Proteomics Analysis of Pregnancy in Ewes under Heat Stress Conditions and Melatonin Administration
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Overview
2.2. Sampling and Preparation of Samples
2.3. ProteoMinerTM Enrichment Kit
2.4. Two-Dimensional Gel Electrophoresis
2.5. Peptide Mass Fingerprint (PMF)
3. Results
3.1. Clinical Signs and THI Results
3.2. Proteomics Analysis Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hussain, T.; Murtaza, G.; Metwally, E.; Kalhoro, D.H.; Kalhoro, M.S.; Rahu, B.A.; Sahito, R.G.A.; Yin, Y.; Yang, H.; Chughtai, M.I.; et al. The Role of Oxidative Stress and Antioxidant Balance in Pregnancy. Mediat. Inflamm. 2021, 2021, 9962860. [Google Scholar] [CrossRef]
- Sejian, V.; Bhatta, R.; Gaughan, J.; Malik, P.; Kumar, N.; Rattan Lal, S.M.K.N. Sheep Production Adapting to Climate Change; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar] [CrossRef]
- Hansen, P.J. Effects of heat stress on mammalian reproduction. Philos. Trans. R. Soc. London. Ser. B Biol. Sci. 2009, 364, 3341–3350. [Google Scholar] [CrossRef]
- Abhijith, A.; Joy, A.; Prathap, P.; Vidya, M.; Niyas, P.A.; Madiajagan, B.; Krishnan, G.; Manimaran, A.; Vakayil, B.; Kurien, K.; et al. Role of Heat Shock Proteins in Livestock Adaptation to Heat Stress. J. Dairy Vet. Anim. Res. 2017, 5, 00127. [Google Scholar] [CrossRef]
- Hardeland, R.; Cardinali, D.P.; Srinivasan, V.; Spence, D.W.; Brown, G.M.; Pandi-Perumal, S.R. Melatonin—A pleiotropic, orchestrating regulator molecule. Prog. Neurobiol. 2011, 93, 350–384. [Google Scholar] [CrossRef]
- Mauriz, J.L.; Collado, P.S.; Veneroso, C.; Reiter, R.J.; Gonzalez-Gallego, J. A review of the molecular aspects of melatonin’s anti-inflammatory actions: Recent insights and new perspectives. J. Pineal Res. 2013, 54, 1–14. [Google Scholar] [CrossRef]
- Bouroutzika, E.; Kouretas, D.; Papadopoulos, S.; Veskoukis, A.S.; Theodosiadou, E.; Makri, S.; Paliouras, C.; Michailidis, M.L.; Caroprese, M.; Valasi, I. Effects of Melatonin Administration to Pregnant Ewes under Heat-Stress Conditions, in Redox Status and Reproductive Outcome. Antioxidants 2020, 9, 266. [Google Scholar] [CrossRef]
- Bouroutzika, E.; Ciliberti, M.G.; Caroprese, M.; Theodosiadou, E.; Papadopoulos, S.; Makri, S.; Skaperda, Z.V.; Kotsadam, G.; Michailidis, M.L.; Valiakos, G.; et al. Association of Melatonin Administration in Pregnant Ewes with Growth, Redox Status and Immunity of Their Offspring. Animals 2021, 11, 3161. [Google Scholar] [CrossRef] [PubMed]
- Marai, I.F.M.; El-Darawany, A.A.; Fadiel, A.; Abdel-Hafez, M.A.M. Physiological traits as affected by heat stress in sheep—A review. Small Rumin. Res. 2007, 71, 1–12. [Google Scholar] [CrossRef]
- Dubocovich, M.L.; Markowska, M. Functional MT1 and MT2 melatonin receptors in mammals. Endocrine 2005, 27, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Reiter, R.J.; Tan, D.X.; Fuentes-Broto, L. Melatonin: A multitasking molecule. Prog. Brain Res. 2010, 181, 127–151. [Google Scholar] [CrossRef] [PubMed]
- Carrillo-Vico, A.; Guerrero, J.M.; Lardone, P.J.; Reiter, R.J. A review of the multiple actions of melatonin on the immune system. Endocrine 2005, 27, 189–200. [Google Scholar] [CrossRef]
- Tomas-Zapico, C.; Coto-Montes, A. A proposed mechanism to explain the stimulatory effect of melatonin on antioxidative enzymes. J. Pineal Res. 2005, 39, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Benitez-King, G.; Anton-Tay, F. Calmodulin mediates melatonin cytoskeletal effects. Experientia 1993, 49, 635–641. [Google Scholar] [CrossRef] [PubMed]
- Pozo, D.; Reiter, R.J.; Calvo, J.R.; Guerrero, J.M. Inhibition of cerebellar nitric oxide synthase and cyclic GMP production by melatonin via complex formation with calmodulin. J. Cell. Biochem. 1997, 65, 430–442. [Google Scholar] [CrossRef]
- Hevia, D.; Sainz, R.M.; Blanco, D.; Quiros, I.; Tan, D.X.; Rodriguez, C.; Mayo, J.C. Melatonin uptake in prostate cancer cells: Intracellular transport versus simple passive diffusion. J. Pineal Res. 2008, 45, 247–257. [Google Scholar] [CrossRef]
- Carrillo-Vico, A.; Lardone, P.J.; Alvarez-Sanchez, N.; Rodriguez-Rodriguez, A.; Guerrero, J.M. Melatonin: Buffering the immune system. Int. J. Mol. Sci. 2013, 14, 8638–8683. [Google Scholar] [CrossRef] [PubMed]
- Contreras-Correa, Z.E.; Messman, R.D.; Swanson, R.M.; Lemley, C.O. Melatonin in Health and Disease: A Perspective for Livestock Production. Biomolecules 2023, 13, 490. [Google Scholar] [CrossRef]
- Inserra, P.; Zhang, Z.; Ardestani, S.K.; Araghi-Niknam, M.; Liang, B.; Jiang, S.; Shaw, D.; Molitor, M.; Elliott, K.; Watson, R.R. Modulation of cytokine production by dehydroepiandrosterone (DHEA) plus melatonin (MLT) supplementation of old mice. Proc. Soc. Exp. Biol. Med. 1998, 218, 76–82. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, P.; He, J.; Pan, D.; Zeng, X.; Cao, J. Proteome analysis of Lactobacillus plantarum strain under cheese-like conditions. J. Proteom. 2016, 146, 165–171. [Google Scholar] [CrossRef]
- Franzosa, E.A.; Hsu, T.; Sirota-Madi, A.; Shafquat, A.; Abu-Ali, G.; Morgan, X.C.; Huttenhower, C. Sequencing and beyond: Integrating molecular ‘omics’ for microbial community profiling. Nat. Rev. Microbiol. 2015, 13, 360–372. [Google Scholar] [CrossRef]
- Mazzucchelli, G.; De Pauw, E. Gel-Free Quantitative Proteomics Approaches, Current Status; Wageningen Academic Publishers: Wageningen, The Netherlands, 2013; p. 27. [Google Scholar]
- Gorg, A.; Drews, O.; Luck, C.; Weiland, F.; Weiss, W. 2-DE with IPGs. Electrophoresis 2009, 30 (Suppl. S1), S122–S132. [Google Scholar] [CrossRef]
