Hypothalamic Neuromodulation of Hypothermia in Domestic Animals
Abstract
:Simple Summary
Abstract
1. Introduction
2. Search Methodology
3. Hypothalamic Control of Hypothermia: From the Periphery to the Supraspinal Centers
3.1. Peripheral Thermoreceptor Activation
3.2. Hypothalamus and Central Thermal Modulation
4. Physiological Changes in Response to Hypothermia
4.1. Vasomotor Response
4.2. Shivering
4.3. BAT Non-Shivering Thermogenesis
5. Behavioral and Postural Reactions of Animals to Face Hypothermia
6. Perspectives
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Osilla, E.; Marsidi, J.; Sharma, S. Physiology, Temperature Regulation; StatPearls Publishing: Tampa, FL, USA, 2018. [Google Scholar]
- Collier, R.J.; Gebremedhin, K.G. Thermal Biology of Domestic Animals. Annu. Rev. Anim. Biosci. 2015, 3, 513–532. [Google Scholar] [CrossRef]
- Krishnan, G.; Silpa, M.V.; Sejian, V. Environmental Physiology and Thermoregulation in Farm Animals. In Textbook of Veterinary Physiology; Springer Nature Singapore: Singapore, 2023; pp. 723–749. [Google Scholar]
- Oka, T. Stress-Induced Hyperthermia and Hypothermia. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2018; Volume 157, pp. 599–621. ISBN 9780444640741. [Google Scholar]
- Erecinska, M.; Thoresen, M.; Silver, I.A. Effects of Hypothermia on Energy Metabolism in Mammalian Central Nervous System. J. Cereb. Blood Flow Metab. 2003, 23, 513–530. [Google Scholar] [CrossRef] [PubMed]
- Nagashima, K.; Nakai, S.; Tanaka, M.; Kanosue, K. Neuronal Circuitries Involved in Thermoregulation. Auton. Neurosci. 2000, 85, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Macht, M.B. Responses to thermal stimuli mediated through the isolated spinal cord. Arch. Neurol. Psychiatry 1948, 59, 754. [Google Scholar] [CrossRef]
- Brück, K. Thermal Balance and the Regulation of Body Temperature. In Human Physiology; Springer: Berlin/Heidelberg, Germany, 1989; pp. 624–644. [Google Scholar]
- MacKenzie, M. Poikilothermia in Man Pathophysiological Aspects; KU Nijmegen: Nijmegen, The Netherlands, 1996. [Google Scholar]
- Ko, H.-Y.; Huh, S. Thermoregulatory Impairment. In Handbook of Spinal Cord Injuries and Related Disorders; Ko, H.-Y., Huh, S., Eds.; Springer Singapore: Singapore, 2021; pp. 525–531. [Google Scholar]
- Ibraimov, A. Twenty Years of the Cell Thermoregulation Hypothesis. Biomed. Res. Clin. Rev. 2023, 8, 155. [Google Scholar]
- Whittow, G.C. Evolution of thermoregulation. In Comparative Physiology of Thermoregulation; Whittow, G.C., Ed.; Academic Press: London, UK, 1973; pp. 201–258. [Google Scholar]
- Currie, S.; Schulte, P.M. Thermal Stress. In The Physiology of Fishes; Evans, D.H., Claiborne, J.B., Currie, S., Eds.; CRC Press: Boca Raton, FL, USA, 2014; pp. 257–279. [Google Scholar]
- Simon, E.; Pierau, F.K.; Taylor, D.C. Central and Peripheral Thermal Control of Effectors in Homeothermic Temperature Regulation. Physiol. Rev. 1986, 66, 235–300. [Google Scholar] [CrossRef]
- Gómez-Prado, J.; Pereira, A.M.F.; Wang, D.; Villanueva-García, D.; Domínguez-Oliva, A.; Mora-Medina, P.; Hernández-Avalos, I.; Martínez-Burnes, J.; Casas-Alvarado, A.; Olmos-Hernández, A.; et al. Thermoregulation Mechanisms and Perspectives for Validating Thermal Windows in Pigs with Hypothermia and Hyperthermia: An Overview. Front. Vet. Sci. 2022, 9, 1023294. [Google Scholar] [CrossRef]
- Bertoni, A.; Mota-Rojas, D.; Álvarez-Macias, A.; Mora-Medina, P.; Guerrero-Legarreta, I.; Morales-Canela, A.; Gómez-Prado, J.; José-Pérez, N.; Martínez-Burnes, J. Scientific Findings Related to Changes in Vascular Microcirculation Using Infrared Thermography in the River Buffalo. J. Anim. Behav. Biometeorol. 2020, 8, 288–297. [Google Scholar] [CrossRef]
- Myers, B.R.; Sigal, Y.M.; Julius, D. Evolution of Thermal Response Properties in a Cold-Activated TRP Channel. PLoS ONE 2009, 4, e5741. [Google Scholar] [CrossRef]
- Rosania, K. Blocking the Body’s Response to Cold. Lab Anim. 2012, 41, 89. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Titto, C.G.; Orihuela, A.; Martínez-Burnes, J.; Gómez-Prado, J.; Torres-Bernal, F.; Flores-Padilla, K.; Carvajal-de la Fuente, V.; Wang, D. Physiological and Behavioral Mechanisms of Thermoregulation in Mammals. Animals 2021, 11, 1733. [Google Scholar] [CrossRef]
- Reid, G.; Flonta, M.-L. Cold Current in Thermoreceptive Neurons. Nature 2001, 413, 480. [Google Scholar] [CrossRef]
- Jänig, W. Peripheral Thermoreceptors in Innocuous Temperature Detection. In Handbook of Clinical Neurology; Romavosky, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 156, pp. 47–56. ISBN 9780444639127. [Google Scholar]
