Animal Welfare Assessment and Meat Quality through Assessment of Stress Biomarkers in Fattening Pigs with and without Visible Damage during Slaughter
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Body Temperature
2.3. Physiological Measurements
2.4. Meat Quality Measurements
2.5. Statistical Analysis
3. Results and Discussion
3.1. Body Temperature, and Hematological and Biochemical Parameters
3.2. Meat Quality Parameters
3.3. Principal Component Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Becerril-Herrera, M.; Alonso-Spilsbury, M.; Ortega, M.T.; Guerrero-Legarreta, I.; Ramírez-Necoechea, R.; Roldan-Santiago, P.; Pérez-Sato, M.; Soní-Guillermo, E.; Mota-Rojas, D. Changes in blood constituents of swine transported for 8 or 16h to an Abattoir. Meat Sci. 2010, 86, 945–948. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Rodríguez, R.; Roldan-Santiago, P.; Flores-Peinado, S.; Ramirez-Telles, J.A.; Mora-Medina, P.; Trujillo-Ortega, M.E.; Gonzalez-Lozano, M.; Becerril-Herrera, M.; Sanchez-Hernandez, M.; Mota-Rojas, D. Deterioration of pork quality due to the effects of acute ante mortem stress: An overview. Asian J. Anim. Vet. Adv. 2011, 6, 1170–1184. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Becerril, M.; Lemus, C.; Sánchez, P.; González, M.; Olmos, S.; Ramírez, R.; Alonso-Spilsbury, M. Effects of mid-summer transport duration on pre-and post-slaughter performance and pork quality in Mexico. Meat Sci. 2006, 73, 404–412. [Google Scholar] [CrossRef]
- Flores-Peinado, S.; Mota-Rojas, D.; Guerrero-Legarreta, I.; Mora-Medina, P.; Cruz-Monterrosa, R.; Gómez-Prado, J.; Hernández, M.G.; Cruz-Playas, J.; Martínez-Burnes, J. Physiological responses of pigs to preslaughter handling: Infrared and thermal imaging applications. Int. J. Vet. Sci. Med. 2020, 8, 71–84. [Google Scholar] [CrossRef]
- Becerril-Herrera, M.; Alonso-Spilsbury, M.; Lemus-Flores, C.; Guerrero-Legarreta, I.; Olmos-Hernández, A.; Ramírez-Necoechea, R.; Mota-Rojas, D. CO2 stunning may compromise swine welfare compared with electrical stunning. Meat Sci. 2009, 81, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Faucitano, L.; Lambooij, E.; Grandin, T.A. Transport of pigs. In Livestock Handling and Transport; CABI Publishing: Boston, MA, USA, 2019; pp. 307–327. [Google Scholar]
- Miranda-De La Lama, G.C.; Villarroel, M.; María, G.A. Livestock transport from the perspective of the pre-slaughter logistic chain: A review. Meat Sci. 2014, 98, 9–20. [Google Scholar] [CrossRef]
- Ritter, M.J.; Ellis, M.; Anderson, D.B.; Curtis, S.E.; Keffaber, K.K.; Killefer, J.; McKeith, F.K.; Murphy, C.M.; Peterson, B.A. Effects of multiple concurrent stressors on rectal temperature, blood acid-base status, and longissimus muscle glycolytic potential in market-weight pigs. J. Anim. Sci. 2009, 87, 351–362. [Google Scholar] [CrossRef]
- Costa, O.A.D.; Costa, F.A.D.; Feddern, V.; Lopes, L.d.S.; Coldebella, A.; Gregory, N.G.; de Lima, G.J.M.M. Risk factors associated with pig pre-slaughtering losses. Meat Sci. 2019, 155, 61–68. [Google Scholar] [CrossRef]
- Romero, M.H.; Sánchez, J.A.; Hoyos, R. Factors associated with the frequency of non-ambulatory pigs during transport. Arch. Med. Vet. 2016, 48, 191–198. [Google Scholar] [CrossRef]
- Carr, S.; Gooding, J.; Rincker, P.; Hamilton, D.; Ellis, M.; Killefer, J.; Mckeith, F. A survey of pork quality of downer pigs. J. Muscle Foods 2005, 16, 298–305. [Google Scholar] [CrossRef]