- Palagi, P.M.; Hernandez, P.; Walther, D.; Appel, R.D. Proteome informatics I: Bioinformatics tools for processing experimental data. Proteomics 2006, 6, 5435–5444. [Google Scholar] [CrossRef]
- Peffers, M.J.; Cillero-Pastor, B.; Eijkel, G.B.; Clegg, P.D.; Heeren, R.M. Matrix assisted laser desorption ionization mass spectrometry imaging identifies markers of ageing and osteoarthritic cartilage. Arthritis Res. Ther. 2014, 16, R110. [Google Scholar] [CrossRef]
- Marai, I.F.; Ayyat, M.S.; Abd el-Monem, U.M. Growth performance and reproductive traits at first parity of New Zealand white female rabbits as affected by heat stress and its alleviation under Egyptian conditions. Trop. Anim. Health Prod. 2001, 33, 451–462. [Google Scholar] [CrossRef]
- Habeeb, A.; Gad, A.; Atta, M. Temperature-Humidity Indices as Indicators to Heat Stress of Climatic Conditions with Relation to Production and Reproduction of Farm Animals. Int. J. Biotechnol. Recent Adv. 2018, 1, 35–50. [Google Scholar] [CrossRef]
- Tsangaris, G.T.; Karamessinis, P.; Kolialexi, A.; Garbis, S.D.; Antsaklis, A.; Mavrou, A.; Fountoulakis, M. Proteomic analysis of amniotic fluid in pregnancies with Down syndrome. Proteomics 2006, 6, 4410–4419. [Google Scholar] [CrossRef]
- Scoppetta, F.; Tartaglia, M.; Renzone, G.; Avellini, L.; Gaiti, A.; Scaloni, A.; Chiaradia, E. Plasma protein changes in horse after prolonged physical exercise: A proteomic study. J. Proteom. 2012, 75, 4494–4504. [Google Scholar] [CrossRef] [PubMed]
- Zografos, E.; Anagnostopoulos, A.K.; Papadopoulou, A.; Legaki, E.; Zagouri, F.; Marinos, E.; Tsangaris, G.T.; Gazouli, M. Serum Proteomic Signatures of Male Breast Cancer. Cancer Genom. Proteom. 2019, 16, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Katsafadou, A.I.; Tsangaris, G.T.; Vasileiou, N.G.C.; Ioannidi, K.S.; Anagnostopoulos, A.K.; Billinis, C.; Fragkou, I.A.; Papadopoulos, E.; Mavrogianni, V.S.; Michael, C.K.; et al. Detection of Cathelicidin-1 in the Milk as an Early Indicator of Mastitis in Ewes. Pathogens 2019, 8, 270. [Google Scholar] [CrossRef] [PubMed]
- Kolialexi, A.; Mavrou, A.; Spyrou, G.; Tsangaris, G.T. Mass spectrometry-based proteomics in reproductive medicine. Mass Spectrom. Rev. 2008, 27, 624–634. [Google Scholar] [CrossRef]
- Abdelnour, S.A.; Abd El-Hack, M.E.; Khafaga, A.F.; Arif, M.; Taha, A.E.; Noreldin, A.E. Stress biomarkers and proteomics alteration to thermal stress in ruminants: A review. J. Therm. Biol. 2019, 79, 120–134. [Google Scholar] [CrossRef]
- Barna, J.; Csermely, P.; Vellai, T. Roles of heat shock factor 1 beyond the heat shock response. Cell. Mol. Life Sci. CMLS 2018, 75, 2897–2916. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.J.; Zhu, Y.M.; He, W.H.; Liu, A.X.; Dong, M.Y.; Jin, M.; Sheng, J.Z.; Huang, H.F. Endoplasmic reticulum stress induced by oxidative stress in decidual cells: A possible mechanism of early pregnancy loss. Mol. Biol. Rep. 2012, 39, 9179–9186. [Google Scholar] [CrossRef] [PubMed]
- Chuffa, L.G.; Lupi Junior, L.A.; Seiva, F.R.; Martinez, M.; Domeniconi, R.F.; Pinheiro, P.F.; Dos Santos, L.D.; Martinez, F.E. Quantitative Proteomic Profiling Reveals That Diverse Metabolic Pathways Are Influenced by Melatonin in an in Vivo Model of Ovarian Carcinoma. J. Proteome Res. 2016, 15, 3872–3882. [Google Scholar] [CrossRef] [PubMed]
- Han, B.H.; DeMattos, R.B.; Dugan, L.L.; Kim-Han, J.S.; Brendza, R.P.; Fryer, J.D.; Kierson, M.; Cirrito, J.; Quick, K.; Harmony, J.A.; et al. Clusterin contributes to caspase-3-independent brain injury following neonatal hypoxia-ischemia. Nat. Med. 2001, 7, 338–343. [Google Scholar] [CrossRef]
- Cesario, R.C.; Gaiotte, L.B.; Cucielo, M.S.; Silveira, H.S.; Delazari Dos Santos, L.; de Campos Zuccari, D.A.P.; Seiva, F.R.F.; Reiter, R.J.; de Almeida Chuffa, L.G. The proteomic landscape of ovarian cancer cells in response to melatonin. Life Sci. 2022, 294, 120352. [Google Scholar] [CrossRef]
- Wu, X.C.; Wang, S.H.; Ou, H.H.; Zhu, B.; Zhu, Y.; Zhang, Q.; Yang, Y.; Li, H. The NmrA-like family domain containing 1 pseudogene Loc344887 is amplified in gallbladder cancer and promotes epithelial-mesenchymal transition. Chem. Biol. Drug Des. 2017, 90, 456–463. [Google Scholar] [CrossRef]
- Argenzio, E.; Klarenbeek, J.; Kedziora, K.M.; Nahidiazar, L.; Isogai, T.; Perrakis, A.; Jalink, K.; Moolenaar, W.H.; Innocenti, M. Profilin binding couples chloride intracellular channel protein CLIC4 to RhoA-mDia2 signaling and filopodium formation. J. Biol. Chem. 2018, 293, 19161–19176. [Google Scholar] [CrossRef]
- Clements, C.M.; McNally, R.S.; Conti, B.J.; Mak, T.W.; Ting, J.P. DJ-1, a cancer- and Parkinson’s disease-associated protein, stabilizes the antioxidant transcriptional master regulator Nrf2. Proc. Natl. Acad. Sci. USA 2006, 103, 15091–15096. [Google Scholar] [CrossRef] [PubMed]
- Aquilano, K.; Baldelli, S.; Ciriolo, M.R. Glutathione: New roles in redox signaling for an old antioxidant. Front. Pharmacol. 2014, 5, 196. [Google Scholar] [CrossRef]
- Bangsuwan, P.; Hirunwidchayarat, W.; Jirawechwongsakul, P.; Talungchit, S.; Taebunpakul, P. Expression of Cathepsin B and Cystatin A in Oral Lichen Planus. J. Int. Soc. Prev. Community Dent. 2021, 11, 566–573. [Google Scholar] [CrossRef] [PubMed]
- Endo, S.; Miyagi, N.; Matsunaga, T.; Hara, A.; Ikari, A. Human dehydrogenase/reductase (SDR family) member 11 is a novel type of 17beta-hydroxysteroid dehydrogenase. Biochem. Biophys. Res. Commun. 2016, 472, 231–236. [Google Scholar] [CrossRef]
