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Simple Summary: Yaks are a major economic source for people in the Tibetan Plateau region. Yaks
are rich in nutrients, but their low fat content is not conducive to the large-scale promotion of yak
meat, so the study of the mechanism of yak lipid deposition is beneficial to the marketing of yak
meat. In this paper, the results of transcriptome sequencing analysis of yak liver showed that it
could be determined that the expression levels of genes associated with partial lipid deposition were
significantly up-regulated during yak fattening. In addition, this study found that the tenderness of
yak meat improved during this process. Fattening significantly affects fat deposition in yaks, which
may be realized through its effects on lipid metabolic pathways. Therefore, studying the mechanism
of lipid deposition in yaks and fattening yaks will improve the quality of yak meat.

Abstract: Yak meat is nutritionally superior to beef cattle but has a low fat content and is slow-
growing. The liver plays a crucial role in lipid metabolism, and in order to determine whether
different feeding modes affect lipid metabolism in yaks and how it is regulated, we employed RNA
sequencing (RNA-seq) technology to analyze the genome-wide differential gene expression in the
liver of yaks maintained under different raising systems. A total of 1663 differentially expressed
genes (DEGs) were identified (|log2FC| ≥ 0 and p-value ≤ 0.05), including 698 down-regulated
and 965 up-regulated genes. According to gene ontology (GO) and KEGG enrichment analyses,
these DEGs were significantly enriched in 13 GO terms and 26 pathways (p < 0.05). Some DEGs
were enriched in fatty acid degradation, PPAR, PI3K-Akt, and ECM receptor pathways, which are
associated with lipid metabolism. A total of 16 genes are well known to be related to lipid metabolism
(e.g., APOA1, FABP1, EHHADH, FADS2, SLC27A5, ACADM, CPT1B, ACOX2, HMGCS2, PLIN5,
ACAA1, IGF1, FGFR4, ALDH9A1, ECHS1, LAMA2). A total of 11 of the above genes were significantly
enriched in the PPAR signaling pathway. The reliability of the transcriptomic data was verified using
qRT-PCR. Our findings provide new insights into the mechanisms regulating yak meat quality. It
shows that fattening improves the expression of genes that regulate lipid deposition in yaks and
enhances meat quality. This finding will contribute to a better understanding of the various factors
that determine yak meat quality and help develop strategies to improve yield and quality.
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1. Introduction

Yaks are a unique domestic animal on the Qinghai-Tibet Plateau [1,2]. They provide
the locals with essential living materials as well as an important source of economic
activity [3,4]. Yak meat is delicious, high in protein, low in fat, and rich in a variety of
vitamins and minerals [5]. However, the meat quality of yak is affected by factors such as
rearing methods and living conditions, which result in poor tenderness and a rough taste.
This poses a challenge to the overall quality of yak meat and hinders the development of
the yak meat industry in the Tibetan Plateau region. The yak is fed primarily by natural
grazing, but the climate in the plateau region is harsh and cold, and they experience a cold
season for more than six months in a year [6]. During that time, the grassland is low in
nutrients, and seasonal changes have altered its nutrient balance [7]. With the change of
seasons, the body condition of yaks also displays a vicious cycle of “strong in summer, fat
in autumn, thin in winter, and weak in spring”. As a result, the growth and development
rate of the yak are also affected. Yaks can be compensated for growth in the warm season
when fattening can increase lipid deposition in yaks, improve production performance
and meat quality, and restore muscle and other tissues and organs to the best possible
condition [8]. Feeding also improves the quality of cattle meat by increasing fat content
and tenderness while significantly reducing moisture content. These benefits have been
observed in previous studies. Supplemental feeding can effectively increase the content of
intramuscular fat [9,10], adjust the tenderness of meat, and provide a new way to improve
the quality of yak meat [11–13].