- Joo, S.T.; Kim, G.D.; Hwang, Y.H.; Ryu, Y.C. Control of fresh meat quality through manipulation of muscle fiber characteristics. Meat Sci. 2013, 95, 828–836. [Google Scholar] [CrossRef]
- Correa, J.A.; Méthot, S.; Faucitano, L. A modified meat juice container (ez-driploss) procedure for a more reliable assessment of drip loss and related quality changes in pork meat. J. Muscle Foods 2007, 18, 67–77. [Google Scholar] [CrossRef]
- Nannoni, E.; Martelli, G.; Scozzoli, M.; Belperio, S.; Buonaiuto, G.; Vannetti, N.I.; Truzzi, E.; Rossi, E.; Benvenuti, S.; Sardi, L. Effects of lavender essential oil inhalation on the welfare and meat quality of fattening heavy pigs intended for parma ham production. Animals 2023, 13, 2967. [Google Scholar] [CrossRef]
- Čobanović, N.; Stanković, S.D.; Dimitrijević, M.; Suvajdžić, B.; Grković, N.; Vasilev, D.; Karabasil, N. Identifying physiological stress biomarkers for prediction of pork quality variation. Animals 2020, 10, 614. [Google Scholar] [CrossRef]
- Guevara, R.D.; Pastor, J.J.; Manteca, X.; Tedo, G.; Llonch, P. Systematic review of animal-based indicators to measure thermal, social, and immune-related stress in pigs. PLoS ONE 2022, 17, e0266524. [Google Scholar] [CrossRef]
- Dhama, K.; Latheef, S.K.; Dadar, M.; Samad, H.A.; Munjal, A.; Khandia, R.; Karthik, K.; Tiwari, R.; Yatoo, M.I.; Bhatt, P.; et al. Biomarkers in stress related diseases/disorders: Diagnostic, prognostic, and therapeutic values. Front. Mol. Biosci. 2019, 6, 91. [Google Scholar] [CrossRef]
- Kumar, P.; Ahmed, M.A.; Abubakar, A.A.; Hayat, M.N.; Kaka, U.; Ajat, M.; Goh, Y.M.; Sazili, A.Q. Improving animal welfare status and meat quality through assessment of stress biomarkers: A critical review. Meat Sci. 2023, 197, 109048. [Google Scholar] [CrossRef]
- Jain, K.K.; Jain, K.K. The Handbook of Biomarkers; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Sahu, P.; Pinkalwar, N.; Dubey, R.D.; Paroha, S.; Chatterjee, S.; Chatterjee, T. Biomarkers: An emerging tool for diagnosis of a disease and drug development. Asian J. Res. Pharm. Sci. 2011, 1, 9–16. [Google Scholar]
- Dallman, M.F.; Hellhammer, D. Regulation of the hypothalamo-pituitaryadrenal axis, chronic stress, and energy: The role of brain networks. In The Handbook of Stress Science: Biology, Psychology, and Health; Springer: Berlin/Heidelberg, Germany, 2011; pp. 11–36. [Google Scholar]
- Martin, L.B.; Andreassi, E.; Watson, W.; Coon, C. Stress and animal health: Physiological mechanisms and ecological consequences. Nat. Educ. Knowl. 2011, 3, 11. [Google Scholar]
- Landys, M.M.; Ramenofsky, M.; Wingfield, J.C. Actions of glucocorticoids at a seasonal baseline as compared to stress-related levels in the regulation of periodic life processes. Gen. Comp. Endocrinol. 2006, 148, 132–149. [Google Scholar] [CrossRef]
- Romero, L.M. Seasonal changes in plasma glucocorticoid concentrations in free-living vertebrates. Gen. Comp. Endocrinol. 2002, 128, 1–24. [Google Scholar] [CrossRef]
- Chulayo, A.-Y.; Muchenje, V. Activities of some stress enzymes as indicators of slaughter cattle welfare and their relationship with physico-chemical characteristics of beef. Animal 2017, 11, 1645–1652. [Google Scholar] [CrossRef]
- Correa, J.E.; Gonyou, H.W.; Torrey, S.; Widowski, T.; Bergeron, R.; Crowe, T.G.; Laforest, J.P.; Faucitano, L. Welfare and carcass and meat quality of pigs being transported for two hours using two vehicle types during two seasons of the year. Can. J. Anim. Sci. 2013, 93, 43–55. [Google Scholar] [CrossRef]