- Stangaferro, M.L.; Matiller, V.; Diaz, P.U.; Ortega, H.H.; Rey, F.; Rodriguez, F.M.; Silva, M.A.; Salvetti, N.R. Role of activin, inhibin, and follistatin in the pathogenesis of bovine cystic ovarian disease. Anim. Reprod. Sci. 2014, 148, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Chemineau, P.; Malpaux, B.; Pelletier, J.; Leboeuf, B.; Delgadillo, J.A.; Deletang, F.; Pobel, T.; Brice, G. Emploi des implants de mélatonine et des traitements photopériodiques pour maitriser la reproduction saisonnière chez les ovins et les caprins. INRAE Prod. Anim. 1996, 9, 45–60. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H. The emerging role of histone deacetylase 1 in allergic diseases. Front. Immunol. 2022, 13, 1027403. [Google Scholar] [CrossRef] [PubMed]
- Adler, S.M.; Schmauss, C. Cognitive deficits triggered by early life stress: The role of histone deacetylase 1. Neurobiol. Dis. 2016, 94, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Nebe, M.; Kehr, S.; Schmitz, S.; Breitfeld, J.; Lorenz, J.; Le Duc, D.; Stadler, P.F.; Meiler, J.; Kiess, W.; Garten, A.; et al. Small integral membrane protein 10 like 1 downregulation enhances differentiation of adipose progenitor cells. Biochem. Biophys. Res. Commun. 2022, 604, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Gomes, P.R.L.; Motta-Teixeira, L.C.; Gallo, C.C.; Carmo Buonfiglio, D.D.; Camargo, L.S.; Quintela, T.; Reiter, R.J.; Amaral, F.G.D.; Cipolla-Neto, J. Maternal pineal melatonin in gestation and lactation physiology, and in fetal development and programming. Gen. Comp. Endocrinol. 2021, 300, 113633. [Google Scholar] [CrossRef]
- Carpentieri, A.; Diaz de Barboza, G.; Areco, V.; Peralta Lopez, M.; Tolosa de Talamoni, N. New perspectives in melatonin uses. Pharmacol. Res. 2012, 65, 437–444. [Google Scholar] [CrossRef]
- Sheehan, D.; Meade, G.; Foley, V.M.; Dowd, C.A. Structure, function and evolution of glutathione transferases: Implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem. J. 2001, 360, 1–16. [Google Scholar] [CrossRef]
- Agarwal, A.; Gupta, S.; Sharma, R.K. Role of oxidative stress in female reproduction. Reprod. Biol. Endocrinol. RBE 2005, 3, 28. [Google Scholar] [CrossRef] [PubMed]
- Mocatta, T.J.; Winterbourn, C.C.; Inder, T.E.; Darlow, B.A. The effect of gestational age and labour on markers of lipid and protein oxidation in cord plasma. Free Radic. Res. 2004, 38, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, P.L.; Hunt, A.S.; Hermanson, J.W.; Bell, A.W. Effects of birth weight and postnatal nutrition on neonatal sheep: II. Skeletal muscle growth and development. J. Anim. Sci. 2000, 78, 50–61. [Google Scholar] [CrossRef]
- Steinberg, S.J.; Morgenthaler, J.; Heinzer, A.K.; Smith, K.D.; Watkins, P.A. Very long-chain acyl-CoA synthetases. Human “bubblegum” represents a new family of proteins capable of activating very long-chain fatty acids. J. Biol. Chem. 2000, 275, 35162–35169. [Google Scholar] [CrossRef] [PubMed]
- Linster, C.L.; Noel, G.; Stroobant, V.; Vertommen, D.; Vincent, M.F.; Bommer, G.T.; Veiga-da-Cunha, M.; Van Schaftingen, E. Ethylmalonyl-CoA decarboxylase, a new enzyme involved in metabolite proofreading. J. Biol. Chem. 2011, 286, 42992–43003. [Google Scholar] [CrossRef] [PubMed]
- Monti, D.M.; Montesano Gesualdi, N.; Matousek, J.; Esposito, F.; D’Alessio, G. The cytosolic ribonuclease inhibitor contributes to intracellular redox homeostasis. FEBS Lett. 2007, 581, 930–934. [Google Scholar] [CrossRef]
- Hellman, N.E.; Gitlin, J.D. Ceruloplasmin metabolism and function. Annu. Rev. Nutr. 2002, 22, 439–458. [Google Scholar] [CrossRef]
- Kavalakatt, S.; Khadir, A.; Madhu, D.; Koistinen, H.A.; Al-Mulla, F.; Tuomilehto, J.; Abubaker, J.; Tiss, A. Urocortin 3 overexpression reduces ER stress and heat shock response in 3T3-L1 adipocytes. Sci. Rep. 2021, 11, 15666. [Google Scholar] [CrossRef]
- Boyadjiev, S.A.; Fromme, J.C.; Ben, J.; Chong, S.S.; Nauta, C.; Hur, D.J.; Zhang, G.; Hamamoto, S.; Schekman, R.; Ravazzola, M.; et al. Cranio-lenticulo-sutural dysplasia is caused by a SEC23A mutation leading to abnormal endoplasmic-reticulum-to-Golgi trafficking. Nat. Genet. 2006, 38, 1192–1197. [Google Scholar] [CrossRef]
- Bruno, J.; Brumfield, A.; Chaudhary, N.; Iaea, D.; McGraw, T.E. SEC16A is a RAB10 effector required for insulin-stimulated GLUT4 trafficking in adipocytes. J. Cell Biol. 2016, 214, 61–76. [Google Scholar] [CrossRef]
- Ballar, P.; Zhong, Y.; Nagahama, M.; Tagaya, M.; Shen, Y.; Fang, S. Identification of SVIP as an endogenous inhibitor of endoplasmic reticulum-associated degradation. J. Biol. Chem. 2007, 282, 33908–33914. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Shen, H.; Wang, Y.; Yang, Y.; Yang, P.; Fang, S. Identification of ERAD components essential for dislocation of the null Hong Kong variant of alpha-1-antitrypsin (NHK). Biochem. Biophys. Res. Commun. 2015, 458, 424–428. [Google Scholar] [CrossRef]
- Moriguchi, S.; Nishi, M.; Komazaki, S.; Sakagami, H.; Miyazaki, T.; Masumiya, H.; Saito, S.Y.; Watanabe, M.; Kondo, H.; Yawo, H.; et al. Functional uncoupling between Ca2+ release and afterhyperpolarization in mutant hippocampal neurons lacking junctophilins. Proc. Natl. Acad. Sci. USA 2006, 103, 10811–10816. [Google Scholar] [CrossRef]
- Dunzendorfer, S.; Schratzberger, P.; Reinisch, N.; Kahler, C.M.; Wiedermann, C.J. Secretoneurin, a novel neuropeptide, is a potent chemoattractant for human eosinophils. Blood 1998, 91, 1527–1532. [Google Scholar] [CrossRef] [PubMed]