The quantity of intramuscular fat (IMF) and the properties of muscle fiber are major
determinants of meat quality. IMF content is positively correlated with sensory quality
traits such as tenderness, juiciness, and flavor. Several tissues and organs in livestock are
closely associated with lipid metabolism, such as the liver, small intestine, and adipose
tissue [6]. Along with skeletal muscle and adipose tissue, the liver plays an important role in
mammalian lipid metabolism and other processes [14]. It is the central organ of absorption,
oxidation, and metabolic transformation of nonesterified fatty acids. In addition, it has
enzyme activity for de novo adipogenesis, cytoplasmic storage of triacylglycerol, and the
synthesis of fatty acids from glucose and other nonlipid precursors. Lipid metabolism
affects not only fat synthesis but also immune function [15]. The liver also participates in the
endocrine growth pathway and supplies energy for biological processes, thereby impacting
the growth and development of the body [16]. Transcriptome sequencing has emerged as a
powerful tool for identifying functional genes involved in lipid metabolism in livestock and
poultry livers. Numerous research studies have been conducted in this area, contributing
to a better understanding of the molecular mechanisms underlying lipid metabolism in
these animals. Asep Gunawan et al. [17] identified a possible candidate gene that controls
the composition and metabolism of the sheep liver through transcriptomics analysis of
unsaturated fatty acids (FA). Huang et al. [18] compared the liver transcriptome of Jinhua
pigs and landrace pigs and found that some differentially expressed genes were involved
in the processes of redox, lipid synthesis, and metabolism. Liu et al. [19] conducted a
study to investigate the genetic regulatory networks responsible for liver lipid deposition
and Aflatoxin B1 (AGB1)-induced hepatocyte apoptosis in chickens. They found that lipid
deposition in chicken liver is primarily regulated through the PPAR signaling pathway,
fatty acid degradation, and fatty acid metabolism, which are involved in lipid metabolism.

In the present study, we used RNA-seq analysis to identify genes and functional
pathways related to lipid metabolism in the liver of yaks under different raising systems.
These results could provide valuable information on the mechanisms behind liver lipid
metabolism and improved beef quality in yak.
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2. Materials and Methods
2.1. Ethical Statement

All experiments involving animals were authorized by the Lanzhou Institute of Hus-
bandry and Pharmaceutical Sciences of the Chinese Academy of Agricultural Sciences
(CAAS); the permit number is No. SYXK-2014-0002.

2.2. Animals and Tissue Collection

Twenty healthy male yaks aged four with similar body weight (229.75 ± 28.79 kg)
were selected from Datong County, Qinghai Province, and randomly divided into two
groups of 10 yaks apiece. The grazing group (group C) was fed free-choice grazing without
supplemental feed. The fattening group (group T) was fed a total mixed ration (TMR) that
was compounded according to the total energy required for a daily gain of 400 g for 200 kg
of beef cattle (composition of TMR; see Supplementary Table S1). The study lasted 160 days
and began in May, with the first 10 days being predation. Each yak was dewormed before
the test and weighed every 30 days before feeding in the fattening group and grazing in
the grazing group (see Supplementary Table S2 and Figures S1 and S2). In both groups,
the experimental animals underwent 24 h of fasting and an 8-h water deprivation phase
following the conclusion of the test period. Three healthy (no apparent physiological
abnormalities and no signs of disease) yaks were slaughtered from each of the grazing
groups and fattening groups, and their livers were isolated and extracted as test samples
(total of 6) for transcriptome sequencing. The liver tissue was sectioned into small pieces
and rapidly frozen in liquid nitrogen.

2.3. RNA Extraction, Library Preparation, and Sequencing

Total RNA was extracted using a Trizol reagent (Transgen Biotech, Beijing, China).
Thermo Scientific NanoDrop 2000c (ThermoFisher Scientific Inc., Waltham, MA, USA) was
used to determine the concentration and purity of the extracted RNA. The integrity of the
RNA was detected by 1% agarose gel electrophoresis. The total amount of RNA should
be ≥1 µg, the concentration ≥ 50 ng/µL, and the value of OD 260/OD 280 should be
between 1.8 and 2.2 [20]. An oligomer magnetic bead (dT) approach was used to enrich
Poly A mRNA from total RNA (6 samples) [21,22]. A cDNA library was constructed by
synthesizing cDNA from random hexamers, purifying cDNA, and amplifying it by PCR.
A NEBNext® Ultra RNA Library Prep Kit for Illumina was used to perform RNA-seq
library preparation and, after library inspection, qualified. Finally, paired-end sequencing
of different libraries was accomplished using Illumina sequencing.