- Zhang, X. Molecular Sensors and Modulators of Thermoreception. Channels 2015, 9, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Colburn, R.W.; Lubin, M.L.; Stone, D.J.; Wang, Y.; Lawrence, D.; D’Andrea, M.R.; Brandt, M.R.; Liu, Y.; Flores, C.M.; Qin, N. Attenuated Cold Sensitivity in TRPM8 Null Mice. Neuron 2007, 54, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Dhaka, A.; Murray, A.N.; Mathur, J.; Earley, T.J.; Petrus, M.J.; Patapoutian, A. TRPM8 Is Required for Cold Sensation in Mice. Neuron 2007, 54, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Chung, M.-K.; Caterina, M.J. TRP Channel Knockout Mice Lose Their Cool. Neuron 2007, 54, 345–347. [Google Scholar] [CrossRef] [PubMed]
- Bautista, D.M.; Siemens, J.; Glazer, J.M.; Tsuruda, P.R.; Basbaum, A.I.; Stucky, C.L.; Jordt, S.-E.; Julius, D. The Menthol Receptor TRPM8 Is the Principal Detector of Environmental Cold. Nature 2007, 448, 204–208. [Google Scholar] [CrossRef] [PubMed]
- Kozyreva, T.V. Neurophysiological Aspects of the Long-Term Adaptation to Cold in Mammals: The Role of Central and Peripheral Thermoreceptors. J. Therm. Biol. 2006, 31, 105–114. [Google Scholar] [CrossRef]
- Kozyreva, T.V.; Tkahcenko, E.Y.; Kozaruk, B.P. Cold Defense Response under Modulation of Skin Thermoreceptors by Catecholamines. In Thermal Physiology; Johannson, B., Nielsen, R., Eds.; August Krogh Institute: Copenhagen, Denmark, 1997; pp. 239–242. [Google Scholar]
- Kozyreva, T.V. Modulating the Functional Properties of Skin Thermoreceptors. Neurophysiology 1992, 24, 350–357. [Google Scholar] [CrossRef]
- Knowlton, W.M.; Bifolck-Fisher, A.; Bautista, D.M.; McKemy, D.D. TRPM8, but Not TRPA1, Is Required for Neural and Behavioral Responses to Acute Noxious Cold Temperatures and Cold-Mimetics in Vivo. Pain 2010, 150, 340–350. [Google Scholar] [CrossRef]
- Karashima, Y.; Talavera, K.; Everaerts, W.; Janssens, A.; Kwan, K.Y.; Vennekens, R.; Nilius, B.; Voets, T. TRPA1 Acts as a Cold Sensor in Vitro and in Vivo. Proc. Natl. Acad. Sci. USA 2009, 106, 1273–1278. [Google Scholar] [CrossRef]
- Uchida, K.; Sun, W.; Yamazaki, J.; Tominaga, M. Role of Thermo-Sensitive Transient Receptor Potential Channels in Brown Adipose Tissue. Biol. Pharm. Bull. 2018, 41, 1135–1144. [Google Scholar] [CrossRef]
- Ma, S.; Yu, H.; Zhao, Z.; Luo, Z.; Chen, J.; Ni, Y.; Jin, R.; Ma, L.; Wang, P.; Zhu, Z.; et al. Activation of the Cold-Sensing TRPM8 Channel Triggers UCP1-Dependent Thermogenesis and Prevents Obesity. J. Mol. Cell Biol. 2012, 4, 88–96. [Google Scholar] [CrossRef]
- McKie, G.L.; Medak, K.D.; Shamshoum, H.; Wright, D.C. Topical Application of the Pharmacological Cold Mimetic Menthol Stimulates Brown Adipose Tissue Thermogenesis through a TRPM8, UCP1, and Norepinephrine Dependent Mechanism in Mice Housed at Thermoneutrality. FASEB J. 2022, 36, e22205. [Google Scholar] [CrossRef]
- Tan, C.L.; Knight, Z.A. Regulation of Body Temperature by the Nervous System. Neuron 2018, 98, 31–48. [Google Scholar] [CrossRef] [PubMed]
- Lezama-García, K.; Mota-Rojas, D.; Martínez-Burnes, J.; Villanueva-García, D.; Domínguez-Oliva, A.; Gómez-Prado, J.; Mora-Medina, P.; Casas-Alvarado, A.; Olmos-Hernández, A.; Soto, P.; et al. Strategies for Hypothermia Compensation in Altricial and Precocial Newborn Mammals and Their Monitoring by Infrared Thermography. Vet. Sci. 2022, 9, 246. [Google Scholar] [CrossRef] [PubMed]
- Yahiro, T.; Kataoka, N.; Nakamura, Y.; Nakamura, K. The Lateral Parabrachial Nucleus, but Not the Thalamus, Mediates Thermosensory Pathways for Behavioural Thermoregulation. Sci. Rep. 2017, 7, 5031. [Google Scholar] [CrossRef] [PubMed]
- McCafferty, D.J.; Pandraud, G.; Gilles, J.; Fabra-Puchol, M.; Henry, P.-Y. Animal Thermoregulation: A Review of Insulation, Physiology and Behaviour Relevant to Temperature Control in Buildings. Bioinspir. Biomim. 2017, 13, 011001. [Google Scholar] [CrossRef] [PubMed]
- Czaja, K.; Kraeling, R.; Barb, C. Are Hypothalamic Neurons Transsynaptically Connected to Porcine Adipose Tissue? Biochem. Biophys. Res. Commun. 2003, 311, 482–485. [Google Scholar] [CrossRef] [PubMed]
- Babes, A.; Zorzon, D.; Reid, G. Two Populations of Cold-sensitive Neurons in Rat Dorsal Root Ganglia and Their Modulation by Nerve Growth Factor. Eur. J. Neurosci. 2004, 20, 2276–2282. [Google Scholar] [CrossRef]
- Munns, C.; AlQatari, M.; Koltzenburg, M. Many Cold Sensitive Peripheral Neurons of the Mouse Do Not Express TRPM8 or TRPA1. Cell Calcium 2007, 41, 331–342. [Google Scholar] [CrossRef]
- Gao, Q.; Horvath, T. Hypothalamus. In Encyclopedia of Neuroscience; Binder, M., Hirokawa, N., Windhorst, U., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1895–1900. [Google Scholar]