- Kirchmair, R.; Gander, R.; Egger, M.; Hanley, A.; Silver, M.; Ritsch, A.; Murayama, T.; Kaneider, N.; Sturm, W.; Kearny, M.; et al. The neuropeptide secretoneurin acts as a direct angiogenic cytokine in vitro and in vivo. Circulation 2004, 109, 777–783. [Google Scholar] [CrossRef]
- Nakaya, T.; Kuwahara, K.; Ohta, K.; Kitabatake, M.; Toda, T.; Takeda, N.; Tani, T.; Kondo, E.; Sakaguchi, N. Critical role of Pcid2 in B cell survival through the regulation of MAD2 expression. J. Immunol. 2010, 185, 5180–5187. [Google Scholar] [CrossRef] [PubMed]
- Cook, S.A.; Comrie, W.A.; Poli, M.C.; Similuk, M.; Oler, A.J.; Faruqi, A.J.; Kuhns, D.B.; Yang, S.; Vargas-Hernandez, A.; Carisey, A.F.; et al. HEM1 deficiency disrupts mTORC2 and F-actin control in inherited immunodysregulatory disease. Science 2020, 369, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Zhong, M.; Zhao, X.; Li, J.; Yuan, W.; Yan, G.; Tong, M.; Guo, S.; Zhu, Y.; Jiang, Y.; Liu, Y. Tumor Suppressor Folliculin Regulates mTORC1 through Primary Cilia. J. Biol. Chem. 2016, 291, 11689–11697. [Google Scholar] [CrossRef]
- Dunlop, E.A.; Seifan, S.; Claessens, T.; Behrends, C.; Kamps, M.A.; Rozycka, E.; Kemp, A.J.; Nookala, R.K.; Blenis, J.; Coull, B.J.; et al. FLCN, a novel autophagy component, interacts with GABARAP and is regulated by ULK1 phosphorylation. Autophagy 2014, 10, 1749–1760. [Google Scholar] [CrossRef]
- Woodford, M.R.; Baker-Williams, A.J.; Sager, R.A.; Backe, S.J.; Blanden, A.R.; Hashmi, F.; Kancherla, P.; Gori, A.; Loiselle, D.R.; Castelli, M.; et al. The tumor suppressor folliculin inhibits lactate dehydrogenase A and regulates the Warburg effect. Nat. Struct. Mol. Biol. 2021, 28, 662–670. [Google Scholar] [CrossRef]
- Sun, F.; Huo, X.; Zhai, Y.; Wang, A.; Xu, J.; Su, D.; Bartlam, M.; Rao, Z. Crystal structure of mitochondrial respiratory membrane protein complex II. Cell 2005, 121, 1043–1057. [Google Scholar] [CrossRef] [PubMed]
- Proietti, S.; Cucina, A.; Minini, M.; Bizzarri, M. Melatonin, mitochondria, and the cancer cell. Cell. Mol. Life Sci. 2017, 74, 4015–4025. [Google Scholar] [CrossRef] [PubMed]
- Safaroghli-Azar, A.; Pourbagheri-Sigaroodi, A.; Bashash, D.; Nooshinfar, E.; Anjam-Najmedini, A.; Sadeghi, S.; Rezaie-Tavirani, M.; Akbari, M.E. Stimulatory Effect of Indolic Hormone on As(2)O(3) Cytotoxicity in Breast Cancer Cells: NF-kappaB-dependent Mechanism of Action of Melatonin. Int. J. Mol. Cell. Med. 2018, 7, 158–168. [Google Scholar] [CrossRef] [PubMed]
- Moller, M.; Sparre, T.; Bache, N.; Roepstorff, P.; Vorum, H. Proteomic analysis of day-night variations in protein levels in the rat pineal gland. Proteomics 2007, 7, 2009–2018. [Google Scholar] [CrossRef] [PubMed]
- Katsumoto, T.; Mitsushima, A.; Kurimura, T. The role of the vimentin intermediate filaments in rat 3Y1 cells elucidated by immunoelectron microscopy and computer-graphic reconstruction. Biol. Cell 1990, 68, 139–146. [Google Scholar] [CrossRef]
- Crosio, C.; Fimia, G.M.; Loury, R.; Kimura, M.; Okano, Y.; Zhou, H.; Sen, S.; Allis, C.D.; Sassone-Corsi, P. Mitotic phosphorylation of histone H3: Spatio-temporal regulation by mammalian Aurora kinases. Mol. Cell. Biol. 2002, 22, 874–885. [Google Scholar] [CrossRef]
- Olcese, J.; Lozier, S.; Paradise, C. Melatonin and the circadian timing of human parturition. Reprod. Sci. 2013, 20, 168–174. [Google Scholar] [CrossRef]
- Raza, S.H.A.; Hassanin, A.A.; Dhshan, A.I.M.; Abdelnour, S.A.; Khan, R.; Mei, C.; Zan, L. In silico genomic and proteomic analyses of three heat shock proteins (HSP70, HSP90-α, and HSP90-β) in even-toed ungulates. Electron. J. Biotechnol. 2021, 53, 61–70. [Google Scholar] [CrossRef]
Group | Time | Days of Experimental Period | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
D0–D10 | D11–D20 | D21–D30 | D31–D40 | D41–D50 | D51–D60 | D61–D70 | D71–D80 | D81–D90 | ||
Rectal temperature (°C) | ||||||||||
M | 10:00 | 39.01 ± 0.04 | 39.12 ± 0.04 | 39.25 ± 0.03 | 39.19 ± 0.03 | 39.10 ± 0.04 | 39.15 ± 0.04 | 39.09 ± 0.04 | 39.07 ± 0.04 | 38.12 ± 0.06 |
16:00 | 39.62 ± 0.08 | 39.85 ± 0.03 | 39.81 ± 0.06 | 39.96 ± 0.06 | 40.19 ± 0.05 | 39.91 ± 0.08 | 40.07 ± 0.07 | 39.45 ± 0.02 | 38.53 ± 0.07 | |
C | 10:00 | 39.17 ± 0.04 | 39.14 ± 0.06 | 39.10 ± 0.05 | 39.17 ± 0.03 | 39.25 ± 0.05 | 39.27 ± 0.04 | 39.26 ± 0.04 | 39.23 ± 0.04 | 38.33 ± 0.05 |
16:00 | 39.9 ± 0.02 | 40.06 ± 0.01 | 40.03 ± 0.01 | 40.14 ± 0.01 | 40.35 ± 0.02 | 39.79 ± 0.02 | 39.15 ± 0.01 | 39.78 ± 0.05 | 38.62 ± 0.09 | |
Breathing rate (breaths min−1) | ||||||||||
M | 10:00 | 53.75 ± 2.7 | 54.4 ± 2.2 | 54.7 ± 2.1 | 56.7 ± 1.6 | 54.85 ± 1.6 | 59.8 ± 1.5 | 61.5 ± 2.2 | 55.3 ± 1.2 | 40.6 ± 2.3 |
16:00 | 88.05 ± 2.8 | 81.75 ± 2.8 | 91.1 ± 2.4 | 86.35 ± 1.7 | 88 ± 1.8 | 94.4 ± 1.3 | 94.5 ± 1.8 | 87.4 ± 2.9 | 45.2 ± 1.9 | |
C | 10:00 | 64.6 ± 0.8 | 64.9 ± 1.1 | 64.7 ± 1.2 | 65.4 ± 0.7 | 67.7 ± 0.8 | 66.1 ± 0.6 | 67.1 ± 0.8 | 56.8 ± 0.8 | 41.4 ± 2.1 |
16:00 | 98.6 ± 1.1 | 103.8 ± 1.6 | 102.6 ± 2.2 | 101.6 ± 0.8 | 117.1 ± 4.1 | 111.5 ± 1.8 | 108.3 ± 2.1 | 93 ± 2.7 | 46 ± 0.8 |
Full Protein Name | Accession | Biological Process | Mascot Score | MS Coverage | Protein MW | pI Value |
---|---|---|---|---|---|---|
Anaphase-promoting complex subunit 10 | A0A835ZLF7_SHEEP | anaphase-promoting complex-dependent catabolic process; cell cycle; cell division | 42 | 18 | 17,605.00 | 10.10 |
Arylamine N-acetyltransferase | A0A6P7DI25_SHEEP | xenobiotic metabolic process | 41 | 8 | 34,403.00 | 5.20 |
Centromere protein P | W5PEF0_SHEEP | CENP-A containing chromatin assembly | 44 | 17 | 33,114.00 | 4.90 |