2.4. Data Quality Control and Reference Genome Comparison

Illumina high-throughput sequencing results were preprocessed to produce clean
reads and ensure data reliability. To determine which genes were transcribed by the
sequenced fragments, HISAT2 was used to map clean reads to the reference genome
(BosGru_v2.0) [23]. The gene expression analysis was calculated by counting the unique
matches between reads.

2.5. Screening of DEGs

A normalization of the FPKM (expected number of fragments per kilobase of transcript
sequence per million base pairs sequenced) into matched reads was performed by Cufflinks.
With feature counts in subread, genomic expression levels are analyzed individually for
each sample. Different samples were analyzed using DESeq2 (v 1.16.1), and DEGs genes
were identified as significant genes with |log2FC| ≥ 0 and p-value ≤ 0.05.

2.6. GO and KEGG Enrichment Analysis

ClusterProfiler software (v 3.4.4) was used to determine the functional categories and
biological functions of differential genes based on the Gene Ontology (GO) functional
enrichment analysis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
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enrichment analysis. The enrichment analysis was based on the hypergeometric distribu-
tion principle. DEGs were enriched for the GO and KEGG pathways, with a threshold of
p < 0.05 for significant enrichment.

2.7. Validation of Candidate Gene Results by PT-qPCR

Eight genes were randomly selected for RT-qPCR to verify the accuracy of the tran-
scriptome sequencing data. RT-qPCR was conducted on the same RNA samples that were
used for RNA-seq. The experimental primer pairs are listed in Supplementary Table S3.
The reaction system was 20 µL. The procedure involved 45 cycles of pre-denaturation at
95 ◦C for 3 min; denaturation at 95 ◦C for 10 s, annealing at 60 ◦C for 10 s, and 72 ◦C for
10 s. There were triplicates in all experiments. The 2−∆∆CT method was used to analyze the
changes in relative gene expression.

3. Results
3.1. Analysis of Transcriptome Sequencing Quality

A total of 27.97 million original reads were obtained. After removing connectors, N-
containing reads, and low-quality reads, the clean reads obtained in each group exceeded
6.46 G. The qualifying rates were 94.96%, 95.06%, 95.21%, 93.53%, 94.72%, and 95.09%,
respectively, all above 90%. The Q30 values ranged from 93.53% to 95.21%, meeting the
requirement of more than 90% for the Q30 sequence, and the GC content of six samples
ranged from 49.27% to 50.57%. The reads were of good quality and could be further
analyzed. The basic statistics of liver RNA-seq reads in the fattening and grazing groups
are shown in Appendix A (see Appendix A Table A1).

Using HISAT2 software (v 2.0.5), clean reads from the sample were quickly and accu-
rately mapped to the reference yak genome (BosGru_v2.0), and the mapping ratio ranged
from 88.99% to 94.54%. The results of the comparisons are shown in Table 1. Reference
genomes are counted in different regions (exons, introns, and intergenic regions). Gener-
ally, the longer the chromosome, the more reads can be distributed to that chromosome.
According to the comparison of the six samples, the exon region had the highest percentage
of reads (above 83%), while a small number of reads were in the intron region and the
intergenic region (about 6% and 8%, respectively); the distribution of data is normal, which
indicates good sequencing data quality. A few read-matching introns may be derived from
retained introns. In contrast, those matching intergenic groups may result from contami-
nation with DNA or ncRNA fragments, and an inadequate annotation of genes may also
cause the problem.

Table 1. The results compared to the reference genome.