- Villanueva-García, D.; Mota-Rojas, D.; Martínez-Burnes, J.; Olmos-Hernández, A.; Mora-Medina, P.; Salmerón, C.; Gómez, J.; Boscato, L.; Gutiérrez-Pérez, O.; Cruz, V.; et al. Hypothermia in Newly Born Piglets: Mechanisms of Thermoregulation and Pathophysiology of Death. J. Anim. Behav. Biometeorol. 2021, 9, 1–10. [Google Scholar] [CrossRef]
- Dimicco, J.A.; Zaretsky, D.V. The Dorsomedial Hypothalamus: A New Player in Thermoregulation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 292, R47–R63. [Google Scholar] [CrossRef]
- Madden, C.J.C.J.; Morrison, S.F.S.F. Central Nervous System Circuits That Control Body Temperature. Neurosci. Lett. 2019, 696, 225–232. [Google Scholar] [CrossRef]
- Kiyatkin, E.A. Functional Role of Peripheral Vasoconstriction: Not Only Thermoregulation but Much More. J. Integr. Neurosci. 2021, 20, 755. [Google Scholar] [CrossRef] [PubMed]
- Verduzco-Mendoza, A.; Bueno-Nava, A.; Wang, D.; Martínez-Burnes, J.; Olmos-Hernández, A.; Casas, A.; Domínguez, A.; Mota-Rojas, D. Experimental Applications and Factors Involved in Validating Thermal Windows Using Infrared Thermography to Assess the Health and Thermostability of Laboratory Animals. Animals 2021, 11, 3448. [Google Scholar] [CrossRef] [PubMed]
- Bienboire-Frosini, C.; Wang, D.; Marcet-Rius, M.; Villanueva-García, D.; Gazzano, A.; Domínguez-Oliva, A.; Olmos-Hernández, A.; Hernández-Ávalos, I.; Lezama-García, K.; Verduzco-Mendoza, A.; et al. The Role of Brown Adipose Tissue and Energy Metabolism in Mammalian Thermoregulation during the Perinatal Period. Animals 2023, 13, 2173. [Google Scholar] [CrossRef] [PubMed]
- Kozat, S. Hypothermia in Newborn Calves. J. Istanbul Vet. Sci. 2018, 2, 30–37. [Google Scholar] [CrossRef]
- Nakamura, K. Central Circuitries for Body Temperature Regulation and Fever. Am. J. Physiol. Integr. Comp. Physiol. 2011, 301, R1207–R1228. [Google Scholar] [CrossRef] [PubMed]
- Bhimte, A.; Thakur, N.; Lakhani, N.; Yadav, V.; Khare, A.; Lakhani, P. Endocrine Changes in Livestock during Heat and Cold Stress. J. Pharmacogn. Phytochem. 2018, 7, 127–132. [Google Scholar]
- Zhao, Z.-D.; Yang, W.Z.; Gao, C.; Fu, X.; Zhang, W.; Zhou, Q.; Chen, W.; Ni, X.; Lin, J.-K.; Yang, J.; et al. A Hypothalamic Circuit That Controls Body Temperature. Proc. Natl. Acad. Sci. USA 2017, 114, 2042–2047. [Google Scholar] [CrossRef]
- Shephard, R.; Maloney, S. A Review of Thermal Stress in Cattle. Aust. Vet. J. 2023, 101, 417–429. [Google Scholar] [CrossRef]
- Okuda, C.; Miyazaki, M.; Kuriyama, K. Hypothalamic Control of Pituitary and Adrenal Hormones during Hypothermia. Psychoneuroendocrinology 1986, 11, 415–427. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.; Ghassemi Nejad, J.; Lee, H. Impact of Cold Stress on Physiological, Endocrinological, Immunological, Metabolic, and Behavioral Changes of Beef Cattle at Different Stages of Growth. Animals 2023, 13, 1073. [Google Scholar] [CrossRef] [PubMed]
- Webster, J.; Stewart, M.; Rogers, A.; Verkerk, G. Assessment of Welfare from Physiological and Behavioural Responses of New Zealand Dairy Cows Exposed to Cold and Wet Conditions. Anim. Welf. 2008, 17, 19–26. [Google Scholar] [CrossRef]
- Uetake, K.; Morita, S.; Sakagami, N.; Yamamoto, K.; Hashimura, S.; Tanaka, T. Hair Cortisol Levels of Lactating Dairy Cows in Cold- and Warm-temperate Regions in Japan. Anim. Sci. J. 2018, 89, 494–497. [Google Scholar] [CrossRef] [PubMed]
- Shida, A.; Ikeda, T.; Tani, N.; Morioka, F.; Aoki, Y.; Ikeda, K.; Watanabe, M.; Ishikawa, T. Cortisol Levels after Cold Exposure Are Independent of Adrenocorticotropic Hormone Stimulation. PLoS ONE 2020, 15, e0218910. [Google Scholar] [CrossRef] [PubMed]
- Sejian, V.; Shashank, C.G.; Silpa, M.V.; Madhusoodan, A.P.; Devaraj, C.; Koenig, S. Non-Invasive Methods of Quantifying Heat Stress Response in Farm Animals with Special Reference to Dairy Cattle. Atmosphere 2022, 13, 1642. [Google Scholar] [CrossRef]
- Pääkkönen, T.; Leppäluoto, J. Cold Exposure and Hormonal Secretion: A Review. Int. J. Circumpolar Health 2002, 61, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Shan, L.; Wang, Y.; Li, W.; Jiang, M.; Liang, F.; Feng, S.; Lu, Z.; Wang, H.; Dai, J. Primate Preoptic Neurons Drive Hypothermia and Cold Defense. Innovation 2023, 4, 100358. [Google Scholar] [CrossRef]
- Carroll, J.A.; Burdick, N.C.; Chase, C.C.; Coleman, S.W.; Spiers, D.E. Influence of Environmental Temperature on the Physiological, Endocrine, and Immune Responses in Livestock Exposed to a Provocative Immune Challenge. Domest. Anim. Endocrinol. 2012, 43, 146–153. [Google Scholar] [CrossRef]
- Alba, B.K.; Castellani, J.W.; Charkoudian, N. Cold-induced Cutaneous Vasoconstriction in Humans: Function, Dysfunction and the Distinctly Counterproductive. Exp. Physiol. 2019, 104, 1202–1214. [Google Scholar] [CrossRef] [PubMed]