Glucosylceramidase | A0A291RBV4_SHEEP | cholesterol metabolic process; sphingolipid metabolic process | 42 | 12 | 8476.00 | 6.50 |
Histone deacetylase | W5QIG5_SHEEP | circadian regulation of gene expression; embryonic digit morphogenesis; endoderm development; epidermal cell differentiation; negative regulation of I-kappaB kinase/NF-kappaB signaling; neuron differentiation; oligodendrocyte differentiation; positive regulation of oligodendrocyte differentiation; positive regulation of signaling receptor activity; regulation of endopeptidase activity; negative regulation by host of viral transcription; histone H3 and H4 deacetylation | 43 | 8 | 55,641.00 | 5.20 |
IQ motif and Sec7 domain ArfGEF 2 | W5PG04_SHEEP | regulation of ARF protein signal transduction | 42 | 4 | 143,693.00 | 9.30 |
Phosphoinositide 5-phosphatase | W5PZG5_SHEEP | phosphatidylinositol dephosphorylation; signal transduction | 41 | 10 | 105,788.00 | 6.30 |
RNA helicase | A0A836A0L4_SHEEP | antiviral innate immune response; defense response to bacterium and virus; mRNA processing; mRNA splicing, via spliceosome; positive regulation of I-kappaB kinase/NF-kappaB signaling; response to alkaloid; response to toxic substance; RNA splicing | 41 | 5 | 142,083.00 | 7.00 |
Small integral membrane protein 10-like 1 | W5QGF7_SHEEP | regulation of adipogenesis; adipose cell proliferation | 42 | 19 | 7392.00 | 10.70 |
Small ubiquitin-related modifier | W5PRT2_SHEEP | protein sumoylation; negative regulation of DNA binding; regulation of protein localization to nucleus | 56 | 32 | 11,808.00 | 5.20 |
Full Protein Name | Accession | Biological Process | Mascot Score | MS Coverage | Protein MW | pI Value |
---|---|---|---|---|---|---|
BARX homeobox 2 | W5PVP0_SHEEP | cartilage condensation; DNA-templated transcription; DNA-templated transcription elongation; myotube differentiation; regulation of transcription by RNA polymerase II; skeletal muscle cell differentiation; skeletal muscle cell differentiation | 42 | 15 | 32,552.00 | 10.10 |
Beta-2-glycoprotein 1 | W5Q268_SHEEP | blood coagulation, intrinsic pathway; negative regulation of angiogenesis; negative regulation of endothelial cell migration and proliferation; negative regulation of fibrinolysis; negative regulation of myeloid cell apoptotic process; negative regulation of smooth muscle cell apoptotic process; plasminogen activation; positive regulation of lipoprotein lipase activity; triglyceride metabolic process | 85 | 37 | 39,442 | 9.66 |
C2 domain-containing protein | A0A836A9U4_SHEEP | exocytosis | 42 | 18 | 29,554 | 9.43 |
Centromere protein X | W5Q881_SHEEP | kinetochore assembly; DNA repair | 43 | 34 | 9557.00 | 5.50 |
FK506-binding protein-like | A0A836CTK1_SHEEP | endocytosis | 40 | 6 | 38,194.00 | 5.70 |
Glutaredoxin domain-containing protein | A0A836CUB0_SHEEP | nucleobase-containing small molecule interconversion; positive regulation of membrane potential; positive regulation of sodium ion transmembrane transporter activity; protein deglutathionylation | 42 | 20 | 8226 | 6.49 |
HID1 domain-containing | W5PPI7_SHEEP | vesicle trafficking within the trans-Golgi network | 42 | 8 | 86,737.00 | 5.70 |
Histone deacetylase | W5QIG5_SHEEP | circadian regulation of gene expression; embryonic digit morphogenesis; endoderm development; epidermal cell differentiation; negative regulation of I-kappaB kinase/NF-kappaB signaling; neuron differentiation; oligodendrocyte differentiation; positive regulation of oligodendrocyte differentiation; positive regulation of signaling receptor activity; regulation of endopeptidase activity; negative regulation by host of viral transcription; histone H3 and H4 deacetylation | 41 | 9 | 55,641.00 | 5.20 |
Kelch-like protein 1 | W5Q6M6_SHEEP | actin cytoskeleton organization; cerebellar Purkinje cell layer development; dendrite development | 41 | 8 | 17,817.00 | 9.60 |
Lipocalin/cytosolic fatty-acid binding domain-containing protein | W5PZN0_SHEEP | small hydrophobic molecule transportation | 42 | 19 | 20,224.00 | 5.20 |
Neurogenic differentiation factor | W5PF29_SHEEP | cell differentiation; dentate gyrus development | 41 | 10 | 39,105.00 | 9.50 |
PRDM9 | A0A1B1SDL6_SHEEP | double-strand break repair involved in meiotic recombination; male/female gamete generation; histone methylation; homologous; chromosome pairing at meiosis; meiotic gene conversion; negative regulation of apoptotic process; positive regulation of fertilization; positive regulation of reciprocal meiotic recombination; regulation of DNA-templated transcription | 44 | 20 | 27,097.00 | 11.40 |
RING-type domain-containing protein | W5P2I5_SHEEP | embryonic brain development; endoplasmic reticulum organization; neuron differentiation; protein autoubiquitination; protein homooligomerization; regulation of cell cycle; response to hydroperoxide | 41 | 37 | 7992.00 | 7.70 |
Shroom family member 2 | W5PK86_SHEEP | actin filament organization | 42 | 5 | 152,796 | 8.75 |
Tubulin/FtsZ two-layer sandwich domain-containing protein | A0A836CW31_SHEEP | microtubule-based process | 42 | 18 | 44,502.00 | 5.50 |
valine–tRNA ligase | W5P3E7_SHEEP | valyl-tRNA aminoacylation | 43 | 8 | 75,540.00 | 9.80 |
Full Protein Name | Accession | Biological Process | Mascot Score | MS Coverage | Protein MW | pI Value |
---|---|---|---|---|---|---|
Anaphylatoxin-like domain-containing protein | W5NRH2_SHEEP | complement activation, classical pathway; inflammatory response; innate immune response | 69 | 37 | 15,047 | 7.69 |