Sample Total Reads Total Mapped Unique Mapped Multi Mapped Positive_Map Negative_Map

C1 46,643,568 41,508,351 (88.99%) 40,274,319 (86.34%) 1,234,032 (2.65%) 20,142,574 (43.18%) 20,131,745 (43.16%)
C2 45,183,264 42,522,445 (94.11%) 41,259,349 (91.32%) 1,263,096 (2.8%) 20,628,309 (45.65%) 20,631,040 (45.66%)
C3 44,915,026 42,314,469 (94.21%) 41,022,378 (91.33%) 1,292,091 (2.88%) 20,506,370 (45.66%) 20,516,008 (45.68%)
T1 46,353,528 43,821,417 (94.54%) 42,505,095 (91.7%) 1,316,322 (2.84%) 21,234,481 (45.81%) 21,270,614 (45.89%)
T2 43,810,052 41,220,856 (94.09%) 39,888,411 (91.05%) 1,332,445 (3.04%) 19,909,588 (45.45%) 19,978,823 (45.6%)
T3 43,082,038 40,613,909 (94.27%) 39,399,963 (91.45%) 1,213,946 (2.82%) 19,691,779 (45.71%) 19,708,184 (45.75%)

3.2. Analysis of the Level of Gene Expression

The expression levels of the sample genes were depicted using box-and-line plots (see
Supplementary Figure S3), which show that the dispersion is low, the reproducibility is
good, and the overall expression is good. From the FPKM density distribution graph (see
Supplementary Figure S4), it can be seen that the density distribution curves of the samples
in each group are more consistent, and the combination of the two graphs can indicate
that the samples have good expression levels. When comparing the FPKM values of six
samples, overall gene expression levels were similar (see Appendix A Table A2).

As shown in the correlation heatmap (see Supplementary Figure S5), clustering the
different replicate samples in each group, in each group of replicate samples, the Pear-
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son correlation coefficient squared (R2) is greater than 0.88, close to 1. This indicates a
high level of biological replication and a high level of similarity in the expression pat-
tern between the samples. The principal component analysis (PCA) plot shows (see
Supplementary Figure S6) that the samples were scattered between groups and clustered
within groups, indicating that the samples in this experiment were reasonably selected and
the samples were reproducible.

3.3. Statistics and Cluster Analysis of Differentially Expressed Genes

DESeq2 software (v 1.16.1) was used to analyze differential transcription between
the two combinations based on the good repeatability of biological samples. According
to the differential screening conditions (|log2FC| ≥ 0 and p-value ≤ 0.05), 1663 differen-
tially expressed genes were identified after comparison with the database. Among them,
965 differentially expressed genes were up-regulated, while 698 differentially expressed
genes were down-regulated in the control group. On the volcano map (Figure 1a), the
overall distribution of differential genes as well as the distribution of differential genes in
each comparison pair are shown. All differential genes from the test groups were collected
as differential gene sets; FPKM values were used in the cluster analysis to better understand
the gene expression patterns of the grazing group and the fattening group. The results of
the cluster analysis in the figure show that the genes differentially expressed in the grazing
and fattening groups were grouped into one class each, those genes with up-regulated
expression were grouped into one class, and those with down-regulated expression were
grouped into one class (Figure 1b).

1 

 

   

(a)  (b) 

Figure 1. Statistics of differentially expressed genes in the grazing group 

and  the  fattening  group:  (a)  Volcano map  of  the  number  of  differentially 

expressed genes. (b) Cluster analysis of the number of differentially expressed 

genes. 

   

Figure 1. Statistics of differentially expressed genes in the grazing group and the fattening group:
(a) Volcano map of the number of differentially expressed genes. (b) Cluster analysis of the number
of differentially expressed genes.