- Magnin, M.; Junot, S.; Cardinali, M.; Ayoub, J.Y.; Paquet, C.; Louzier, V.; Garin, J.M.B.; Allaouchiche, B. Use of Infrared Thermography to Detect Early Alterations of Peripheral Perfusion: Evaluation in a Porcine Model. Biomed. Opt. Express 2020, 11, 2431. [Google Scholar] [CrossRef] [PubMed]
- Mota-Rojas, D.; Ogi, A.; Villanueva-García, D.; Hernández-Ávalos, I.; Casas-Alvarado, A.; Domínguez-Oliva, A.; Lendez, P.; Ghezzi, M. Thermal Imaging as a Method to Indirectly Assess Peripheral Vascular Integrity and Tissue Viability in Veterinary Medicine: Animal Models and Clinical Applications. Animals 2023, 13, 142. [Google Scholar] [CrossRef] [PubMed]
- Jaén-Téllez, J.A.; Bartolomé, E.; Sánchez-Guerrero, M.J.; Valera, M.; González-Redondo, P. Relationship Between Rectal Temperature Measured With a Conventional Thermometer and the Temperature of Several Body Regions Measured By Infrared Thermography in Fattening Rabbits. Influence of Different Environmental Factors. World Rabbit Sci. 2021, 29, 263–273. [Google Scholar] [CrossRef]
- Schmitt, O.; O’Driscoll, K. Use of Infrared Thermography to Noninvasively Assess Neonatal Piglet Temperature. Transl. Anim. Sci. 2021, 5, 1–9. [Google Scholar] [CrossRef]
- Picker, O.; Scheeren, T.W.L.; Arndt, J.O. Inhalation Anaesthetics Increase Heart Rate by Decreasing Cardiac Vagal Activity in Dogs. Br. J. Anaesth. 2001, 87, 748–754. [Google Scholar] [CrossRef] [PubMed]
- Pincebourde, S.; Sanford, E.; Helmuth, B.; Benkman, C.W. An Intertidal Sea Star Adjusts Thermal Inertia to Avoid Extreme Body Temperatures. Am. Nat. 2009, 174, 890–897. [Google Scholar] [CrossRef] [PubMed]
- del Coz-Díaz, J.J.; Álvarez-Rabanal, F.P.; Alonso-Martínez, M.; Martínez-Martínez, J.E. Thermal Inertia Characterization of Multilayer Lightweight Walls: Numerical Analysis and Experimental Validation. Appl. Sci. 2021, 11, 5008. [Google Scholar] [CrossRef]
- Abbott, S.B.G.; Saper, C.B. Role of the Median Preoptic Nucleus in the Autonomic Response to Heat-Exposure. Temperature 2018, 5, 4–6. [Google Scholar] [CrossRef]
- McAllen, R.M.; McKinley, M.J. Efferent Thermoregulatory Pathways Regulating Cutaneous Blood Flow and Sweating. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2018; pp. 305–316. [Google Scholar]
- Scarpellini, C.D.S.; Cristina-Silva, C.; Biancardi, V.; Gargaglioni, L.H.; Almeida, M.C.; Bícego, K.C. Hypothalamic TRPV4 Channels Participate in the Medial Preoptic Activation of Warmth-Defence Responses in Wistar Male Rats. Pflügers Arch. Eur. J. Physiol. 2019, 471, 1191–1203. [Google Scholar] [CrossRef] [PubMed]
- Romanovsky, A.A. Skin Temperature: Its Role in Thermoregulation. Acta Physiol. 2014, 210, 498–507. [Google Scholar] [CrossRef] [PubMed]
- Napolitano, F.; Bragaglio, A.; Braghieri, A.; El-Aziz, A.H.A.; Titto, C.G.; Villanueva-García, D.; Mora-Medina, P.; Pereira, A.M.F.; Hernández-Avalos, I.; José-Pérez, N.; et al. The Effect of Birth Weight and Time of Day on the Thermal Response of Newborn Water Buffalo Calves. Front. Vet. Sci. 2023, 10, 1084092. [Google Scholar] [CrossRef] [PubMed]
- Morrison, S.F.; Nakamura, K. Central Neural Pathways for Thermoregulation. Front. Biosci. 2011, 16, 74. [Google Scholar] [CrossRef]
- Sharma, L.R.; Singh, A.K.; Kumar, A.; Kumar, Y.; Srinivasulu, P.; Devi, R.; Sridhar, T.; Saini, S.; Singh, S.V.; Datta, T.K.; et al. Infrared Thermal Imaging for Assessment of Thermal Comfort of Sahiwal Cattle during Winter Season. J. Agrometeorol. 2018, 16, 63–67. [Google Scholar]
- Vicente-Pérez, R.; Avendaño-Reyes, L.; Correa-Calderón, A.; Mellado, M.; Meza-Herrera, C.A.; Montañez-Valdez, O.D.; Macías, U. Relationships of Body Surface Thermography with Core Temperature, Birth Weight and Climatic Variables in Neonatal Lambs Born during Early Spring in an Arid Region. J. Therm. Biol. 2019, 82, 142–149. [Google Scholar] [CrossRef]
- Villanueva-García, D.; Ghezzi, M.; Mora-Medina, P.; Hernández-Ávalos, I.; Olmos-Hernández, A.; Casas-Alvarado, A.; Lezama-García, K.; Domínguez-Oliva, A.; Rodríguez-González, D.; Marcet-Rius, M. Caffeine Administration in Piglets with Low Birthweight and Low Vitality Scores, and Its Effect on Physiological Blood Profile, Acid–Base Balance, Gas Exchange, and Infrared Thermal Response. Animals 2023, 13, 3491. [Google Scholar] [CrossRef]
- Kammersgaard, T.S.T.; Pedersen, L.J.; Jorgensen, E. Hypothermia in Neonatal Piglets: Interactions and Causes of Individual Differences. J. Anim. Sci. 2011, 89, 2073–2085. [Google Scholar] [CrossRef]
- Marques, J.I.; Leite, P.G.; Lopes Neto, J.P.; Furtado, D.A.; Lopes, F.F. de M. Estimation of rectal temperature of goats based on surface temperature. Eng. Agrícola 2021, 41, 591–598. [Google Scholar] [CrossRef]