Apolipoprotein A4 | W5NWM2_SHEEP | lipid transport; lipoprotein metabolic process | 85 | 32 | 41,512 | 5.46 |
Apolipoprotein E | W5PI61_SHEEP | lipid transport; lipoprotein metabolic process | 44 | 11 | 36,216.00 | 5.60 |
BARX homeobox 2 | W5PVP0_SHEEP | cartilage condensation; DNA-templated transcription; DNA-templated transcription elongation; myotube differentiation; regulation of transcription by RNA polymerase II; skeletal muscle cell differentiation; skeletal muscle cell differentiation | 42 | 9 | 32,552.00 | 10.10 |
Core shell protein Gag P30 domain-containing protein | W5Q4W1_SHEEP | virion assembly | 42 | 9 | 53,882 | 9.31 |
EF-hand domain-containing protein | A0A836D0W4_SHEEP | cerebral cortex cell migration; cilium-dependent cell motility; mitotic cytokinesis; mitotic spindle organization; regulation of cell division | 43 | 12 | 26,738.00 | 5.00 |
Glutaredoxin domain-containing protein | A0A836CUB0_SHEEP | nucleobase-containing small molecule interconversion; positive regulation of membrane potential; positive regulation of sodium ion transmembrane transporter activity; protein deglutathionylation | 40 | 20 | 8226 | 6.49 |
Glutathione transferase | A0A6P7D2D4_SHEEP | glutathione derivative biosynthetic process; glutathione metabolic process; prostaglandin metabolic process; xenobiotic metabolic process | 43 | 21 | 26,673 | 6.28 |
Histone deacetylase | W5QIG5_SHEEP | circadian regulation of gene expression; embryonic digit morphogenesis; endoderm development; epidermal cell differentiation; negative regulation of I-kappaB kinase/NF-kappaB signaling; neuron differentiation; oligodendrocyte differentiation; positive regulation of oligodendrocyte differentiation; positive regulation of signaling receptor activity; regulation of endopeptidase activity; negative regulation by host of viral transcription; histone H3 and H4 deacetylation | 44 | 8 | 55,641.00 | 5.20 |
Integrin beta | W5PS30_SHEEP | cell adhesion; integrin-mediated signaling pathway; phagocytosis | 41 | 9 | 82,901 | 6.26 |
Multivesicular body subunit 12A | W5Q5E2_SHEEP | protein transport | 42 | 22 | 29,419.00 | 10.40 |
ORM1-like protein | A0A6P3E1H8_SHEEP | cellular lipid metabolic process; regulation of ceramide biosynthetic process | 43 | 21 | 17,350.00 | 9.90 |
Protein Shroom 2 | A0A835ZLJ3_SHEEP | actin filament organization | 44 | 8 | 163,412 | 6.26 |
Ribonuclease inhibitor | W5PBY5_SHEEP | cell migration; mRNA catabolic process; regulation of actin cytoskeleton reorganization; regulation of angiogenesis; regulation of Arp2/3 complex-mediated actin nucleation | 42 | 21 | 11,496.00 | 4.30 |
Trefoil factor 3 | Q30DP5_SHEEP | maintenance of gastrointestinal epithelium; regulation of glucose metabolic process; response to peptide hormone; wound healing | 41 | 15 | 4940.00 | 4.20 |
Tyrosine aminotransferase | A0A6P7ERC0_SHEEP | biosynthetic process; L-phenylalanine catabolic process; tyrosine catabolic process | 43 | 6 | 50,700.00 | 5.80 |
Full Protein Name | Accession | Biological Process | Mascot Score | MS Coverage | Protein MW | pI Value |
---|---|---|---|---|---|---|
BPTI/Kunitz inhibitor domain-containing protein | A0A836CZM4_SHEEP | negative regulation of peptidase activity | 41 | 22 | 13,735.00 | 10.40 |
EF-hand domain-containing protein | A0A836D0W4_SHEEP | cerebral cortex cell migration; cilium-dependent cell motility; mitotic cytokinesis; mitotic spindle organization; regulation of cell division | 42 | 24 | 8862.00 | 5.10 |
Glycerol-3-phosphate dehydrogenase [NAD(+)] | W5Q983_SHEEP | carbohydrate metabolic process; glycerol-3-phosphate catabolic process | 41 | 5 | 38,093.00 | 6.40 |
Integrin beta | W5PS30_SHEEP | cell adhesion; integrin-mediated signaling pathway; phagocytosis | 45 | 8 | 82,901.00 | 6.30 |
Interleukin-1 | W5QI50_SHEEP | immune response; inflammatory response | 41 | 14 | 17,672.00 | 9.20 |
Methyl-CpG-binding domain protein 3-like 3 | W5Q4M5_SHEEP | aging; brain development; embryonic organ development; DNA methylation-dependent heterochromatin formation; heart development; histone acetylation and deacetylation; in utero embryonic development; negative regulation of DNA-templated transcription; negative regulation of transcription by RNA polymerase II; positive regulation of DNA-templated transcription; regulation of cell fate specification; regulation of DNA methylation; regulation of stem cell differentiation; response to estradiol; response to nutrient levels; tissue development | 45 | 10 | 21,834.00 | 11.70 |
V-kit Hardy–Zuckerman 4 feline sarcoma viral oncoprotein | A0A0C5G4P5_SHEEP | protein phosphorylation | 43 | 25 | 12,170.00 | 5.20 |
Full Protein Name | Accession | Biological Process | Mascot Score | MS Coverage | Protein MW | pI Value |
---|---|---|---|---|---|---|
Arylamine N-acetyltransferase | A0A6P7DI25_SHEEP | xenobiotic metabolic process | 43 | 8 | 34,403.00 | 5.20 |
ATP synthase protein 8 | A0A2I7ZCM2_SHEEP | proton motive force-driven ATP synthesis | 41 | 12 | 7875.00 | 10.00 |
