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Simple Summary: There have been few studies on the use of umbilical cord mesenchymal stem
cells as donor nuclei in nuclear transplantation, despite their advantages of less reprogramming
difficulty and shorter reprogramming distance. This study compared differences at the chromatin
level, the level of differentially expressed genes, the level of histone modifications, and the level
of DNA methylation in eight-cell embryos after using umbilical cord mesenchymal stem cells and
fibroblasts as nucleus donors, using a single-cell transcriptome.

Abstract: Oocytes are efficient at reprogramming terminally differentiated cells to a totipotent state.
Nuclear transfer techniques can exploit this property to produce cloned animals. However, the
overall efficiency is low. The use of umbilical cord mesenchymal stem cells (UC-MSCs) as donor
nuclei may increase blastocyst rates, but the exact reasons for this remain unexplored. A single-cell
transcriptomic approach was used to map the transcriptome profiles of eight-cell embryos that were
in vitro-fertilized and handmade-cloned using umbilical cord mesenchymal stem cells and fibroblasts
as nuclear donors. Differences were examined at the chromatin level, the level of differentially
expressed genes, the level of histone modifications and the level of DNA methylation. This research
provides critical information regarding the use of UC-MSCs as a preferred donor nucleus for nuclear
transfer techniques. It also offers unique insights into the mechanism of cellular reprogramming.

Keywords: single-cell transcriptome; umbilical cord mesenchymal stem cells; sheep; handmade
cloning; nuclear transplantation

1. Introduction

The cytoplasm of oocytes has the ability to reprogram the chromatin state of termi-
nally differentiated cells to a totipotent state [1]. This ability can be exploited to generate
cloned progeny or nuclear transferred embryonic stem cells (ntESCs) using nuclear transfer
techniques. Handmade cloning (HMC) is a more convenient and faster method of nuclear
transfer that does not require a micromanipulator [2]. It has a higher throughput and yield
than traditional cloning methods [3,4]. A variety of animals have been handmade-cloned
to produce offspring [5]. Therefore, handmade cloning plays an important role in the
production of genetically modified animals [6,7] and the conservation of rare species [8,9].

Currently, cloning technology still faces some challenges that must be addressed
before it can be widely implemented. One of the main obstacles is the issue of low cloning
efficiency. While the cloning efficiency of cattle can reach 1–20% [10,11], the overall cloning
efficiency of most species, including mice, is only 1–10% [12,13].

The efficiency of cloning is influenced by two main factors: the reprogramming ca-
pacity of the cytoplasm and the ease of reprogramming the donor chromatin. Several
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methods have been developed to improve cytoplasmic reprogramming, including over-
expression of KDM4D [14], overexpression of DUX [15], and modification of imprinted
genes [16,17]. And the main approach in the exploration of the ease of reprogramming
of donor nucleus chromatin is to find cell lines with shorter reprogramming pathways
and less difficult reprogramming. Umbilical cord mesenchymal stem cells (UC-MSCs) are
multipotent stem cells derived from the fetal umbilical cord. They have the advantages
of faster proliferation, shorter reprogramming pathway, and less difficulty in reprogram-
ming [18,19]. Previous studies have demonstrated that using UC-MSCs as donor nuclei in
bovine clones can increase the blastocyst rate compared to fibroblasts and can successfully
establish pregnancy [20]. However, the use of UC-MSCs as donor nuclei is still limited, and
the mechanism behind the enhanced blastocyst rate is not yet understood.

This study utilized a single-cell transcriptomic approach to map the transcriptome
profiles of eight-cell embryos that were in vitro-fertilized and handmade-cloned using UC-
MSCs and fibroblasts as nuclear donors. The study explored differences at the chromatin
level, the level of differentially expressed genes, the level of histone modifications, and the
level of DNA methylation. This research provides important information regarding the
use of UC-MSCs as a preferred donor nucleus for nuclear transfer techniques, and also
provides some unique clues for the study of cell reprogramming mechanisms.

2. Materials and Methods

Unless otherwise stated, all chemicals were purchased from Sigma Chemical Co.,
St. Louis, MO, USA. All plasticware used in this study was purchased from Corning
Incorporated, Corning, NY, USA.

2.1. In Vitro Maturation of Oocytes

The sheep ovaries were obtained from the slaughterhouse and returned to the labora-
tory within three hours. Follicles of 2–6 mm on the ovarian surface were extracted using a
10 mL syringe with a 1.2 mm diameter needle after cleaning. Under a stereoscope, COCs
with homogeneous cytoplasm and at least three layers of granulosa cells were selected and
placed into an IVM solution. The solution contained 1 IU/mL FSH, 1 IU/mL LH, 1 µg/mL
E2, 0.1 mmol/L L-cysteine, and 10% FBS dissolved in TCM-199. The COCs were cultured
for in vitro maturation at 38.5 ◦C in 5% CO2 and saturated humidity.