- Fidan, E.D. Relationship in Broiler Breast Meat Quality and some Blood Parameters: Implications of Different Colours Clothes and Visual Human Contact. Iran J. Appl. Anim. Sci. 2019, 9, 323–328. [Google Scholar]
- Loudon, K.M.; Tarr, G.; Pethick, D.W.; Lean, I.J.; Polkinghorne, R.; Mason, M.; Dunshea, F.R.; Gardner, G.E.; McGilchrist, P. The use of biochemical measurements to identify pre-slaughter stress in pasture finished beef cattle. Animals 2019, 9, 503. [Google Scholar] [CrossRef]
- Piñeiro, C.; Morales, J.; Carpintero, R.; Campbell, F.; Eckersall, P.; Toussaint, M.; Alava, M.; Lampreave, F. Pig acute-phase protein levels after stress induced by changes in the pattern of food administration. Animal 2007, 1, 133–139. [Google Scholar] [CrossRef]
- Saco, Y.; Docampo, M.J.; Fàbrega, E.; Manteca, X.; Diestre, A.; Lampreave, F.; Bassols, A. Effect of transport stress on serum haptoglobin and Pig-MAP in pigs. Anim. Welf. 2003, 12, 403–409. [Google Scholar] [CrossRef]
- Soler, L.; Gutiérrez, A.; Escribano, D.; Fuentes, M.; Cerón, J.J. Response of salivary haptoglobin and serum amyloid A to social isolation and short road transport stress in pigs. Res. Vet. Sci. 2013, 95, 298–302. [Google Scholar] [CrossRef] [PubMed]
- Rocha, L.M.; Velarde, A.; Dalmau, A.; Saucier, L.; Faucitano, L. Can the monitoring of animal welfare parameters predict pork meat quality variation through the supply chain (from farm to slaughter)? J. Anim. Sci. 2016, 94, 359–376. [Google Scholar] [CrossRef]
- Field, A. Discovering Statistics Using IBM SPSS Statistics; Sage: Newcastle upon Tyne, UK, 2013. [Google Scholar]
- Bertol, T.M.; Ellis, M.; Ritter, M.J.; McKeith, F.K. Effect of feed withdrawal and handling intensity on longissimus muscle glycolytic potential and blood measurements in slaughter weight pigs1. J. Anim. Sci. 2005, 83, 1536–1542. [Google Scholar] [CrossRef] [PubMed]
- Rocha, L.M.; Devillers, N.; Maldague, X.; Kabemba, F.Z.; Fleuret, J.; Guay, F.; Faucitano, L. Validation of anatomical sites for the measurement of infrared body surface temperature variation in response to handling and transport. Animals 2019, 9, 425. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, G.; Schmidt, M.; Ammon, C.; Rose-Meierhöfer, S.; Burfeind, O.; Heuwieser, W.; Berg, W. Monitoring the body temperature of cows and calves using video recordings from an infrared thermography camera. Vet. Res. Commun. 2013, 37, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Bridi, A.M.; Silva, C.A. Carcass Evaluation. State University of Londrina (UEL). Meat Analysis Research Group (GPAC, Brazil) 2009. Available online: https://www.uel.br/grupo-pesquisa/gpac/pages/arquivos/Material%20para%20cosulta/Bridi%20e%20Silva,%202009_%20Avalia%C3%A7%C3%A3o%20da%20carca%C3%A7a%20su%C3%ADna.pdf (accessed on 18 February 2023).
- Kauffman, R.G.; Eikelenboom, G.; Van Der Wal, P.G.; Merkus, G.; Zaar, M. The Use of Filter Paper to Estimate Drip Loss of Porcine Musculature. Meat Sci. 1986, 18, 191–200. [Google Scholar] [CrossRef] [PubMed]
- C. I. de l’Éclairage (CIE). Recommendations on Uniform Colour Spaces, Colour Difference Equations, Psychometrics Colour Terms, Supplement No. 2 to Publication CIE No. 715 (E1-131) 1971; Bureau Central de la CIE: Vienna, Austria, 1978.