3.4. GO Functional Enrichment Analysis

This study used ClusterProfiler software (v 3.4.4) to annotate the functions of signifi-
cantly differentially expressed genes, with p less than 0.05 as the threshold for significant
enrichment. The selected DEGs were enriched to 768 GO terms and significantly enriched
to 13 GO terms. It contains 10 molecular function classes, 2 cellular component classes,
and 1 biological process class (see Supplementary Table S4). The top 10 terms with the
highest significance were plotted from each functional classification as a graph (Figure 2a).
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The up-regulated genes are significantly enriched in the oxidation-reduction process, the
extracellular region, calcium ion binding, oxidoreductase activity acting on paired donors,
with the incorporation or reduction of molecular oxygen, etc. (Figure 2b). Down-regulated
genes are significantly enriched in the oxidation reduction process, cofactor binding, oxi-
doreductase activity, iron ion binding, etc. (Figure 2c).
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(c)   

Figure 2. GO  item  enrichment  analysis:  (a)  Scatterplot  diagram  of 

differentially  expressed gene GO  enrichment  analysis;  (b)  scatterplot of GO 

enrichment  analysis  of  up-regulated  differentially  expressed  genes;  (c) 

scatterplot  of  GO  enrichment  analysis  of  down-regulated  differentially 

expressed genes. 

   

Figure 2. GO item enrichment analysis: (a) Scatterplot diagram of differentially expressed gene GO en-
richment analysis; (b) scatterplot of GO enrichment analysis of up-regulated differentially expressed
genes; (c) scatterplot of GO enrichment analysis of down-regulated differentially expressed genes.

3.5. KEGG Pathway Enrichment Analysis

The analysis of the KEGG pathway shows that DEGs were significantly enriched in
26 pathways, including chemical carcinogenesis, retinol metabolism, and ECM-receptor
interaction (Figure 3). Among them, fatty acid degradation, the PPAR signaling pathway,
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the ECM-receptor interaction, and the PI3K-Art signaling pathway are closely related to
lipid metabolism (Figures 4 and 5). Sixteen lipid-metabolism-related DEGs were identified
in the livers of the fattening group and the grazing group; among these genes, 4 genes
were up-regulated and 12 genes were down-regulated (see Supplementary Table S5). These
16 genes were mainly enriched in the four pathways mentioned above. 

3 

 

   
Figure 3. Scatterplot diagram of KEGG enrichment analysis of differentially expressed genes.
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3.6. Validation of Candidate Gene Analysis Results by RT-qPCR

In order to further validate the result of RNA-seq, eight genes (LAMA2, IGF1, APOA1,
FABP1, SLC27A5, CPT1B, HMGCS2, and PLIN5) were chosen to detect expression in the
liver by RT-qPCR. As shown in Figure 6, LAMA2, IGF1, APOA1, and FABP1 were up-
regulated, and SLC27A5, CPT1B, HMGCS2, and PLIN5 were down-regulated in the livers
of fattening yaks, which is consistent with RNA-seq results.



Animals 2024, 14, 695 9 of 16

Animals 2024, 14, x FOR PEER REVIEW  7  of  13 
 

 

 
 

(a)  (b) 

 
 

(c) (d) 

Figure 5. Significant enrichment pathway of differentially expressed genes: (a) PI3K-Akt signaling 

pathway;  (b)  ECM-receptor  signaling  pathway;  (c)  PPAR  signaling  pathway;  (d)  fatty  acid 

degradation pathway. 

3.6. Validation of Candidate Gene Analysis Results by RT‐qPCR 

In order to further validate the result of RNA-seq, eight genes (LAMA2, IGF1, APOA1, 

FABP1, SLC27A5, CPT1B, HMGCS2, and PLIN5) were chosen to detect expression in the 

liver by RT-qPCR. As shown  in Figure 6, LAMA2,  IGF1, APOA1, and FABP1 were up- 

regulated, and SLC27A5, CPT1B, HMGCS2, and PLIN5 were down-regulated in the livers 

of fattening yaks, which is consistent with RNA-seq results. 

 

Figure 6. Validation of RNA-Seq results via RT-qPCR. 

4. Discussion 

Figure 5. Significant enrichment pathway of differentially expressed genes: (a) PI3K-Akt signaling
pathway; (b) ECM-receptor signaling pathway; (c) PPAR signaling pathway; (d) fatty acid degrada-
tion pathway.

 

6 

 

Figure 6. Validation of RNA-Seq results via RT-qPCR. 