2.2. Preparation of Donor Cells

Sheep umbilical cord MSCs and sheep ear fibroblasts, obtained from 2-month-old
sheep, were thawed one to two weeks prior to the start of the experiment. They were then
cultured in DMEM/F12 medium containing 10% FBS. For cloning assays, trypsin digestion
was performed for three minutes and terminated by adding two times the volume of PBS
containing 2% FBS. The cells were then washed twice by centrifugation at 100× g for five
minutes. Subsequently, the cells were immersed in TCM-199 solution with 2% FBS (T2
solution) and left at room temperature.

2.3. De-Nucleation and Fusion

When oocytes matured for 20 h, those containing the first polar body were selected and
set aside after removing the granulosa cells using 1 mg/mL of hyaluronidase. Oocytes that
contained the first polar body were treated with T2 solution containing 1 mg/mL pronase.
Then, 1/3 of the cytoplasm on the first polar body side of the oocyte was cut off using a
cutting knife in T2 solution containing 2.5 µg/mL Cytochalasin B. The remaining 2/3 of the
cytoplasm was singled out and recovered in the T2 solution. Once all oocytes containing
the first polar body were cut, the fusion operation was carried out. A small number of
cells were aspirated and placed in T2 prior to fusion. At the start of the fusion process,
the cytoplasm was treated with a T2 solution containing 0.5 mg/mL phytohemagglutinin
for 3 to 5 s. Subsequently, smooth-shaped, medium-sized, and refractive somatic cells
adhered to form cytoplasmic–somatic–cytoplasmic pairs. The pairs were then transferred
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into the fusion solution, which consisted of 300 mmol/L mannitol and 1 mg/mL polyvinyl
alcohol dissolved in pure water. The pairs were neatly aligned on the electrodes at the
end of the 0.5 mm fusion groove using an alternating current of 0.114 kV/cm. The direct
current parameter of the fusion apparatus was set to 1.8 kV/cm, n = 1 for fusion operation.
Following fusion, the cytoplasmic–somatic–cytoplasmic pairs were immersed in T2 solution
for 1 h. Spherical reconstructed embryos, in which the somatic cells had been incorporated
into the oocyte cytoplasm and had a good morphology, were selected for activation after
all fusion operations had been completed.

2.4. In Vitro Fertilization of Oocytes

At 23 h of maturation, the oocytes were washed with an in vitro fertilization solution,
which was synthetic oviductal fluid containing 4 mg/mL BSA, 100 µg/mL heparin, and
1 mmol/L glutamine. Subsequently, they were transferred to a droplet of in vitro fertil-
ization solution to await fertilization. Spermatozoa were obtained from the epididymis
of slaughtered animals. The epididymis was cut to a size of 5 cm × 5 cm using scissors
and then immersed in the in vitro fertilization solution, followed by incubation at 38.5 ◦C
for 5 min to allow the spermatozoa to swim out. Only sperm with a density greater than
1 × 107 and a viability greater than 0.85 were used. The spermatozoa were centrifuged
twice at 100× g and then added to a drop of the in vitro fertilization solution containing
oocytes for in vitro fertilization. The fertilization process was carried out in embryos at
38.5 ◦C, 5% CO2, and saturated humidity conditions for 18 h.

2.5. Activation and In Vitro Culture

To activate the nuclear transfer embryos, the selected reconstituted embryos were
placed in a T2 solution containing 5 µmol/L ionomycin for 5 min. They were then trans-
ferred to a T2 solution containing 2 mmol/L 6-dimethylaminopurine for 3–5 h. For in vitro
culture, the embryos were cultured in a medium containing essential and non-essential
amino acids, 4 mg/mL BSA, and 1 mmol/L glutamine in synthetic oviductal fluid. The
culture was maintained at 38.5 ◦C and 5% CO2 under saturated humidity for 24 h to observe
the cleavage rate and for 7 days (168 h) to observe the blastocyst rate.

2.6. RNA Isolation, Library Preparation, and Sequencing

RNA was extracted from the 8-cell embryos fertilized and cloned using UC-MSC and
fibroblasts (the three groups were labelled IVF, DFUC and DFF, respectively), and embryos
were lysed using a single-cell lysis kit (Invitrogen, Carlsbad, CA, USA) according to the
manufacturer’s instructions. Subsequently, the 1st cDNA was obtained using a single-cell
reverse transcription kit (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s
manual and then amplified using PCR with the 1st cDNA as a template. The cDNA product
was purified using Ampure XP beads and its concentration was measured with a Qubit®

3.0 Fluorometer (Thermo, Waltham, MA, USA). The integrity and distribution of fragments
were assessed using an Agilent 2100 Bioanalyzer and an Agilent 2100 High Sensitivity
DNA Assay Kit (Agilent, Santa Clara, CA, USA). Library construction was performed by
taking 40 ng of product from each sample of satisfactory quality and breaking it into 350 bp
fragments using ultrasound. The fragments then underwent end repair, addition of base A,
addition of an adapter, and PCR amplification. Finally, Novaseq S2 (Illumina, San Diego,
CA, USA) was used for paired-end sequencing.