- Junior, S.B.; Mastelini, S.M.; Barbon, A.P.A.; Barbin, D.F.; Calvini, R.; Lopes, J.F.; Ulrici, A. Multi-target prediction of wheat flour quality parameters with near infrared spectroscopy. Inf. Process. Agric. 2020, 7, 342–354. [Google Scholar]
- Huynh, T.; Aarnink, A.; Gerrits, W.; Heetkamp, M.; Canh, T.; Spoolder, H.; Kemp, B.; Verstegen, M. Thermal behaviour of growing pigs in response to high temperature and humidity. Appl. Anim. Behav. Sci. 2005, 91, 1–16. [Google Scholar] [CrossRef]
- Almeida, M.C.; Vizin, R.C.L.; Carrettiero, D.C. Current understanding on the neurophysiology of behavioral thermoregulation. Temperature 2015, 2, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Curtis, S.E. Environmental Management in Animal Agriculture; Iowa State University Press: Ames, IA, USA, 1983. [Google Scholar]
- Taylor, N.A.S.; Tipton, M.J.; Kenny, G.P. Considerations for the measurement of core, skin and mean body temperatures. J. Therm. Biol. 2014, 46, 72–101. [Google Scholar] [CrossRef]
- Weiss, D.J.; Wardrop, K.J. Schalm’s Veterinary Hematology; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Odink, J.; Smeets, J.F.; Visser, I.J.; Sandman, H.; Snijders, J.M. Hematological and clinicochemical profiles of healthy swine and swine with inflammatory processes. J. Anim. Sci. 1990, 68, 163–170. [Google Scholar] [CrossRef]
- Sutherland, M.A.; Erlandson, K.; Connor, J.F.; Salak-Johnson, J.L.; Matzat, P.; Smith, J.F.; McGlone, J.J. Health of non-ambulatory, non-injured pigs at processing. Livest. Sci. 2008, 116, 237–245. [Google Scholar] [CrossRef]
- Day, M.J. Biology of lymphocytes and plasma cells. In Schalm’s Veterinary Hematology; Williams and Wilkins: Philadelphia, PA, USA, 2000; pp. 240–246. [Google Scholar]
- McGlone, J.J.; Salak, J.L.; Lumpkin, E.A.; Nicholson, R.I.; Gibson, M.; Norman, R.L. Shipping stress and social status effects on pig performance, plasma cortisol, natural killer cell activity, and leukocyte numbers. J. Anim. Sci. 1993, 71, 888–896. [Google Scholar] [CrossRef]
- Dhabhar, F.S. Enhancing versus suppressive effects of stress on immune function: Implications for immunoprotection and immunopathology. Neuroimmunomodulation 2009, 16, 300–317. [Google Scholar] [CrossRef]
- Dhabhar, F.S.; Miller, A.H.; McEwen, B.S.; Spencer, R.L. Effects of stress on immune cell distribution. Dynamics and hormonal mechanisms. J. Immunol. 1995, 154, 5511–5527. [Google Scholar] [CrossRef]
- Dhabhar, F.S. Bidirectional effects of stress and glucocorticoid hormones on immune function: Possible explanations for paradoxical observations. In Psychoneuroimmunology; Academic Press: San Diego, CA, USA, 2001. [Google Scholar]
- Carr, J. Garth Pig Stockmanship Standards; 5M Enterprises Limited: Sheffield, UK, 1998. [Google Scholar]
- Mersmann, H.J.; Pond, W.G. Hematology and Blood Serum Constituents in Biology of the Pig; Cornell University Press: Ithaca, NY, USA, 2001. [Google Scholar]
