Disease Based on Salivary Lactoferrin. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2017, 8, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Oudhoff, M.J.; Bolscher, J.G.; Nazmi, K.; Kalay, H.; van ‘t Hof, W.; Amerongen, A.V.; Veerman, E.C. Histatins Are the Major Wound-Closure Stimulating Factors in Human Saliva as Identified in a Cell Culture Assay. FASEB J. 2008, 22, 3805–3812. [Google Scholar] [CrossRef] [PubMed]
- Arantes, L.; De Carvalho, A.C.; Melendez, M.E.; Lopes Carvalho, A. Serum, Plasma and Saliva Biomarkers for Head and Neck Cancer. Expert. Rev. Mol. Diagn. 2018, 18, 85–112. [Google Scholar] [CrossRef] [PubMed]
- Arakaki, A.K.; Skolnick, J.; McDonald, J.F. Marker Metabolites Can Be Therapeutic Targets as Well. Nature 2008, 456, 443. [Google Scholar] [CrossRef]
- Park, C.; Yun, S.; Lee, S.Y.; Park, K.; Lee, J. Metabolic Profiling of Klebsiella Oxytoca: Evaluation of Methods for Extraction of Intracellular Metabolites Using Uplc/Q-Tof-Ms. Appl. Biochem. Biotechnol. 2012, 167, 425–438. [Google Scholar] [CrossRef]
- Torres, P.J.; Fletcher, E.M.; Gibbons, S.M.; Bouvet, M.; Doran, K.S.; Kelley, S.T. Characterization of the Salivary Microbiome in Patients with Pancreatic Cancer. PeerJ 2015, 3, e1373. [Google Scholar] [CrossRef]
- Wong, D.T. Towards a Simple, Saliva-Based Test for the Detection of Oral Cancer ‘Oral Fluid (Saliva), Which Is the Mirror of the Body, Is a Perfect Medium to Be Explored for Health and Disease Surveillance’. Expert. Rev. Mol. Diagn. 2006, 6, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Kaczor-Urbanowicz, K.E.; Wei, F.; Rao, S.L.; Kim, J.; Shin, H.; Cheng, J.; Tu, M.; Wong, D.T.W.; Kim, Y. Clinical Validity of Saliva and Novel Technology for Cancer Detection. Biochim. Biophys. Acta Rev. Cancer 2019, 1872, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Lamy, E.; Mau, M. Saliva Proteomics as an Emerging, Non-Invasive Tool to Study Livestock Physiology, Nutrition and Diseases. J. Proteom. 2012, 75, 4251–4258. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, K.; Shono, C.; Mori, T.; Kitazawa, H.; Ota, N.; Kurebayashi, Y.; Suzuki, T. Protein-Bound Sialic Acid in Saliva Contributes Directly to Salivary Anti-Influenza Virus Activity. Sci. Rep. 2022, 12, 6636. [Google Scholar] [CrossRef] [PubMed]
- Orsi, N. The Antimicrobial Activity of Lactoferrin: Current Status and Perspectives. Biometals 2004, 17, 189–196. [Google Scholar] [CrossRef]
- Kittawornrat, A.; Prickett, J.; Wang, C.; Olsen, C.; Irwin, C.; Panyasing, Y.; Ballagi, A.; Rice, A.; Main, R.; Johnson, J.; et al. Detection of Porcine Reproductive and Respiratory Syndrome Virus (Prrsv) Antibodies in Oral Fluid Specimens Using a Commercial Prrsv Serum Antibody Enzyme-Linked Immunosorbent Assay. J. Vet. Diagn. Investig. 2012, 24, 262–269. [Google Scholar] [CrossRef]
- Pietschmann, J.; Mur, L.; Blome, S.; Beer, M.; Perez-Sanchez, R.; Oleaga, A.; Sanchez-Vizcaino, J.M. African Swine Fever Virus Transmission Cycles in Central Europe: Evaluation of Wild Boar-Soft Tick Contacts through Detection of Antibodies against Ornithodoros erraticus Saliva Antigen. BMC Vet. Res. 2016, 12, 1. [Google Scholar] [CrossRef]
- Martin-Martin, I.; Kojin, B.B.; Aryan, A.; Williams, A.E.; Molina-Cruz, A.; Valenzuela-Leon, P.C.; Shrivastava, G.; Botello, K.; Minai, M.; Adelman, Z.N.; et al. Aedes Aegypti D7 Long Salivary Proteins Modulate Blood Feeding and Parasite Infection. mBio 2023, 14, e0228923. [Google Scholar] [CrossRef]
Analytes | Types | Function | References |
---|---|---|---|
protein | lactoferrin | immune modulator | [75] |
CRP, CK-MB, sCD40 | metabolism; immune | [26] | |
histatin-1 (HTN1) | antifungal | [76] | |
nucleic acid | SAT(mRNA) | convey information | [77] |
IL-8(mRNA) | |||
metabolites | peptides | metabolism; regulation of physiological balance | [78,79] |
vitamins | |||
organic acids | |||
thiols | |||
microorganisms | N. elongata | cancer biomarker | [80] |
S. mitis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, L.; Shi, L.; Wu, X.; Hu, P.; Zhang, B.; Han, X.; Wang, K.; Li, X.; Yang, F.; Wang, Y.; et al. Advances in Research on Pig Salivary Analytes: A Window to Reveal Pig Health and Physiological Status. Animals 2024, 14, 374. https://doi.org/10.3390/ani14030374
Zheng L, Shi L, Wu X, Hu P, Zhang B, Han X, Wang K, Li X, Yang F, Wang Y, et al. Advances in Research on Pig Salivary Analytes: A Window to Reveal Pig Health and Physiological Status. Animals. 2024; 14(3):374. https://doi.org/10.3390/ani14030374
Chicago/Turabian StyleZheng, Lixiang, Lidan Shi, Xiangzhe Wu, Panyang Hu, Ben Zhang, Xuelei Han, Kejun Wang, Xiuling Li, Feng Yang, Yining Wang, and et al. 2024. "Advances in Research on Pig Salivary Analytes: A Window to Reveal Pig Health and Physiological Status" Animals 14, no. 3: 374. https://doi.org/10.3390/ani14030374
APA StyleZheng, L., Shi, L., Wu, X., Hu, P., Zhang, B., Han, X., Wang, K., Li, X., Yang, F., Wang, Y., Li, X., & Qiao, R. (2024). Advances in Research on Pig Salivary Analytes: A Window to Reveal Pig Health and Physiological Status. Animals, 14(3), 374. https://doi.org/10.3390/ani14030374