2.7. Quality Control and Mapping

The study obtained raw data and processed them using Fastp (v0.23.4) to remove the
adapter, reads containing excessive N, and reads with low average quality values. Q30 and
GC contents were then calculated for the clean data, which were used for all subsequent
analyses. HISAT2 (v2.2.1) was used to compare the clean reads for each sample to the sheep
reference genome (ARS-UI_Ramb_v3.0, 20 July 2023), and QuliMap (v2.2.2) was used to
calculate read distributions.
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2.8. Quantification and Differential Expression Analysis

Quantification was performed using the featureCounts function in the R package Rsub-
read (v2.14.2). The count values were then normalized to TPM values for subsequent anal-
ysis. Differential expression analysis was conducted using the R package DESeq2 (v1.42.0).
The screening criteria for differentially expressed genes were |log2 fold change| ≥ 1 and
p adjust ≤ 0.05.

2.9. KEGG, GO, and GSEA Enrichment Analyses

The DAVID website “https://david.ncifcrf.gov (accessed on 20 December 2023)”
was used to analyze KEGG and GO, followed by plotting using the R package ggplot2
(v3.4.4). Gene Set Enrichment Analysis (GSEA) was performed using the R package
clusterProfiler (v4.10.0). DEGs were considered significantly enriched at p < 0.05 for all
enrichment analyses.

2.10. Real-Time Quantitative PCR (RT-qPCR)

The cloned and in vitro-fertilized embryos underwent 1st cDNA synthesis using the
SuperScript™ IV CellsDirect™ cDNA Synthesis Kit (Invitrogen, Carlsbad, CA, USA) follow-
ing the manufacturer’s instructions. Briefly, 8-cell embryos were lysed using SuperScript™
IV CellsDirect™ Lysis Solution, Lysis Enhancer, and DNase I. Lysis was terminated by the
addition of SuperScript™ IV CellsDirect™ Stop Solution. SuperScript™ IV RT Master Mix
was used for 1st cDNA synthesis at 25 ◦C for 10 min, 50 ◦C for 10 min, and 85 ◦C for 5 min.
RT-qPCR was performed using Bio-Red CFX 96 at 95 ◦C for 15 min, followed by 40 cycles
of 95 ◦C for 10 s and 60 ◦C for 32 s. The relative expression was calculated using the 2−∆∆Ct

method, with β-actin serving as the internal reference gene (Table 1).

Table 1. Information on RT-qPCR primer.

Genes NCBI Accession Number Primer Sequence (5′-3′) Size (bp) Tm (◦C)

PCNA XM_004014340.5 F: GAGGGCTTCGACACTTACCG
R: TGCCAAGGTGTCCGCATTAT 138 60

POT1 XM_060415094.1 F: TGAAGTGGTTACGAGCAGTAAG
R: CAACCTGGCTGTAGGGATCT 175 58

RUNX2 XM_027959124.1 F: GAGCAGGCAAGTTCCAACAGG
R: ACGCAGTAGTAGACACCAGATTCC 140 58

LUM XM_012174076.3 F: CTTAGACAACAACAAGATTAGCAACATCC
R: GACTCCACTATCAGCCAGTTCATTATG 106 58

SOX9 XM_027974011.1 F: GCAGAAGGCAAGCAAAGGAGAC
R: AGGTGATGGTGTTAGTGAGAGGAC 143 58

PPARG NM_001100921.1 F: GCAGGAGCCCAGCAAAGAGG
R: GTCATTCAAGTCAAGGTTCACAAAGC 130 58

PES1 XM_042234838.2 F: TTCCGGGAGTACAAGGTGTT
R: ACGATGTGGTCGAGCTTGTA 116 59

DNASE1L1 XM_004022654.4 F: TACGTGTATCTCTACCGGTCAC
R: AACCAGCACACAAAAGGCTC 101 59

ACTB XM_060405599.1 F: CCCTGGAGAAGAGCTACGAG
R: GGTAGTTTCGTGAATGCCGC 131 59

2.11. Statistical Analysis

Statistical analyses were conducted using SPSS 26.0 software. t-tests were used for
the analyses, and significance was considered at p < 0.05. The symbol * indicates p < 0.05,
** indicates p < 0.01, and ns indicates p > 0.05.

3. Results
3.1. Transcriptome Profiles

The study consisted of three groups (DFF, DFUC, IVF), each with four replicates,
resulting in a total of 12 samples. The average number of reads per sample was 41.6 million.

https://david.ncifcrf.gov
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The unique mapping rates were all above 95%, while the multi-locus mapping rates ranged
from 4.9% to 6.7% (Table 2). The Q30 rates were all above 90%, and the clean read rates
were all above 95%. Additionally, the clean reads mapped to exon regions were all above
70% (Figure 1A,B,D).

Table 2. Statistical results of RNA-seq mapped.