 

Figure 6. Validation of RNA-Seq results via RT-qPCR.



Animals 2024, 14, 695 10 of 16

4. Discussion

The liver is the main site of metabolism and plays an important role in fat metabolism.
In this study, the comparison of RNA-seq techniques revealed 1663 differentially expressed
genes (DEGs) in yaks under two different feeding methods, of which 698 genes were
down-regulated and 965 genes were up-regulated. The reliability of the transcriptomic
data was verified using qRT-PCR. By GO and KEGG enrichment analysis of DEGs, adipose
metabolism-related genes were screened (APOA1, FABP1, EHHADH, FADS2, SLC27A5,
ACADM, CPT1B, ACOX2, HMGCS2, PLIN5, ACAA1, IGF1, FGFR4, ALDH9A1, ECHS1,
LAMA2). The above genes are mainly involved in fatty acid degradation, lipid metabolism,
etc. The differences in feeding conditions could make the lipid metabolism of yaks different.
Combined with the changes in meat quality, fattening can improve the expression of the
genes regulating lipid deposition in yaks and enhance meat quality.

DEGs detected in the livers of yaks between the fattening group and the grazing group
in this study were enriched in many pathways related to lipid metabolism, such as ECM-
receptor interaction, the PPAR signaling pathway, fatty acid degradation, and the PI3K-Akt
signaling pathway, which regulate the yak lipid metabolism process together. Among them,
there is a close correlation between the PPAR signaling pathway and fatty acid degradation.
The correlation between the PPAR signaling pathway and fatty acid degradation is mainly
manifested in the role of PPARs in the regulation of lipid metabolism and adipocyte
differentiation. Huang et al. [24] and Huang et al. [18], respectively, confirmed that key
genes related to lipid metabolism and lipid generation in the liver tissues of cattle or pigs
are enriched in the PPAR signaling pathway. A total of 11 of the 16 genes associated
with lipid metabolism screened in this assay were significantly enriched in the PPAR
signaling pathway. The PPAR signaling pathway is a key pathway closely related to lipid
metabolism, lipid differentiation, and other functions [25]. The peroxisome proliferator-
activated receptor α (PPARα) is closely related to the Perilipin 5 gene (PLIN5) and their
interaction in the regulation of lipid metabolism and deposition [26]. In combination with
CGI-58, the PLIN5 gene inhibits lipocatabolic processes mediated by adipose triglyceride
lipase (ATGL) [27]. As per the findings of Wang et al. [27], the liver lipid content would be
reduced when the PLIN5 gene was absent. Fatty acid desaturase 2 (FADS2), a member of
the fatty acid dehydrogenase family, is a key rate-limiting enzyme during polyunsaturated
fatty acid metabolism. It plays an important role in maintaining the correct structure of
the membrane and regulating fatty acid metabolism in vivo. Acetyl-CoA acyltransferase
1 (ACAA1) is an essential enzyme found downstream of the PPAR pathway. It serves as
a crucial component in the synthesis and transport of fatty acids, catalyzes the synthesis
of esterified cholesterol from free cholesterol and long-chain fatty acids, and plays an
important role in the fatty oxidation process [28]. In mammals, the peroxisome proliferator-
activated receptor (PPAR) controls the expression of CPT1 mRNA and protein to some
extent [29]. As an important isoenzyme of CPT1, the Carnitine Palmitoyltransferase 1B
gene (CPT1B) plays an important role in the regulation of fatty acid oxidation in vivo and
helps to control long-chain fatty acid transport into mitochondria and their metabolism,
thus affecting the content of fatty acids [30,31].