- Eckersall, P.D.; Bell, R. Acute phase proteins: Biomarkers of infection and inflammation in veterinary medicine. Vet. J. 2010, 185, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Meyer, D.J.; Harvey, J.W. Veterinary Laboratory Medicine: Interpretation & Diagnosis; Saunders: Philadelphia, PA, USA, 2004. [Google Scholar]
- Stewart, S.M.; McGilchrist, P.; Gardner, G.E.; Pethick, D.W. Association between loin ultimate pH and plasma indicators of pre-slaughter stressors in Australian lamb. Meat Muscle Biol. 2018, 2, 254–264. [Google Scholar] [CrossRef]
- Arroyo, L.; Valent, D.; Carreras, R.; Peña, R.; Sabrià, J.; Velarde, A.; Bassols, A. Housing and road transport modify the brain neurotransmitter systems of pigs: Do pigs raised in different conditions cope differently with unknown environments? PLoS ONE 2019, 14, e0210406. [Google Scholar] [CrossRef] [PubMed]
- Brandt, P.; Aaslyng, M.D. Welfare measurements of finishing pigs on the day of slaughter: A review. Meat Sci. 2015, 103, 13–23. [Google Scholar] [CrossRef]
- Foury, A.; Geverink, N.A.; Gil, M.; Gispert, M.; Hortós, M.; i Furnols, M.F.; Carrion, D.; Blott, S.C.; Plastow, G.S.; Mormède, P. Stress neuroendocrine profiles in five pig breeding lines and the relationship with carcass composition. Animal 2007, 1, 973–982. [Google Scholar] [CrossRef] [PubMed]
- Matarneh, S.K.; Scheffler, T.L.; Gerrard, D.E. The conversion of muscle to meat. In Lawrie’s Meat Science; Elsevier: Amsterdam, The Netherlands, 2023; pp. 159–194. [Google Scholar]
- Abdelghani, B.; Samira, B.; Gerald, C.; Carlos, H.H.; Laurent, A.; Jacques, L.; Khaled, H.; Miguel, A.S.; Hamid, A.T.; Ahmed, O. Is the pH drop profile curvilinear and either monophasic or polyphasic? Consequences on the ultimate bovine meat texture. Afr. J. Agric. Res. 2008, 3, 195–204. [Google Scholar]
- Immonen, K.; Ruusunen, M.; Puolanne, E. Some effects of residual glycogen concentration on the physical and sensory quality of normal pH beef. Meat Sci. 2000, 55, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Gade, P.B.; Christensen, L.; Brown, S.N.; Warris, P.D. Effect of Tier and Ventilation during Transport on Blood Parameters and Meat Quality in Slaughter Pigs; Landbauforschung Voelkenrode: Sonderheft: Kulmbach, Germany, 1996. [Google Scholar]
- Boler, D.; Dilger, A.; Bidner, B.; Carr, S.; Eggert, J.; Day, J.; Ellis, M.; Mckeith, F.; Killefer, J. Ultimate pH explains variation in pork quality traits. J. Muscle Foods 2010, 21, 119–130. [Google Scholar] [CrossRef]
- Warriss, P.D. The growth and body composition of animals. In Meat Science: An Introductory Text; CABI: Wallingford, UK, 2009; pp. 9–25. [Google Scholar]
- Terlouw, E.M.C.; Picard, B.; Deiss, V.; Berri, C.; Hocquette, J.-F.; Lebret, B.; Lefèvre, F.; Hamill, R.; Gagaoua, M. Understanding the determination of meat quality using biochemical characteristics of the muscle: Stress at slaughter and other missing keys. Foods 2021, 10, 84. [Google Scholar] [CrossRef]