Library Total Reads Mapped Reads Mapping Rate MultiMap Reads MultiMap Rate

DFF1 38,862,746 37,319,939 0.9655 1,917,676 0.0493
DFF2 40,358,892 39,113,777 0.9733 2,002,014 0.0496
DFF3 38,648,926 37,036,828 0.9648 1,915,352 0.0496
DFF4 49,298,014 47,440,125 0.9663 2,447,206 0.0496

DFUC1 40,024,928 38,664,225 0.9708 1,846,722 0.0461
DFUC2 41,473,274 40,099,748 0.9709 2,136,130 0.0515
DFUC3 43,030,326 41,303,712 0.9641 2,164,632 0.0503
DFUC4 42,487,408 40,218,212 0.9517 2,315,488 0.0545

IVF1 40,445,670 38,827,017 0.9653 2,693,004 0.0666
IVF2 39,362,696 37,653,823 0.9622 2,638,940 0.0670
IVF3 44,804,330 43,255,434 0.9697 2,202,814 0.0492
IVF4 40,421,886 39,202,553 0.9738 2,098,936 0.0519
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Figure 1. RNA-seq base quality and comparison statistics: (A) Q30 rate of base measured for each
sample. (B) Proportion of reads mapped to exon, intron, and intergenic regions. (C) Distribution of
TPM for each sample. (D) Filtering statistics for reads.

Pearson correlation analysis showed a correlation of over 95% between the samples.
PCA clustering indicated that the samples in the DFF, DFUC, and IVF groups could be
clustered together, respectively. However, when all the samples were mapped to PC1, the
DFF and IVF clusters were on opposite sides, while the DFUC cluster was in the middle and
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closer to the IVF cluster. This suggests that the UC-MSCs as donor nuclei could be closer to
the level of IVF (Figure 2B). A hierarchical cluster analysis was conducted, revealing that
the 12 samples were divided into two clusters. DFF was found to be alone in one cluster,
while DFUC and IVF were clustered together in the other. This suggests that DFUC and
IVF are more similar.
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The results show that the RNA-seq reads from all 12 samples had high rates of clean
reads, comparison, and Q30. Furthermore, the use of UC-MSCs as donor nuclei resulted in
RNA profiles that were closer to IVF than DFF.

3.2. Analysis of DFF, DFUC, and IVF Differentially Expressed Genes

Although the expression levels of most genes were similar in all samples (Figure 1C),
there were still differentially expressed genes in each group (Figure 3A–C). There were
1420 differentially expressed genes in DFF vs. DFUC and 2970 differentially expressed
genes in DFF vs. IVF, but surprisingly there were only 445 differentially expressed genes
in the DFUC vs. IVF groups (Figure 3D). The analysis using Upset plots revealed that
there were 133 genes unique to DFUC vs. IVF, but 1979 genes unique to DFF vs. IVF,
indicating that UC-MSCs were reprogrammed to a greater extent as donor nuclei and more
closely resembled IVF embryos compared to fibroblasts. Furthermore, the analysis identi-
fied 206 genes that overlapped with differentially expressed genes in DFUC vs. IVF and
DFF vs. IVF. Using GO enrichment analysis of 133 differentially expressed genes specific
to DFUC vs. IVF revealed that their functions were mainly enriched in in utero embryonic
development, the transforming growth factor-beta receptor signaling pathway, positive
regulation of histone H3-K9 acetylation, DNA methylation involved in gametogenesis, and
the Notch signaling pathway.
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Figure 3. Statistical analysis of differentially expressed genes: (A–C) Volcano plot of differentially ex-
pressed genes. (D) Statistical histogram of differentially expressed genes between samples. (E) Upset
plot of differentially expressed genes. (F) GO enrichment analysis of 133 specific differentially
expressed genes in DFUC vs. IVF.

The results indicate that although UC-MSCs as donor nuclei produced reconstructed
embryos that were closer to the level of IVF, 445 genes were still not successfully repro-
grammed, and 133 of these 445 genes were DFUC-specific genes that were not repro-
grammed. These 133 genes were found to be associated with the histone H3K9 locus, DNA
methylation, TGFβ, and Notch signaling pathways.

3.3. GO, KEGG, and GSEA Enrichment Analyses

GO enrichment analysis showed that DFF vs. DFUC differentially expressed genes
were mainly enriched in Biological Process (BP) terms including translation, negative
regulation of apoptotic process, cellular response to leukemia inhibitory factor, and positive
regulation of canonical Wnt pathway. The Cellular Component (CC) terms were mainly
enriched in the cytosol, cytoplasm, nucleoplasm, and mitochondrion. The Molecular
Function (MF) category is mainly enriched in zinc ion binding, structural constituents
of ribosomes, and actin binding (Figure 4A). Comparing DFUC and IVF, differentially
expressed genes in BP were mainly enriched in the transforming growth factor-beta receptor
signaling pathway, collagen fibril organization, visual perception, and the Notch signaling
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pathway, and differentially expressed genes in CC were mainly enriched in the cytoplasm,
extracellular region, extracellular space, and apical plasma membrane. The MF category
is primarily enriched in metal ion binding, SMAD binding, and phospholipase inhibitor
activity (Figure 4B). In the comparison between DFF and IVF, the differentially expressed
genes were mainly enriched in BP categories including translation, positive regulation of
gene expression, rRNA processing, and apoptotic process. The differentially expressed
genes in the CC categories were mainly enriched in the cytosol, nucleoplasm, cytoplasm,
nucleolus, and mitochondrion, and MF categories were mainly enriched in identical protein
binding, zinc ion binding, and structural component of ribosome (Figure 4C).
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The KEGG enrichment analysis revealed that DFF vs. DFUC was primarily enriched
in ribosome; coronavirus disease—COVID-19; Alzheimer’s disease; and Parkinson’s dis-
ease. Meanwhile, DFF vs. IVF was mainly enriched in coronavirus disease—COVID-19;
ribosome; Alzheimer’s disease; and amyotrophic lateral sclerosis. Lastly, DFUC vs. IVF
was mainly enriched in MicroRNAs in cancer, diabetic cardiomyopathy, and gastric cancer
(Figure 5).