Baculoviral IAP repeat containing 5 | W5P600_SHEEP | cell division; establishment of chromosome localization; G2/M transition of mitotic cell cycle; meiosis I; microtubule cytoskeleton organization; mitotic cell cycle; mitotic cytokinesis; mitotic spindle assembly check-point signaling; mitotic spindle midzone assembly; mitotic spindle organization; negative regulation of apoptotic process; negative regulation of cysteine-type endopeptidase activity involved in apoptotic process; negative regulation of DNA-templated transcription; negative regulation of neuron apoptotic process; negative regulation of neuron apoptotic process; positive regulation of cell cycle; positive regulation of exit from mitosis; positive regulation of mitotic cell cycle; positive regulation of mitotic cell cycle spindle assembly checkpoint; positive regulation of mitotic cytokinesis; positive regulation of mitotic sister chromatid separation; positive regulation of protein phosphorylation; positive regulation of protein ubiquitination; protein-containing complex localization; regulation of insulin secretion involved in cellular response to glucose stimulus; regulation of type B pancreatic cell proliferation | 40 | 21 | 16,660.00 | 5.40 |
C1q domain-containing protein | A0A836D7I1_SHEEP | serum complement system activation | 43 | 12 | 26,485.00 | 10.20 |
C3/C5 convertase | A5YBU9_SHEEP | complement activation; proteolysis; innate immune response | 83 | 11 | 86,744.00 | 9.10 |
Centromere protein F | W5PEW7_SHEEP | chromosome segregation; kidney development; metaphase plate congression; negative regulation of DNA-templated transcription; protein transport; regulation of G2/M transition of mitotic cell cycle; regulation of striated muscle tissue development; ventricular system development | 45 | 4 | 355,326 | 4.87 |
Coiled-coil domain-containing 187 | W5P3A5_SHEEP | microtubule anchoring | 42 | 4 | 112,761.00 | 11.70 |
Collagen alpha-1 (XX) chain | W5PNP3_SHEEP | collagen trimer | 44 | 14 | 45,337 | 7.97 |
Collectin-10 | A0A836A0P3_SHEEP | cell surface pattern recognition receptor signaling pathway; complement activation, lectin pathway; cranial skeletal system development; positive regulation of opsonization; proteolysis | 45 | 15 | 17,552 | 10.25 |
Complement C2 | W5NY95_SHEEP | complement activation, classical pathway; innate immune response; proteolysis | 64 | 7 | 140,645 | 9.19 |
Connexin 43 | Q9GJY1_SHEEP | cell communication | 42 | 24 | 14,101.00 | 10.00 |
Cortactin | W5NQM8_SHEEP | brain development; regulation of modification of postsynaptic actin cytoskeleton; regulation of synapse organization | 43 | 11 | 53,261 | 5.16 |
Discoidin, CUB and LCCL domain-containing 1 | W5PG18_SHEEP | intracellular receptor signaling pathway; negative regulation of cell growth; wound healing | 41 | 11 | 73,223.00 | 9.80 |
Epithelial cell transforming 2-like | W5NS31_SHEEP | positive regulation of GTPase activity; regulation of cytokinesis; actomyosin contractile ring assembly | 40 | 11 | 105,770 | 9.11 |
Eukaryotic translation initiation factor 3 subunit H | W5PLY2_SHEEP | formation of cytoplasmic translation initiation complex | 44 | 10 | 32,619.00 | 8.80 |
F-box domain-containing protein | A0A836AN42_SHEEP | protein ubiquitination | 42 | 24 | 31,339 | 10.57 |
Fibrinogen silencer binding protein | W5PCJ0_SHEEP | identical protein binding activity | 45 | 13 | 34,811.00 | 6.83 |
IKAROS family zinc finger 3 | W5PRC9_SHEEP | B cell differentiation; positive regulation of transcription by RNA polymerase II; regulation of apoptotic process; regulation of B cell proliferation; regulation of lymphocyte differentiation; regulation of transcription by RNA polymerase II; response to bacterium; T cell differentiation; mesoderm development | 43 | 6 | 59,046.00 | 6.10 |
Keratin, type II cytoskeletal 3-like | W5Q5X7_SHEEP | epithelial cell differentiation; intermediate filament cytoskeleton organization | 42 | 4 | 50,478.00 | 5.60 |
MARVEL domain-containing protein | A0A836D7L5_SHEEP | cell cycle; myelination | ||||
MHC class I-like antigen recognition-like domain-containing protein | W5NX45_SHEEP | antigen processing and presentation of endogenous peptide antigen via MHC class I via ER pathway, TAP-independent; antigen processing and presentation of endogenous peptide antigen via MHC class Ib; immune response; positive regulation of T cell-mediated cytotoxicity | 41 | 7 | 32,714.00 | 4.90 |
Plasminogen | A0A836D3E0_SHEEP | blood coagulation; proteolysis | 177 | 25 | 93,859.00 | 7.80 |
Protein deglycase | A0A6P3E8Q6_SHEEP | autophagy; single fertilization | 40 | 12 | 20,222.00 | 7.70 |
Sarcosine dehydrogenase, mitochondrial | A0A836D2W4_SHEEP | choline catabolic process; glycine biosynthetic process; sarcosine catabolic process; tetrahydrofolate interconversion | 42 | 4 | 100,464.00 | 6.60 |
SLC9A3 regulator 2 | W5Q4Z5_SHEEP | proteolysis | 42 | 18 | 18,981.00 | 5.85 |
Synaptonemal complex central element protein 1 | A0A835ZP21_SHEEP | synaptonemal complex assembly | 42 | 18 | 24,827.00 | 5.50 |
Voltage-gated potassium channel Kv2.1 | Q4PNE0_SHEEP | action potential; cellular response to glucose stimulus; exocytosis; negative regulation of insulin secretion; positive regulation of long-term synaptic depression; positive regulation of protein targeting to membrane; protein homooligomerization; regulation of action potential; regulation of monoatomic ion transmembrane transport | 41 | 14 | 6715.00 | 7.50 |
Full Protein Name | Accession | Biological process | Mascot Score | MS Coverage | Protein MW | pI Value |
---|---|---|---|---|---|---|
ABC transmembrane type-1 domain-containing protein | W5NTP3_SHEEP | transmembrane transport | 41 | 26 | 9740.00 | 5.60 |
Acyl-CoA dehydrogenase/oxidase C-terminal domain-containing protein | W5Q8A9_SHEEP | fatty acid beta-oxidation | 44 | 23 | 9369.00 | 6.10 |
Aldo-keto reductase family 1 member B | W5PC00_SHEEP | C21-steroid hormone biosynthetic process; negative regulation of cellular apoptotic process; hyperosmotic salinity response; epithelial cell maturation; carbohydrate and daunarubicin and doxorubicin metabolic process | 40 | 9 | 36,292.00 | 5.90 |