- Costa, O.A.D.; Ludke, J.V.; Costa, M.; Faucitano, L.; Peloso, J.V.; Roza, D.D. Effect of pre-slaughter conditions on meat quality of heavy-weight pigs. Arch. De Zootec. 2010, 59, 391–402. [Google Scholar]
- Manteca, X.; da Silva, C.A.; Bridi, A.M.; Dias, C.P. Bem-estar animal: Conceitos e formas práticas de avaliação dos sistemas de produção de suínos. Semin. Cienc. Agrar. 2013, 34, 4213–4229. [Google Scholar] [CrossRef]
- Huff-Lonergan, E.; Lonergan, S.M. Mechanisms of water-holding capacity of meat: The role of postmortem biochemical and structural changes. Meat Sci. 2005, 71, 194–204. [Google Scholar] [CrossRef] [PubMed]
- Maganhini, M.B.; Mariano, B.; Soares, A.L.; Guarnieri, P.D.; Shimokomaki, M.; Ida, E.I. Meats PSE (Pale, Soft, Exudative) and DFD (Dark, Firm, Dry) of an industrial slaughterline for swine loin. Food Sci. Technol. 2007, 27, 69–72. [Google Scholar] [CrossRef]
- Martínez-Miró, S.; Tecles, F.; Ramón, M.; Escribano, D.; Hernández, F.; Madrid, J.; Orengo, J.; Martínez-Subiela, S.; Manteca, X.; Cerón, J.J. Causes, consequences and biomarkers of stress in swine: An update. BMC Vet. Res. 2016, 12, 171. [Google Scholar] [CrossRef]
- Choe, J.H.; Choi, M.H.; Ryu, Y.C.; Lim, K.S.; Lee, E.A.; Kang, J.H.; Hong, K.C.; Lee, S.K.; Kim, Y.T.; Moon, S.S.; et al. Correlations among various blood parameters at exsanguination and their relationships to pork quality traits. Anim. Prod. Sci. 2014, 55, 672–679. [Google Scholar] [CrossRef]
- Sommavilla, R.; Faucitano, L.; Gonyou, H.; Seddon, Y.; Bergeron, R.; Widowski, T.; Crowe, T.; Connor, L.; Scheeren, M.B.; Goumon, S.; et al. Season, transport duration and trailer compartment effects on blood stress indicators in pigs: Relationship to environmental, behavioral and other physiological factors, and pork quality traits. Animals 2017, 7, 8. [Google Scholar] [CrossRef] [PubMed]
- Traore, S.; Aubry, L.; Gatellier, P.; Przybylski, W.; Jaworska, D.; Kajak-Siemaszko, K.; Santé-Lhoutellier, V. Effect of heat treatment on protein oxidation in pig meat. Meat Sci. 2012, 91, 14–21. [Google Scholar] [CrossRef]
- Sellier, N.; Guettier, E.; Staub, C. A review of methods to measure animal body temperature in precision farming. Am. J. Agric. Sci. Technol. 2014, 2, 74–99. [Google Scholar] [CrossRef]
- Bonelli, A.M.; Schifferli, C. Síndrome estrés porcino. Arch. Med. Vet. 2001, 33, 125–135. [Google Scholar] [CrossRef]
- de Diego, A.C.P.; Sánchez-Cordón, P.J.; Pedrera, M.; Martínez-López, B.; Gómez-Villamandos, J.C.; Sánchez-Vizcaíno, J.M. The use of infrared thermography as a non-invasive method for fever detection in sheep infected with bluetongue virus. Vet. J. 2013, 198, 182–186. [Google Scholar] [CrossRef] [PubMed]
- George, W.D.; Godfrey, R.W.; Ketring, R.C.; Vinson, M.C.; Willard, S.T. Relationship among eye and muzzle temperatures measured using digital infrared thermal imaging and vaginal and rectal temperatures in hair sheep and cattle. J. Anim. Sci. 2014, 92, 4949–4955. [Google Scholar] [CrossRef] [PubMed]
Quality Class 1 | pH24 | L* | Drip Loss, % |
---|---|---|---|
PSE | <5.5 | >50 | >5 |