The GSEA enrichment analysis showed that the chemokine, MAPK, and Rap1 signal-
ing pathways were highly expressed in DFF vs. DFUC. In contrast, the ribosome biogenesis
in eukaryotes, oxidative phosphorylation, and ribosome-related pathways were expressed
at a low level. In the comparison between DFF and IVF, the calcium signaling pathway,
MAPK signaling pathway, and Rap1 signaling pathway were highly expressed, while
the oxidative phosphorylation, ribosome biogenesis in eukaryotes, and ribosome-related
pathways were expressed at a low level. Lastly, a low expression of ribosomes can be
found in DFUC vs. IVF. In addition to the pathways mentioned above, the GSEA results
indicate that the use of fibroblasts as a donor nucleus results in abnormalities in several
disease pathways, including Alzheimer’s disease and inflammatory bowel disease, when
compared to UC-MSCs as a donor nucleus (Figure 6). In combination with previous GO
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and KEGG enrichment analyses, it is evident that DFUC vs. IVF, DFUC vs. DFUC, and
DFUC vs. IVF all exhibit abnormalities in the ribosome or oxidative phosphorylation path-
ways. By plotting the results of GSEA enrichment analysis of individual pathways, it is
evident that the ribosome pathway is suppressed during the development of SCNT. This
is indicated by the concentration of most genes of DFUC vs. IVF, DFF vs. DFUC, and
DFF vs. IVF at the ribosome pathway in the low-expression region (Figure 7A–C). In the ox-
idative phosphorylation pathway, gene aggregation is present in the low expression region
of DFF vs. DFUC and DFF vs. IVF, but there is no obvious aggregation of DFUC vs. IVF
genes (Figure 7D–F).
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Figure 7. GSEA enrichment analysis results: (A–C) indicate GSEA enrichment analysis results
of the ribosome pathway for DFF vs. DFUC, DFUC vs. IVF, and DFF vs. IVF. (D–F) indicate
GSEA enrichment analysis results of the oxidative phosphorylation pathway for DFF vs. DFUC,
DFUC vs. IVF, and DFF vs. IVF.

The results show that the ribosome pathway is expressed at a low level regardless of
whether UC-MSCs or fibroblasts are used as donor nuclei. However, using UC-MSCs as
donor nuclei was successful in rescuing and restoring the normal level of the oxidative
phosphorylation pathway. Additionally, using UC-MSCs as donor nuclei reduced or
even rescued the aberrant expression occurring in many disease pathways compared
to fibroblasts.

3.4. Heatmap and Protein Interaction Network Analysis (PPI)

The heatmap of the up- and down-regulated differentially expressed genes showed
that UC-MSCs, as donor nuclei, were able to rescue 69.7% of the reprogrammed aberrant
genes (Group 1 and Group 4). However, 30.3% of the genes were not rescued (Group 2
and Group 3). Of the unrescued genes, 16.9% were abnormally reprogrammed down-
regulated genes (Group 2), and 13.3% were abnormally reprogrammed up-regulated genes
(Group 3) (Figure 8A). The GO enrichment analysis showed that the genes in Group 1 of
the rescued region were mainly enriched in some biological processes, including ribosome
biogenesis, cytoplasmic translation, translational initiation, and protein targeting to the
endoplasmic reticulum. Meanwhile, the genes in Group 4 were primarily enriched for
developmental processes related to the urogenital and renal systems, as well as limb and
kidney development. The down-regulated genes in Group 2, which were aberrantly repro-
grammed in the unrescued regions, were mainly enriched in biological processes such as
the rRNA metabolic process, meiotic sister chromatid cohesion, homologous chromosome
segregation, and meiotic sister chromatid segregation. On the other hand, Group 3 was
enriched in up-regulated genes that were aberrantly reprogrammed, specifically those
involved in intracellular sterol transport, secondary metabolic processes, and intracellular
lipid transport (Figure 8B). Furthermore, we conducted a PPI network analysis to identify
six HUB genes that are related to ribosome and RNA metabolism. These genes, namely
DDX55, EXOSC10, KRR1, MRPL4, PES1, and RPS13, were found among the abnormally
reprogrammed up- and down-regulated genes (Figure 8C).
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The results indicate that UC-MSCs can be used as donor nuclei to successfully repro-
gram 69.7% of genes. However, 30.3% of the genes could not be rescued, and these genes
were mainly related to intracellular ribosome metabolism, chromosome segregation, and
macromolecule metabolism. Abnormal reprogramming regions were mainly related to
ribosome and RNA metabolisms, as revealed by the PPI network analysis.