- Bartolomé, E.; Azcona, F.; Cañete-Aranda, M.; Perdomo-González, D.I.; Ribes-Pons, J.; Terán, E.M. Testing Eye Temperature Assessed with Infrared Thermography to Evaluate Stress in Meat Goats Raised in a Semi-Intensive Farming System: A Pilot Study. Arch. Anim. Breed. 2019, 62, 199–204. [Google Scholar] [CrossRef]
- Peng, D.; Chen, S.; Li, G.; Chen, J.; Wang, J.; Gu, X. Infrared Thermography Measured Body Surface Temperature and Its Relationship with Rectal Temperature in Dairy Cows under Different Temperature-Humidity Indexes. Int. J. Biometeorol. 2019, 63, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Robbins, L.A. Into the Comfort Zone: Understanding Swine Thermal Preference. Doctoral Dissertation, Purdue University, West Lafayette, IN, USA, 2021. [Google Scholar]
- Rowan, T.G. Thermoregulation in Neonatal Ruminants. BSAP Occas. Publ. 1992, 15, 13–24. [Google Scholar] [CrossRef]
- Yang, C.; Cao, C.; Liu, J.; Zhao, Y.; Pan, J.; Tao, C.; Wang, Y. Distinct Transcriptional Responses of Skeletal Muscle to Short-Term Cold Exposure in Tibetan Pigs and Bama Pigs. Int. J. Mol. Sci. 2023, 24, 7431. [Google Scholar] [CrossRef] [PubMed]
- Mejdell, C.M.; Bøe, K.E.; Jørgensen, G.H.M. Caring for the Horse in a Cold Climate—Reviewing Principles for Thermoregulation and Horse Preferences. Appl. Anim. Behav. Sci. 2020, 231, 105071. [Google Scholar] [CrossRef]
- Mejdell, C.M.; Bøe, K.E. Responses to Climatic Variables of Horses Housed Outdoors under Nordic Winter Conditions. Can. J. Anim. Sci. 2005, 85, 307–308. [Google Scholar] [CrossRef]
- Jørgensen, G.H.M.; Aanensen, L.; Mejdell, C.M.; Bøe, K.E. Preference for Shelter and Additional Heat in Horses Exposed to Nordic Winter Conditions. Equine Vet. J. 2016, 48, 720–726. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Ma, S.; Wang, L.; Ma, H.; Wang, W.; Xia, J.; Liu, D. Min Pig Skeletal Muscle Response to Cold Stress. PLoS ONE 2022, 17, e0274184. [Google Scholar] [CrossRef]
- Bienboire-Frosini, C.; Muns, R.; Marcet-Rius, M.; Gazzano, A.; Villanueva-García, D.; Martínez-Burnes, J.; Domínguez-Oliva, A.; Lezama-García, K.; Casas-Alvarado, A.; Mota-Rojas, D. Vitality in Newborn Farm Animals: Adverse Factors, Physiological Responses, Pharmacological Therapies, and Physical Methods to Increase Neonate Vigor. Animals 2023, 13, 1542. [Google Scholar] [CrossRef]
- Jarratt, L.; James, S.E.; Kirkwood, R.N.; Nowland, T.L. Effects of Caffeine and Glucose Supplementation at Birth on Piglet Pre-Weaning Growth, Thermoregulation, and Survival. Animals 2023, 13, 435. [Google Scholar] [CrossRef]
- Nowland, T.L.; Kind, K.; Hebart, M.L.; van Wettere, W.H.E.J. Caffeine Supplementation at Birth, but Not 8 to 12 h Post-Birth, Increased 24 h Pre-Weaning Mortality in Piglets. Animal 2020, 14, 1529–1535. [Google Scholar] [CrossRef]
- Meisfjord Jørgensen, G.H.; Mejdell, C.M.; Bøe, K.E. Effects of Hair Coat Characteristics on Radiant Surface Temperature in Horses. J. Therm. Biol. 2020, 87, 102474. [Google Scholar] [CrossRef] [PubMed]
- Mota-Rojas, D.; Titto, C.G.; de Mira Geraldo, A.; Martínez-Burnes, J.; Gómez, J.; Hernández-Ávalos, I.; Casas, A.; Domínguez, A.; José, N.; Bertoni, A.; et al. Efficacy and Function of Feathers, Hair, and Glabrous Skin in the Thermoregulation Strategies of Domestic Animals. Animals 2021, 11, 3472. [Google Scholar] [CrossRef]
- Fuller-Jackson, J.-P.; Henry, B.A. Adipose and Skeletal Muscle Thermogenesis: Studies from Large Animals. J. Endocrinol. 2018, 237, R99–R115. [Google Scholar] [CrossRef]
- Carter, B.W.; Schucany, W.G. Brown Adipose Tissue in a Newborn. In Baylor University Medical Center Proceedings; Taylor & Francis Group: Boca Raton, FL, USA, 2008; Volume 21, pp. 328–330. [Google Scholar] [CrossRef]
- Plush, K.; Brien, F.D.; Hebart, M.L.; Hynd, P.I. Thermogenesis and Physiological Maturity in Neonatal Lambs: A Unifying Concept in Lamb Survival. Anim. Prod. Sci. 2016, 56, 736–745. [Google Scholar] [CrossRef]
- Asakura, H. Fetal and Neonatal Thermoregulation. J. Nippon Med. Sch. 2004, 71, 360–370. [Google Scholar] [CrossRef]
- Zhu, Q.; Glazier, B.J.; Hinkel, B.C.; Cao, J.; Liu, L.; Liang, C.; Shi, H. Neuroendocrine Regulation of Energy Metabolism Involving Different Types of Adipose Tissues. Int. J. Mol. Sci. 2019, 20, 2707. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Sebaa, R.; Malholtra, N.; Lacoste, B.; El Hankouri, Z.; Kirby, A.; Bennett, N.C.; van Jaarsveld, B.; Hart, D.W.; Tattersall, G.J.; et al. Naked Mole-Rat Brown Fat Thermogenesis Is Diminished during Hypoxia through a Rapid Decrease in UCP1. Nat. Commun. 2021, 12, 6801. [Google Scholar] [CrossRef]