Cyl-CoA Dehydrogenase Medium Chain (ACADM) catalyzes the β-oxidation of
medium-chain fatty acids [32], and the deficiency of this gene can cause fatty acid metabolism
disorders and liver function abnormalities [33]. 3-Hydroxy-3-Methylglutaryl-CoA synthase
2 (HMGCS2) provides lipid-derived energy to hepatocytes, and up-regulated expression
of the HMGCS2 gene is associated with fatty acid oxidation induced by high-fat diets [34].
Apolipoprotein A1 (APOA1) is the major protein component of the plasma high-density
lipoprotein involved in the reverse transport of cholesterol to the liver through cholesterol
acyltransferase. Liu et al. [35] found that the APOA1 gene is related to the growth and
development of porcine fat and may be a candidate gene for regulating lipid deposition.
Therefore, it is speculated that this gene affects lipid deposition by regulating the liver. The
Fatty Acid Binding Protein 1 (FABP1) gene has a high binding capacity with long-chain fatty
acids and mainly regulates various lipid signals to encode and participate in lipid-mediated
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signaling pathways and metabolic homeostasis [36]. The FABP1 gene is a regulator of TAG
(triacylglycerol) and VLDL (very low density lipoprotein) in the liver [37]. Xiong et al. [38]
analyzed the effects of the FABP1 gene on the biological function of porcine intramuscular
adipocytes based on RNA-seq. They found the mechanism of the involvement of the FABP1
gene in the regulation of lipid deposition and lipid metabolism. The ACOX2 gene encodes
branched-chain acyl-CoA oxidase, which is involved in the degradation of long-chain
fatty acids and intermediates of bile acid in the peroxisome and plays a vital role in lipid
metabolism [39].

The ECM receptor interaction pathway has direct or indirect effects on cell adhesion,
migration, and other activities [40]. This pathway is thought to play an essential role in the
regulation of the intramuscular adipocyte differentiation, lipid synthesis, and metabolism
of intramuscular adipocytes and influence IMF content [41]. Laminin subunit alpha 2
(LAMA2) can affect the PI3K-AKT pathway and is also a downstream effector of the ECM
receptor pathway [42]. LAMA2 gene mutations have been shown to cause congenital
muscular dystrophy in dogs and mice [43,44].

The fatty acid degradation pathway is closely related to lipid deposition. The fatty
acid degradation pathway can reduce lipid levels and fat accumulation by promoting fat
oxidation [45]. The genes enriched in fatty acid degradation (CPT1B, ACADM, ECHS1,
EHHADH, ACAA1, and ALDH9A1) screened in this study show a trend of down-regulation
of their expression, which suggests that fattening can promote fat deposition. English
et al. [46] found that differential fat genes in subcutaneous fat from male calves were
significantly enriched in the fatty acid degradation pathway under different dietary condi-
tions. Mitochondrial fatty acid β-oxidation is the main pathway of lipid degradation [47].
Enoyl-CoA Hydratase, Short Chain 1 (ECHS1) is a key enzyme in mitochondrial fatty acid
β-oxidation [48]. Studies have shown that the Aldehyde dehydrogenase 9 family member
A1 (ALDH9A1) gene plays an important role in lowering blood lipids and promoting fatty
acid metabolism in rats [49]. Genome-wide association analysis in several pig popula-
tions found that ALDH9A1 was correlated with the fatty acid content in the muscle and
abdominal adipose tissue of pigs [50,51]. Enoyl-CoA Hydratase and 3-Hydroxyacyl CoA
Dehydrogenase (EHHAD) is part of the fatty acid β-oxidation pathway that can be induced
by PPARα activation [52]. Studies in Holstein dairy herds have shown that EHHAD is
a functional gene that potentially affects the composition and content of fatty acids in
milk [53].

The PI3K-Akt signaling pathway promotes lipid biosynthesis and inhibits lipoly-
sis [54–56]. The decrease in the level of insulin-like growth factor 1 (IGF-1) induces a
decrease in PI3K-Akt signaling, which further affects lipid deposition [57,58]. FGFR4 inhi-
bition not only has effects on lipid catabolism and secretion but also down-regulates de
novo adipogenesis by reducing the expression of genes involved in triglyceride synthesis
(such as SREBP1c, ACC, FAS, and DAGT1) [59].