3.5. Chromosome-Level Differential Expression Analysis

Sheep have 27 pairs of chromosomes, consisting of 26 autosomes and 1 sex chromo-
some. The nuclear transfer technique takes all the chromosomes from the donor nucleus,
which means that the level of reprogramming at the chromatin level of the donor nucleus
has a major influence on the development of the nuclear transfer embryo. When comparing
the expression levels of DFUC vs. IVF and DFUC vs. IVF at the chromosome level, it is
evident that the average expression level of DFUC vs. IVF on autosomes did not undergo
a significant skew. However, there was a significant decrease in the expression levels of
DFUC vs. IVF on the X chromosome and MT gene, while there was a significant increase in
expression levels on the Y chromosome (Figure 9A). The comparison between DFF vs. IVF
revealed varying degrees of skewed expression in both autosomes and sex chromosomes.
Chromosome 4 showed a significant up-regulation of expression, while the X chromo-
some and MT gene showed a considerable down-regulation of expression (Figure 9A). The
expression line plot of chromosome 4 indicates the presence of four distinct clusters of
abnormal expression (Figure 9C, As shown by the arrow). The analysis of the genome
browser showed that the four clusters of abnormal expression were primarily caused by six
genes. Box plots of the expression of these six genes indicated that, compared to IVF, TFPI2
was significantly overexpressed in both donor nuclei (p < 0.05), while PTN was significantly
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overexpressed in UC-MSCs as donor nuclei (p < 0.05). LOC10119425 and LOC105614569
were found to be significantly underexpressed in both donor nuclei (p < 0.05) (Figure 9D).
Furthermore, the fold plot of X chromosome expression indicates a significant decrease in
expression levels in both donor nuclei (Figure 9B).
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Figure 9. Chromosome-level differential expression analysis: (A) Graph indicating the expression
level points of each chromosome. (B) Graph of the expression level lines of chromosome X. (C) Graph
of the expression level lines of chromosome 4. (D) Graph of the major gene box patterns of the four
differentially expressed regions of chromosome 4. The symbol * indicates p < 0.05, and ns indicates
p > 0.05.

The results indicate that UC-MSCs can perform sufficient levels of reprogramming
and normalize the expression levels of most genes compared to fibroblasts in terms of
autosomal expression levels. However, neither of the two donor nuclei could perform
sufficient reprogramming in the sex chromosomes and MT genes.

3.6. Analysis of Histone Methylation and Acetylation and DNA Methylation Gene Expression
Patterns and Validation of Transcriptome Validity Using RT-qPCR

The Venn diagram revealed 133 genes that were non-reprogrammed by UC-MSCs
as donor-nucleus-specific and were associated with the H3K9 locus and DNA methyla-
tion (Figure 3E). Subsequently, we investigated whether other genes related to histone
modification also exhibited abnormal reprogramming. The results showed that many
lysine methylation writers, lysine methylation erasers, DNA methylation writers, and
DNA methylation erasers of the reconstructed embryos obtained with fibroblasts as the
donor nucleus showed abnormal reprogramming (Figure 10). However, many enzyme
activities were successfully restored by using UC-MSCs as donor nuclei. Despite this,
aberrantly expressed genes such as SUV39H1, KMT5A, EZH2, KDM5C, and KDM6A were
still present. In other words, the H3K27, H3K4, H3K9, and H4K20 loci remained abnormal,
as shown in Figure 10A,B. Regarding DNA methylation, DNMT1 exhibited low expression
while TET1 exhibited high expression after using UC-MSCs as donor nuclei, indicating an
overall bias towards demethylation (Figure 10C). There was no significant difference in the
expression of either acetylases or deacetylases between the IVF group and the handmade
cloning group after using UC-MSCs as the nucleus donor (p > 0.05) in terms of histone
acetylation. However, a significant abnormality was observed in the expression of the
broad-spectrum deacetylase HDAC1 and the broad-spectrum acetylases KAT2B, KAT6A,
and EP300 after using fibroblasts as the nucleus donor (p < 0.05) (Figure 10D). Finally, eight
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genes were selected at random and the validity of the transcriptome data was verified
using RT-qPCR. The results indicated that the transcriptome data and RT-qPCR data were
consistent (Figure 11).