- Chernukha, I.; Fedulova, L.; Kotenkova, E. White, Beige and Brown Adipose Tissue: Structure, Function, Specific Features and Possibility Formation and Divergence in Pigs. Foods Raw Mater. 2022, 10, 10–18. [Google Scholar] [CrossRef]
- Iatropoulos, M.; Williams, G. The Function and Pathology of Brown Adipose Tissue in Animals and Humans. J. Toxicol. Pathol. 2004, 17, 147–153. [Google Scholar] [CrossRef]
- Ballinger, M.; Andrews, M. Nature’s Fat-Burning Machine: Brown Adipose Tissue in a Hibernating Mammal. J. Exp. Biol. 2018, 221, jeb162586. [Google Scholar] [CrossRef]
- Johnson, J.M.; Peterlin, A.D.; Balderas, E.; Sustarsic, E.G.; Maschek, J.A.; Lang, M.J.; Jara-Ramos, A.; Panic, V.; Morgan, J.T.; Villanueva, C.J.; et al. Mitochondrial Phosphatidylethanolamine Modulates UCP1 to Promote Brown Adipose Thermogenesis. Sci. Adv. 2023, 9, eade7864. [Google Scholar] [CrossRef]
- Oeckl, J.; Janovska, P.; Adamcova, K.; Bardova, K.; Brunner, S.; Dieckmann, S.; Ecker, J.; Fromme, T.; Funda, J.; Gantert, T.; et al. Loss of UCP1 Function Augments Recruitment of Futile Lipid Cycling for Thermogenesis in Murine Brown Fat. Mol. Metab. 2022, 61, 101499. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, D.G.; Locke, R.M. Thermogenic Mechanisms in Brown Fat. Physiol. Rev. 1984, 64, 1–64. [Google Scholar] [CrossRef]
- Gunn, T.R.; Gluckman, P.D. Perinatal Thermogenesis. Early Hum. Dev. 1995, 42, 169–183. [Google Scholar] [CrossRef] [PubMed]
- Gate, J.J.; Clarke, L.; Lomax, M.A.; Symonds, M.E. Chronic Cold Exposure Has No Effect on Brown Adipose Tissue in Newborn Lambs Born to Well-Fed Ewes. Reprod. Fertil. Dev. 1999, 11, 415. [Google Scholar] [CrossRef]
- Graña-Baumgartner, A.; Dukkipati, V.S.R.; Biggs, P.J.; Kenyon, P.R.; Blair, H.T.; López-Villalobos, N.; Ross, A.B. Mass Spectrometry-Based Lipidomics of Brown Adipose Tissue and Plasma of New-Born Lambs Subjected to Short-Term Cold Exposure. Animals 2022, 12, 2762. [Google Scholar] [CrossRef] [PubMed]
- Cannon, B.; Romert, L.; Sundin, U.; Barnard, T. Morphology and Biochemical Properties of Perirenal Adipose Tissue from Lamb (Ovis aries). A Comparison with Brown Adipose Tissue. Comp. Biochem. Physiol. Part B Comp. Biochem. 1977, 56, 87–99. [Google Scholar] [CrossRef]
- Smith, S.B.; Carstens, G.E.; Randel, R.D.; Mersmann, H.J.; Lunt, D.K. Brown Adipose Tissue Development and Metabolism in Ruminants. J. Anim. Sci. 2004, 82, 942–954. [Google Scholar] [CrossRef]
- Liu, X.; Tang, J.; Zhang, R.; Zhan, S.; Zhong, T.; Guo, J.; Wang, Y.; Cao, J.; Li, L.; Zhang, H.; et al. Cold Exposure Induces Lipid Dynamics and Thermogenesis in Brown Adipose Tissue of Goats. BMC Genom. 2022, 23, 528. [Google Scholar] [CrossRef]
- Gemmell, R.T.; Bell, A.W.; Alexander, G. Morphology of Adipose Cells in Lambs at Birth and during Subsequent Transition of Brown to White Adipose Tissue in Cold and in Warm Conditions. Am. J. Anat. 1972, 133, 143–163. [Google Scholar] [CrossRef]
- Alexander, G.; Bennett, J.W.; Gemmell, R.T. Brown Adipose Tissue in the New-Born Calf (Bos taurus). J. Physiol. 1975, 244, 223–234. [Google Scholar] [CrossRef] [PubMed]
- Berg, F.; Gustafson, U.; Andersson, L. The Uncoupling Protein 1 Gene (UCP1) Is Disrupted in the Pig Lineage: A Genetic Explanation for Poor Thermoregulation in Piglets. PLoS Genet. 2006, 2, e129. [Google Scholar] [CrossRef] [PubMed]
- Labeur, L.; Villiers, G.; Small, A.H.; Hinch, G.N.; Schmoelzl, S. Infrared Thermal Imaging as a Method to Evaluate Heat Loss in Newborn Lambs. Res. Vet. Sci. 2017, 115, 517–522. [Google Scholar] [CrossRef] [PubMed]
- Mota-Rojas, D.; Wang, D.D.-H.; Titto, C.G.; Martínez-Burnes, J.; Villanueva-García, D.; Lezama, K.; Domínguez, A.; Hernández-Avalos, I.; Mora-Medina, P.; Verduzco, A.; et al. Neonatal Infrared Thermography Images in the Hypothermic Ruminant Model: Anatomical-Morphological-Physiological Aspects and Mechanisms for Thermoregulation. Frontiers Vet. Sci. 2022, 9, 963205. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Oliva, A.; Hernández-Ávalos, I.; Olmos-Hernández, A.; Villegas-Juache, J.; Verduzco-Mendoza, A.; Mota-Rojas, D. Thermal Response of Laboratory Rats (Rattus Norvegicus) during the Application of Six Methods of Euthanasia Assessed by Infrared Thermography. Animals 2023, 13, 2820. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, Q.; Peng, J.; Niu, H. Effects of Long-Term Cold Stress on Growth Performance, Behavior, Physiological Parameters, and Energy Metabolism in Growing Beef Cattle. Animals 2023, 13, 1619. [Google Scholar] [CrossRef] [PubMed]
- Gonyou, H.W.; Christopherson, R.J.; Young, B.A. Effects of Cold Temperature and Winter Conditions on Some Aspects of Behaviour of Feedlot Cattle. Appl. Anim. Ethol. 1979, 5, 113–124. [Google Scholar] [CrossRef]