Beta defensin OA300 | W5P8Q6_SHEEP | defense response to bacterium | 42 | 40 | 7966.00 | 11.20 |
Bystin-like | W5NXZ4_SHEEP | trophectodermal cell differentiation; stem cell proliferation; maturation of SSU-rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA); rRNA processing | 48 | 7 | 42,623.00 | 6.40 |
Complement C1r | W5P336_SHEEP | complement activation; innate immune response; proteolysis | 49 | 7 | 81,681.00 | 5.60 |
Complement component 3d | A6NBZ0_SHEEP | stimulation of antigen presentation; maintenance B cell memory | 72 | 15 | 34,420 | 6.21 |
Complement component C3 | O46544_SHEEP | immune response | 82 | 17 | 39,826 | 6.12 |
Ethanolamine-phosphate cytidylyltransferase | A0A836A9M0_SHEEP | phosphatidylethanolamine biosynthetic process | 44 | 1 | 79,699.00 | 7.90 |
Galactose-3-O-sulfotransferase 4 | W5Q7G3_SHEEP | glycolipid biosynthetic process | 44 | 4 | 52,506.00 | 10.50 |
Golgi membrane protein 1 | A0A836D8P5_SHEEP | protein folding | 45 | 14 | 47,089 | 4.68 |
Heat shock 70 kDa protein 4 | A0A836AJ35_SHEEP | chaperone-mediated protein complex assembly; protein insertion into mitochondrial outer membrane | 46 | 22 | 40,883.00 | 9.30 |
Histone deacetylase | W5QIG5_SHEEP | circadian regulation of gene expression; embryonic digit morphogenesis; endoderm development; epidermal cell differentiation; negative regulation of I-kappaB kinase/NF-kappaB signaling; neuron differentiation; oligodendrocyte differentiation; positive regulation of oligodendrocyte differentiation; positive regulation of signaling receptor activity; regulation of endopeptidase activity; negative regulation by host of viral transcription; histone H3 and H4 deacetylation | 42 | 8 | 55,641.00 | 5.20 |
Homer protein | Q9XSW0_SHEEP | G protein-coupled glutamate receptor signaling pathway; negative regulation of calcineurin-NFAT signaling cascade; negative regulation of interleukin-2 production; protein targeting; regulation of postsynaptic neurotransmitter receptor activity; regulation of store-operated calcium entry | 45 | 12 | 7205.00 | 10.10 |
Inter-alpha-trypsin inhibitor heavy chain H4 | A0A835ZW72_SHEEP | negative regulation of peptidase activity; hyaluronan metabolic process | 48 | 4 | 100,701.00 | 6.00 |
Metallothionein | W5QAI1_SHEEP | astrocyte activation; cellular response to cadmium and copper and zinc ion and erythropoietin; negative regulation of growth; response to metal ion | 46 | 14 | 7265.00 | 10.50 |
Phorbol-ester/DAG-type domain-containing protein | A0A836D5Z5_SHEEP | protein phosphorylation | 47 | 4 | 43,929.00 | 9.20 |
PR/SET domain 6 | W5QC25_SHEEP | histone methylation | 42 | 4 | 61,824.00 | 9.50 |
Pregnancy-associated glycoprotein 5 | O02725_SHEEP | proteolysis | 47 | 4 | 42,729.00 | 10.00 |
Procollagen C-endopeptidase enhancer | W5Q517_SHEEP | collagen biosynthetic process; proteolysis | 42 | 4 | 49,080.00 | 9.00 |
Protein kinase C inhibitor KCIP-1 isoform eta | Q7M331_SHEEP | cell proliferation; cell differentiation; cell death | 41 | 57 | 2531.00 | 4.40 |
PX domain-containing protein | A0A6P3E997_SHEEP | protein sorting; vesicular trafficking; phospholipid metabolism | 43 | 13 | 39,036.00 | 4.70 |
Succinate dehydrogenase complex subunit A flavoprotein | A3QP72_SHEEP | mitochondrial electron transport; succinate to ubiquinone; nervous system development; succinate metabolic process | 47 | 19 | 5144.00 | 7.60 |
Trefoil factor 3 | Q30DP5_SHEEP | maintenance of gastrointestinal epithelium; regulation of glucose metabolic process; response to peptide hormone; wound healing | 42 | 15 | 4940.00 | 4.20 |
Vimentin | W5PNW7_SHEEP | positive regulation of superoxide anion generation; astrocyte development; Bergmann glial cell differentiation; cellular response to lipopolysaccharide and muramyl dipeptide and type II interferon; in utero embryonic development; intermediate filament organization; negative regulation of neuron projection development; positive regulation of collagen biosynthetic process; positive regulation of translation; regulation of mRNA stability; SMAD protein signal transduction | 48 | 12 | 53,711.00 | 4.90 |
Zinc finger protein | Q66TQ4_SHEEP | transcription regulation | 49 | 11 | 6230.00 | 10.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouroutzika, E.; Proikakis, S.; Theodosiadou, E.K.; Vougas, K.; Katsafadou, A.I.; Tsangaris, G.T.; Valasi, I. Proteomics Analysis of Pregnancy in Ewes under Heat Stress Conditions and Melatonin Administration. Animals 2024, 14, 400. https://doi.org/10.3390/ani14030400
Bouroutzika E, Proikakis S, Theodosiadou EK, Vougas K, Katsafadou AI, Tsangaris GT, Valasi I. Proteomics Analysis of Pregnancy in Ewes under Heat Stress Conditions and Melatonin Administration. Animals. 2024; 14(3):400. https://doi.org/10.3390/ani14030400
Chicago/Turabian StyleBouroutzika, Efterpi, Stavros Proikakis, Ekaterini K. Theodosiadou, Konstantinos Vougas, Angeliki I. Katsafadou, George T. Tsangaris, and Irene Valasi. 2024. "Proteomics Analysis of Pregnancy in Ewes under Heat Stress Conditions and Melatonin Administration" Animals 14, no. 3: 400. https://doi.org/10.3390/ani14030400
APA StyleBouroutzika, E., Proikakis, S., Theodosiadou, E. K., Vougas, K., Katsafadou, A. I., Tsangaris, G. T., & Valasi, I. (2024). Proteomics Analysis of Pregnancy in Ewes under Heat Stress Conditions and Melatonin Administration. Animals, 14(3), 400. https://doi.org/10.3390/ani14030400