SETD2

SETDB1

JARID2

KMT2C

SETD1A

KMT5B

PRMT6

NSD3

KMT5C

KMT2B

EHMT2

SUV39H1

KMT5A

DOT1L

SMYD2

SETDB2

EZH2

SUV39H2

SMYD3

SETD7

NSD2

KMT2D

EHMT1
EZH1

PRDM2

KMT2A

KMT2E

ASH1L

NSD1

SETD1B

0

2

4

DFF IVF DFUC

Lo
g2

(N
or

m
al

iz
ed

 C
ou

nt
s+

1)

Lysine methylation Writer

KDM5B

PHF8

KDM6A

RIOX1

KDM1B

KDM3A

KDM4D

KDM2B

PHF2

KDM4A

KDM5C

KDM1A

KDM7A

KDM6B

KDM4C

KDM5A

KDM4B

KDM2A

KDM3B

KDM8

0

2

4

6

DFF IVF DFUC
Lo

g2
(N

or
m

al
iz

ed
 C

ou
nt

s+
1)

Lysine methylation Eraser

TET3

DNMT1

DNMT3A

TET2

TET1

DNMT3B

DNMT3L

2

4

6

DFF IVF DFUC

Lo
g2

(N
or

m
al

iz
ed

 C
ou

nt
s+

1)

DNA MethylationA B C

*

**

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

**

**

ns

**

**

ns

ns

ns

ns

ns

*

ns

*

ns

ns

**

*

ns
HDAC1 HDAC3 SIRT1 KAT2A KAT2B KAT6A CREBBP EP300 ELP3 OGA

DFF
DFUC

IVF
DFF

DFUC
IVF

DFF
DFUC

IVF
DFF

DFUC
IVF

DFF
DFUC

IVF
DFF

DFUC
IVF

DFF
DFUC

IVF
DFF

DFUC
IVF

DFF
DFUC

IVF
DFF

DFUC
IVF

0

50

100

150

200

TP
M

D

Figure 10. Analysis of histone methylation and acetylation with DNA methylation and demethylation
gene expression patterns: (A–C) Each indicates a graph of changes in the expression of lysine
methylase writer, lysine methylase eraser, and DNA methylation-related enzymes. (D) indicates box
plots of the expression of several major histone acetylases and deacetylases. The symbol * indicates
p < 0.05, ** indicates p < 0.01, and ns indicates p > 0.05.
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The results indicate that using UC-MSCs as donor nuclei can rescue many writers and
erasers in terms of lysine methylation modification. However, abnormalities still exist at the
H3K27, H3K4, H3K9, and H4K20 sites. Regarding DNA methylation, DNMT1 expression
was low, while TET1 expression was high, indicating a more favorable chromatin open
state for the ZGA process. Furthermore, the level of histone acetylation in UC-MSCs used
as the donor nucleus was closer to that of IVF.

4. Discussion

In recent years, most approaches to improving cloning efficiency have focused on
how to improve the cytoplasmic reprogramming ability during the ZGA period [10,11],
but there are few reports on exploring the difficulty of nucleus-donor reprogramming.
Preliminary experiments conducted in our laboratory have shown that the blastocyst rate
of nucleus-donor fibroblasts was approximately 20%. However, when using UC-MSCs as
nucleus donors, the blastocyst rate was able to reach 40–50% and successfully gestate the
recipient ewes. Lee et al. [21] discovered that using fetal fibroblasts as a nucleus donor
resulted in a 25.6% blastocyst rate in porcine clones, while using spermatogonial stem cells
as a nucleus donor resulted in a higher blastocyst rate of 47.8%. Similarly, Ps et al. [22,23]
achieved a blastocyst rate of 19% using fibroblasts as nucleus-donor blastocysts in Indian
buffalo clones, but were able to increase the rate to 29% by using amniotic fluid or amniotic
MSCs as the nucleus donor. However, the mechanism by which adult stem cells can
increase cloning efficiency remains unclear.

This study analyzed the transcriptome profiles of fibroblasts, UC-MSCs as nucleus
donor 8–16-cell cloned embryos, and in vitro-fertilized 8–16-cell embryos using a single-cell
transcriptome. PCA analysis showed that the samples clustered into three groups. The
cloned embryos with UC-MSCs as nucleus donors were positioned between the cloned em-
bryos with fibroblasts as nucleus donors and IVF embryos when mapped to PC1 (Figure 2B).
Hierarchical clustering indicated that the cloned embryos with UC-MSCs as nucleus donors
clustered with IVF (Figure 2C). Regarding differentially expressed genes, there were 2970
in the cloned embryos with fibroblasts as the nucleus donor compared to IVF, while only
445 were found in the cloned embryos with UC-MSCs as the nucleus donor compared to
IVF embryos (Figure 3A–C). Under the same conditions, the overall expression profiles of
cloned embryos with UC-MSCs as nuclei donors were more similar to those of IVF embryos.
On the other hand, UC-MSCs were found to be more easily reprogrammed compared to
fibroblasts. An analysis of the 445 differentially expressed genes between cloned embryos
with UC-MSCs as nuclei donors and IVF embryos revealed that 133 of them were specific
differentially expressed genes. These genes function mainly in the regulation of the H3K9
locus and DNA methylation, which is consistent with previous findings that found the
reprogramming blocking region to be enriched by H3K9me3 [14]. Furthermore, it has been
discovered that a high expression of the demethylase KDM4D/E of H3K9me3 significantly
improves cloning efficiency and birth rate in various animals [24–26]. It is yet to be deter-
mined whether the overall efficiency can be synergistically enhanced by using UC-MSCs as
nucleus donors followed by a high expression of KDM4D/E.