- Gilbert, C.; McCafferty, D.J.; Giroud, S.; Ancel, A.; Blanc, S. Private Heat for Public Warmth: How Huddling Shapes Individual Thermogenic Responses of Rabbit Pups. PLoS ONE 2012, 7, e33553. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Villanueva-García, D.; Solimano, A.; Muns, R.; Ibarra-Ríos, D.; Mota-Reyes, A. Pathophysiology of Perinatal Asphyxia in Humans and Animal Models. Biomedicines 2022, 10, 347. [Google Scholar] [CrossRef]
- Fonsêca, V.F.C.; Saraiva, E.P.; dos Santos, J.D.C.; da Cunha Morais, L.K.; Nascimento, S.T.; de Melo Costa, C.C.; Moura, G.B.; Xavier Neta, G.C.; Bícego, K.C.; Sejian, V.; et al. Behavioural Responses of Domestic Animals for Adapting to Thermal Stress. In Climate Change and Livestock Production: Recent Advances and Future Perspectives; Seijan, V., Chuahan, S., Devaraj, C., Malik, P., Bhatta, R., Eds.; Springer Singapore: Singapore, 2021; pp. 39–48. [Google Scholar]
- Bøe, K.E.; Ehrlenbruch, R. Thermoregulatory Behavior of Dairy Goats at Low Temperatures and the Use of Outdoor Yards. Can. J. Anim. Sci. 2013, 93, 35–41. [Google Scholar] [CrossRef]
- Aggarwal, A.; Dar, M.R.; Vats, P.; Singh, M.; Kumar, P.; Choudhary, R.; Rawal, V. Physiological Changes and Blood Flow in Different Breeds of Dairy Cows during Different Seasons. Biol. Rhythm Res. 2021, 52, 1322–1333. [Google Scholar] [CrossRef]
- Banerjee, D.; Upadhyay, R.C.; Chaudhary, U.B.; Kumar, R.; Singh, S.; Ashutosh; Das, T.K.; De, S. Seasonal Variations in Physio-Biochemical Profiles of Indian Goats in the Paradigm of Hot and Cold Climate. Biol. Rhythm Res. 2015, 46, 221–236. [Google Scholar] [CrossRef]
- Wentzel S Viljoen, D.K.; J Botha, L.J. Physiological and Endocrinological Reactions To Cold Stress in the Angora Goat. Agroanimalia 1979, 11, 19–22. [Google Scholar]
- Appleman, R.D.; Delouche, J.C. Behavioral, Physiological and Biochemical Responses of Goats to Temperature, 0 to 40 °C. J. Anim. Sci. 1958, 17, 326–335. [Google Scholar] [CrossRef]
- Al-Musawi, J.E.; Hassan, S.A.; Muhammad, S.F. Effect of Cold Stress on Some Blood Parameters of Sheep and Goats. Int. J. Sci. Res. 2017, 6, 1617–1620. [Google Scholar] [CrossRef]
- Minka, N.S.; Ayo, J.O. Effects of Cold-Dry (Harmattan) and Hot-Dry Seasons on Daily Rhythms of Rectal and Body Surface Temperatures in Sheep and Goats in a Natural Tropical Environment. J. Circadian Rhythms 2016, 14, 8. [Google Scholar] [CrossRef] [PubMed]
- Bennett, J. The Maximum Metabolic Response of Sheep to Cold: Effects of Rectal Temperature, Shearing, Feed Consumption, Body Posture, and Body Weight. Aust. J. Agric. Res. 1972, 23, 1045. [Google Scholar] [CrossRef]
- Doubek, J.; Šlosárková, S.; Fleischer, P.; Malá, G.; Skřivánek, M. Metabolic and Hormonal Profiles of Potentiated Cold Stress in Lambs during Early Postnatal Period. Czech J. Anim. Sci. 2003, 48, 403–411. [Google Scholar]
- Maurya, V.P.; Sejian, V.; Naqvi, S.M.K. Effect of Cold Stress on Growth, Physiological Responses, Blood Metabolites and Hormonal Profile of Native Malpura Lambs under Hot Semi-Arid Tropics of India. Indian J. Anim. Sci. 2013, 83, 370–373. [Google Scholar]
- Mayfield, S.R.; Stonestreet, B.S.; Brubakk, A.M.; Shaul, P.W.; Oh, W. Regional Blood Flow in Newborn Piglets during Environmental Cold Stress. Am. J. Physiol. Liver Physiol. 1986, 251, G308–G313. [Google Scholar] [CrossRef]
- Swiergiel, A.H. Decrease in Body Temperature and Locomotor Activity as an Adaptational Response in Piglets Exposed to Cold on Restricted Feeding. Physiol. Behav. 1987, 40, 117–125. [Google Scholar] [CrossRef]
- Stombaugh, D.; Roller, W.; Adams, T.; Teague, H. Temperature Regulation in Neonatal Piglets during Mild Cold and Severe Heat Stress. Am. J. Physiol. Content 1973, 225, 1192–1198. [Google Scholar] [CrossRef]
- Hahn, G.L.; Nienaber, J.A.; DeShazer, J.A. Air Temperature Influences on Swine Performance and Behavior. Appl. Eng. Agric. 1987, 3, 295–302. [Google Scholar] [CrossRef]
- Le Dividich, J.; Rooke, J.A.; Herpin, P. Nutritional and Immunological Importance of Colostrum for the New-Born Pig. J. Agric. Sci. 2005, 143, 469–485. [Google Scholar] [CrossRef]
- Ebinghaus, A.; Matull, K.; Knierim, U.; Ivemeyer, S. Associations between Dairy Herds’ Qualitative Behavior and Aspects of Herd Health, Stockperson and Farm Factors—A Cross-Sectional Exploration. Animals 2022, 12, 182. [Google Scholar] [CrossRef]
- de Boyer des Roches, A.; Lussert, A.; Faure, M.; Herry, V.; Rainard, P.; Durand, D.; Wemelsfelder, F.; Foucras, G. Dairy Cows under Experimentally-Induced Escherichia Coli Mastitis Show Negative Emotional States Assessed through Qualitative Behaviour Assessment. Appl. Anim. Behav. Sci. 2018, 206, 1–11. [Google Scholar] [CrossRef]