PFN | 5.5 to 5.8 | >50 | <5 |
RSE | 5.6 to 5.8 | 42 to 50 | >5 |
RFN | 5.6 to 5.8 | 42 to 50 | <5 |
DFD | >6.1 | ≤42 | <2 |
Parameters 1 | Non-NANI | NANI | p |
---|---|---|---|
IROT MAX (°C) | 34.83 ± 0.12 | 35.92 ± 0.1 | <0.01 |
IROT MIN (°C) | 28.43 ± 0.16 | 30.12 ± 0.1 | <0.01 |
IROT AVG (°C) | 31.76 ± 0.12 | 32.84 ± 0.09 | <0.01 |
RT (°C) | 38.68 ± 0.07 | 39.27 ± 0.05 | <0.01 |
HB (g/dL) | 14 ± 0.13 | 15.07 ± 1.99 | 0.03 |
HT (%) | 42.36 ± 0.47 | 46.83 ± 1.6 | 0.014 |
RBC (×106/μL) | 8.33 ± 0.09 | 9.32 ± 0.23 | 0.003 |
MCV (fL) | 50.68 ± 0.42 | 49.56 ± 1.54 | 0.495 |
MCH (pg) | 16.68 ± 0.19 | 17.43 ± 0.43 | 0.127 |
MCHC (%) | 33.3 ± 0.15 | 32.53 ± 0.52 | 0.18 |
RDW (%) | 21.79 ± 4.17 | 18.52 ± 0.63 | 0.442 |
WBC (/μL) | 17,160.52 ± 589.48 | 20,498.12 ± 2478.32 | <0.01 |
Seg. (%) | 10,549.67 ± 489.45 | 11,612.18 ± 1923.24 | <0.01 |
Lymph. (%) | 8499.61 ± 494.315 | 7483.86 ± 1242.59 | <0.01 |
Pl. (/mm) | 37,298.9 ± 16,875.51 | 183,804.92 ± 50,678.34 | 0.01 |
Albumin (g/dL) | 4.67 ± 0.05 | 4.42 ± 0.07 | 0.005 |
Glucose (mg/dL) | 90.59 ± 1.98 | 87.20 ± 2.06 | 0.237 |
Lactate (mmol/L) | 13.87 ± 0.52 | 15.06 ± 0.62 | 0.144 |
LDH (U/L) | 1348.31 ± 272.27 | 6516.28 ± 1364.37 | <0.01 |
Parameters 1 | Non-NANI | NANI | p |
---|---|---|---|
pH LT [1] | 5.84 ± 0.01 | 5.78 ± 0.01 | <0.01 |
pH SM [2] | 6.04 ± 0.02 | 5.95 ± 0.01 | <0.01 |
L* [2] | 46.85 ± 0.1 | 49.49 ± 0.14 | <0.01 |
a* [2] | 3.39 ± 0.09 | 3.46 ± 0.09 | 0.551 |
b* [2] | 11.95 ± 0.08 | 12.92 ± 0.12 | <0.01 |
Drip Loss (%) [2] | 1.86 ± 0.03 | 3.52 ± 0.13 | <0.01 |
WL (%) | 2.1 ± 0.02 | 2.24 ± 0.02 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogawa, N.N.; Silva, G.L.; Barbon, A.P.A.d.C.; Flaiban, K.K.M.d.C.; Silva, C.A.d.; Rocha, L.M.; Bridi, A.M. Animal Welfare Assessment and Meat Quality through Assessment of Stress Biomarkers in Fattening Pigs with and without Visible Damage during Slaughter. Animals 2024, 14, 700. https://doi.org/10.3390/ani14050700
Ogawa NN, Silva GL, Barbon APAdC, Flaiban KKMdC, Silva CAd, Rocha LM, Bridi AM. Animal Welfare Assessment and Meat Quality through Assessment of Stress Biomarkers in Fattening Pigs with and without Visible Damage during Slaughter. Animals. 2024; 14(5):700. https://doi.org/10.3390/ani14050700
Chicago/Turabian StyleOgawa, Natália Nami, Giovanna Lima Silva, Ana Paula Ayub da Costa Barbon, Karina Keller Marques da Costa Flaiban, Caio Abercio da Silva, Luiene Moura Rocha, and Ana Maria Bridi. 2024. "Animal Welfare Assessment and Meat Quality through Assessment of Stress Biomarkers in Fattening Pigs with and without Visible Damage during Slaughter" Animals 14, no. 5: 700. https://doi.org/10.3390/ani14050700
APA StyleOgawa, N. N., Silva, G. L., Barbon, A. P. A. d. C., Flaiban, K. K. M. d. C., Silva, C. A. d., Rocha, L. M., & Bridi, A. M. (2024). Animal Welfare Assessment and Meat Quality through Assessment of Stress Biomarkers in Fattening Pigs with and without Visible Damage during Slaughter. Animals, 14(5), 700. https://doi.org/10.3390/ani14050700