Next, KEGG, GO, and GSEA enrichment analyses were conducted. The results re-
vealed that cloned embryos with UC-MSCs as nucleus donors exhibited abnormalities
primarily in the TGFβ, Notch, and ribosome pathways compared to IVF embryos. Cloned
embryos using fibroblasts as nucleus donors had abnormalities mainly in the ribosome,
oxidative phosphorylation, and calcium compared to IVF embryos. Additionally, MAPK
and other related pathways were found to be abnormal. Placental abnormalities contribute
to the low efficiency and high miscarriage rate of the nuclear transfer technique. Previous
studies have shown that the TGFβ pathway is associated with placental abnormalities in
bovine nuclear transfer embryos [27]. It is yet to be determined whether TGFβ leads to pla-
cental abnormalities in sheep nuclear transfer. On the other hand, this study demonstrates
that the expression of Sirt1 in UC-MSCs as nucleus donor embryos was slightly higher
than that in IVF embryos (Figure 10D). Additionally, Sirt1 can act as an inhibitor of Notch
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on cell differentiation [28]. However, further investigation is required to determine the
specific function and mechanism of the Notch pathway in cloning and cell reprogramming
techniques. Oxidative phosphorylation primarily occurs within mitochondria. Mitochon-
drial abnormalities have been observed in bovine, sheep, and porcine embryos produced
by nuclear transplantation [29–32]. However, the use of UC-MSCs as donor nuclei may
partially rescue the abnormality of oxidative phosphorylation (Figure 7E,F). The exact
mechanism requires further research.

Heatmapping of the differentially expressed genes showed that the use of UC-MSCs as
donor nuclei rescued approximately 70% of the reprogrammed abnormal genes compared
to fibroblasts as donor nuclei (Figure 8A). The analysis revealed that these genes were
primarily associated with translation and organ development. This suggests that using UC-
MSCs as donor nuclei may be more advantageous for fetal development after pregnancy.
However, it remains to be seen whether UC-MSCs as donor nuclei can achieve a higher
clone birth rate, which requires further verification over a longer period. While UC-MSCs
can rescue most of the reprogrammed abnormal genes when used as donor nuclei, there
remains a 30% portion of genes that cannot be rescued. This subset of genes is primarily
associated with chromosome segregation and intracellular macromolecular substance
metabolism. Chromosome segregation and centromere abnormalities are common issues
in cloning technology [33–35], and further exploration is needed to overcome or optimize
them in sheep cloning. The analysis of genes related to reprogramming failure (Group 2–3)
using a PPI network revealed six HUB genes: DDX55, EXOSC10, KRR1, MRPL4, PES1,
and RPS13. All these genes are related to ribosome and RNA metabolism. Incomplete
reprogramming of rDNA after somatic cell nuclear transplantation has been observed in
mice. The activity of rDNA after nuclear transplantation is regulated by the activity of
rDNA in the donor cells before nuclear transplantation [36]. It has also been suggested that
transient inhibition of rDNA in donor cells benefits the development of nuclear transplanted
embryos [37]. It remains to be determined whether this approach can effectively address
ribosomal pathway disorders in UC-MSCs when used as donor cells in sheep cloning.

The next analysis focused on chromosome-level expression. The results indicate that
there was no skewing of chromosome-level expression on autosomes when UC-MSCs were
used as donor nuclei. However, when fibroblasts were used as donor nuclei relative to
IVF, most autosomes, particularly chromosome 4, showed skewed expression (Figure 9A).
Additionally, both donor nuclei showed a down-regulation of chromosome-scale expres-
sion on the X chromosome. Previous studies have shown that abnormal X-chromosome
reprogramming occurs in bovine [38], mouse [39], porcine [40], and buffalo [41] embryos.
This is mainly caused by a disruption of Xist expression. However, it is still necessary to
investigate whether Xist is responsible for X-chromosome expression disruption in sheep.
Finally, the analysis of enzymes related to histone lysine methylation and DNA methylation
revealed that although UC-MSCs could rescue most of the histone abnormalities, some
abnormalities still existed in the H3K27, H3K4, H3K9, and H4K20 loci.

5. Conclusions

The RNA profiles of in vitro-fertilized eight-cell embryos and handmade-cloned sheep
eight-cell embryos with umbilical cord mesenchymal stem cells and fibroblasts as donor
nuclei were mapped and compared at the chromatin level, the level of differentially ex-
pressed genes, the level of histone modifications, and the level of DNA methylation. The
results showed that the RNA profile of umbilical cord MSCs as donor nuclei was very
similar to that of IVF embryos compared to fibroblasts as donor nuclei. However, the
ribosomal pathway and histone loci H3K27, H3K4, H3K9, and H4K20 remained abnormal.
This single-cell profile provides important information for using UC-MSCs as a preferred
donor nucleus for nuclear transfer techniques, and also provides some unique clues for
studying cell reprogramming mechanisms.
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