- Rodríguez-González, D.; Guerrero Legarreta, I.; Chay-Canul, A.; Hernández-Avalos, I.; Napolitano, F.; García-Herrera, R.; Pereira, A.M.F.; Domínguez-Oliva, A.; Casas-Alvarado, A.; Reyes-Sotelo, B.; et al. Thermal Balance in Male Water Buffaloes Transported by Long and Short Journeys. Animals 2023, 13, 3274. [Google Scholar] [CrossRef] [PubMed]
- Polat, B.; Colak, A.; Cengiz, M.; Yanmaz, L.E.; Oral, H.; Bastan, A.; Kaya, S.; Hayirli, A. Sensitivity and Specificity of Infrared Thermography in Detection of Subclinical Mastitis in Dairy Cows. J. Dairy Sci. 2010, 93, 3525–3532. [Google Scholar] [CrossRef]
- Krasnikov, A.V.; Krasnikova, E.S. Use of Infrared Thermography to Control Osteoreparative and Integrative Processes during Implantation in Animals. J. Phys. Conf. Ser. 2020, 1515, 052011. [Google Scholar] [CrossRef]
- Whittaker, A.L.; Muns, R.; Wang, D.; Martínez-Burnes, J.; Hernández-Ávalos, I.; Casas-Alvarado, A.; Domínguez-Oliva, A.; Mota-Rojas, D. Assessment of Pain and Inflammation in Domestic Animals Using Infrared Thermography: A Narrative Review. Animals 2023, 13, 2065. [Google Scholar] [CrossRef]
- Khaksari, K.; Nguyen, T.; Hill, B.Y.; Perrault, J.; Gorti, V.; Blick, E.; Gonzalez Cano, T.; Shadgan, B.; Quang, T.; Malpani, R.; et al. Review of the Efficacy of Infrared Thermography for Screening Infectious Diseases with Applications to COVID-19. J. Med. Imaging 2021, 8, 010901. [Google Scholar] [CrossRef] [PubMed]
- Nomura, R.H.C.; de Freitas, I.B.; Guedes, R.L.; Araújo, F.F.; Mafra, A.C.D.N.; Ibañez, J.F.; Dornbusch, P.T. Thermographic Images from Healthy Knees between Dogs with Long and Short Hair. Ciência Rural 2018, 48. [Google Scholar] [CrossRef]
- de Souza, J.B.F.; de Queiroz, J.P.A.F.; dos Santos, V.J.S.; Dantas, M.R.T.; de Lima, R.N.; de Oliveira Lima, P.; de Macedo Costa, L.L. Cutaneous Evaporative Thermolysis and Hair Coat Surface Temperature of Calves Evaluated with the Aid of a Gas Analyzer and Infrared Thermography. Comput. Electron. Agric. 2018, 154, 222–226. [Google Scholar] [CrossRef]
- Nejad, J.G.; Lee, H.G. Coat Color Affects Cortisol and Serotonin Levels in the Serum and Hairs of Holstein Dairy Cows Exposed to Cold Winter. Domest. Anim. Endocrinol. 2023, 82, 106768. [Google Scholar] [CrossRef]
Species | Physiological Changes | Endocrine Responses | Behavioral Changes | Surface Temperature Changes | References |
---|---|---|---|---|---|
Cows | ↑ Heart rate ↑ Respiratory rate ↓ Blood pressure Shivering | ↑ Plasma cortisol ↑ Fecal cortisol ↑ Hair cortisol ↑ T4 ↑ Non-esterified fatty acid ↓ Glucose | ↑ Time standing ↑ Rumination ↑ Time lying down ↓ Grooming ↓ Dry matter intake | ↓ Orbital ↓ Dorsal ↓ Head ↓ Shoulder ↓ Flank | [55,56,57,121,126] |
Goats | ↑ Heart rate ↑ Respiratory rate ↑ Pulse rate Shivering | ↑ Plasma cortisol ↑ T4 followed by ↓ ↑ Glucose followed by ↓ AST ALT | ↑ Time standing ↑ Walking ↑ Feed intake ↓ Water consumption ↓ Time lying down | ↓ Interdigital space ↓ Coronary band ↓ Mid-head ↓ Nose ↓ Ear base | [125,127,128,129] |
Sheep | ↑ Heart rate ↑ Respiratory rate ↑ Pulse rate | ↑ Plasma cortisol ↑ T3 ↑ T4 ↓ Glucose | ↑ Time standing ↑ Rumination ↑ Feed intake | ↓ Interdigital space ↓ Coronary band ↓ Mid-head ↓ Nose ↓ Ear-base | [130,131,132,133,134] |
Pigs | ↑ Heart rate ↑ Blood pressure ↑ Cardiac output | ↑ ACTH ↑ Plasma cortisol ↑ T3 ↑ T4 | ↑ Search warm environment ↑ Huddling ↓ Locomotor activity ↑ Feed intake | ↓ Full body ↓ Ear | [135,136,137,138] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mota-Rojas, D.; Ghezzi, M.D.; Hernández-Ávalos, I.; Domínguez-Oliva, A.; Casas-Alvarado, A.; Lendez, P.A.; Ceriani, M.C.; Wang, D. Hypothalamic Neuromodulation of Hypothermia in Domestic Animals. Animals 2024, 14, 513. https://doi.org/10.3390/ani14030513
Mota-Rojas D, Ghezzi MD, Hernández-Ávalos I, Domínguez-Oliva A, Casas-Alvarado A, Lendez PA, Ceriani MC, Wang D. Hypothalamic Neuromodulation of Hypothermia in Domestic Animals. Animals. 2024; 14(3):513. https://doi.org/10.3390/ani14030513
Chicago/Turabian StyleMota-Rojas, Daniel, Marcelo Daniel Ghezzi, Ismael Hernández-Ávalos, Adriana Domínguez-Oliva, Alejandro Casas-Alvarado, Pamela Anahí Lendez, María Carolina Ceriani, and Dehua Wang. 2024. "Hypothalamic Neuromodulation of Hypothermia in Domestic Animals" Animals 14, no. 3: 513. https://doi.org/10.3390/ani14030513
APA StyleMota-Rojas, D., Ghezzi, M. D., Hernández-Ávalos, I., Domínguez-Oliva, A., Casas-Alvarado, A., Lendez, P. A., Ceriani, M. C., & Wang, D. (2024). Hypothalamic Neuromodulation of Hypothermia in Domestic Animals. Animals, 14(3), 513. https://doi.org/10.3390/ani14030513