The tenderness of meat is one of the important indexes to evaluate the quality of meat
products, and the fat content is the related index of tenderness that affects the quality of
meat. A previous study of our research group [60] showed that supplementary feeding im-
proved the shear force of yak meat; it was indicated that muscle tenderness in the fattening
group was improved, in turn deducing an increase in intramuscular fat (see Supplemen-
tary Table S6). The DEGs obtained in this study are closely involved in lipid metabolism
(APOA1, FABP1, IGF1, LAMA2, EHHADH, FADS2, SLC27A5, ACADM, CPT1B, ACOX2,
HMGCD2, PLIN5, ACAA1, FGFR4, ALDH9A1, ECHS1), which are significantly enriched
in the signaling pathway engaged in lipid metabolism. These genes were significantly
expressed in the liver of fattened yaks (p < 0.05). At the same time, the expression level of
these genes also changed compared to the grazing group; these genes enriched the fat of the
yak and contributed to the improvement of meat tenderness in the yak, which is consistent
with the previous research results of our group and demonstrated the influence of fattening
on the meat tenderness of the yaks from the gene level. The differentially expressed genes
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selected by transcriptome analysis in this study can be associated with lipid deposition and
used as candidate genes to improve yak meat quality and as biomarkers for yak breeding.

5. Conclusions

In this study, we used RNA-seq technology to compare the liver tissues of yaks from
the grazing group and the fattening group and screened several differentially expressed
genes related to lipid metabolism, for example, FGFR4, ALDH9A1, ECHS1, etc. Through
GO term enrichment and KEGG pathway enrichment analysis, differentially expressed
genes were enriched in several pathways closely related to lipid metabolism. However, this
study only explained the mechanism of hepatic lipid metabolism at the transcriptome level.
Further joint analysis at the metabolic level is needed in the future. It provides a theoretical
basis for exploring the mechanism of yak lipid metabolism and improving the quality of
yak meat.
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Appendix A

Table A1. Sequencing data quality evaluation statistics.

Sample Raw Reads Clean Reads Clean Base Error Rate Q20 (%) Q30 (%) GC Content

C1 48,175,766 46,643,568 7.0 G 0.02 98.32 94.96 50.13
C2 46,681,944 45,183,264 6.78 G 0.02 98.38 95.06 50.57
C3 46,440,134 44,915,026 6.74 G 0.02 98.44 95.21 50.4
T1 47,290,440 46,353,528 6.95 G 0.03 97.76 93.53 49.27
T2 45,815,566 43,810,052 6.57 G 0.02 98.19 94.72 49.61
T3 45,350,840 43,082,038 6.46 G 0.02 98.36 95.09 50.14

Notes: Sample: sample name; Raw_reads: number of reads in the raw data; Clean_reads: number of reads in the
raw data after filtering; Clean_bases: number of bases in raw data after filtering; Error_rate: overall sequencing
error rate of the data; Q20: Percentage of bases with a Phred value greater than 20 out of total bases; Q30:
Percentage of total bases with a Phred value greater than 30; GC pct: percentage of G and C in clean reads for all
four bases. C1: The first yak in the grazing group; C2: The second yak in the grazing group; C3: The third yak in
the grazing group; T1: The first yak in the fattening group; T2: The second yak in the fattening group; T3: The
first yak in the fattening group.

Table A2. Gene number statistics for different expression levels.

FPKM
Interval C1 C2 C3 T1 T2 T3

0~1 13,643
52.52

13,712
52.79

13,489
51.93

13,360
51.43

13,186
50.76

13,550
52.16

1~3 3327
12.81

3203
12.33

3439
13.24

3591
13.82

3766
14.50

3376
13.00

3~15 5588
21.51

5617
21.62

5648
21.74

5609
21.59

5685
21.89

5553
21.38

15~60 2362
9.09

2402
9.25

2347
9.04

2356
9.07

2298
8.85

2406
9.26

>60 1056
4.07

1042
4.01

1053
4.05

1060
4.08

1041
4.01

1091
4.20

Notes: C1: The first yak in the grazing group; C2: The second yak in the grazing group; C3: The third yak in the
grazing group; T1: The first yak in the fattening group; T2: The second yak in the fattening group; T3: The first
yak in the fattening group.
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