The Distribution of Boars Spermatozoa in Morphometrically Distinct Subpopulations after In Vitro Exposure to Radiofrequency Electromagnetic Radiation at 2500 MHz and Their Motility
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Housing and Feeding
2.2. Collection and Evaluation of Semen from the Boars
2.3. Exposure of Samples to RF-EMR in Laboratory Conditions
2.4. Computer-Assisted Sperm Analysis
2.5. Preparation and Staining of Semen Smears
2.6. Morphometric Analysis of Spermatozoa
2.7. Statistical Data Processing
3. Results
3.1. Overall Semen Variables
3.2. Individual Morphometric Parameters of the Spermatozoa Head and Tail
3.3. Spermatozoa Subpopulations Based on Morphometric Parameters of Spermatozoa Head and Tail
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bandara, P.; Carpenter, D.O. Planetary Electromagnetic Pollution: It Is Time to Assess Its Impact. Lancet Planet. Health 2018, 2, e512–e514. [Google Scholar] [CrossRef]
- Kesari, K.K.; Agarwal, A.; Henkel, R. Radiations and Male Fertility. Reprod. Biol. Endocrinol. 2018, 16, 118. [Google Scholar] [CrossRef]
- Yadav, H.; Rai, U.; Singh, R. Radiofrequency Radiation: A Possible Threat to Male Fertility. Reprod. Toxicol. 2021, 100, 90–100. [Google Scholar] [CrossRef]
- Prlić, I.; Šiško, J.; Varnai, V.M.; Pavelić, L.; Macan, J.; Kobešćak, S.; Hajdinjak, M.; Jurdana, M.; Cerovac, Z.; Zauner, B.; et al. Wi-Fi Technology and Human Health Impact: A Brief Review of Current Knowledge. Arch. Ind. Hyg. Toxicol. 2022, 73, 94–106. [Google Scholar] [CrossRef]
- La Vignera, S.; Condorelli, R.A.; Vicari, E.; D’Agata, R.; Calogero, A.E. Effects of the Exposure to Mobile Phones on Male Reproduction: A Review of the Literature. J. Androl. 2012, 33, 350–356. [Google Scholar] [CrossRef]
- Liu, K.; Li, Y.; Zhang, G.; Liu, J.; Cao, J.; Ao, L.; Zhang, S. Association between Mobile Phone Use and Semen Quality: A Systemic Review and Meta-Analysis. Andrology 2014, 2, 491–501. [Google Scholar] [CrossRef] [PubMed]
- Kaur, P.; Rai, U.; Singh, R. Genotoxic Risks to Male Reproductive Health from Radiofrequency Radiation. Cells 2023, 12, 594. [Google Scholar] [CrossRef] [PubMed]
- Erogul, O.; Oztas, E.; Yildirim, I.; Kir, T.; Aydur, E.; Komesli, G.; Irkilata, H.C.; Irmak, M.K.; Peker, A.F. Effects of Electromagnetic Radiation from a Cellular Phone on Human Sperm Motility: An In Vitro Study. Arch. Med. Res. 2006, 37, 840–843. [Google Scholar] [CrossRef]
- Agarwal, A.; Singh, A.; Hamada, A.; Kesari, K. Cell Phones and Male Infertility: A Review of Recent Innovations in Technology and Consequences. Int. Braz. J. Urol. 2011, 37, 432–454. [Google Scholar] [CrossRef] [PubMed]
- Mailankot, M.; Kunnath, A.P.; Jayalekshmi, H.; Koduru, B.; Valsalan, R. Radio Frequency Electromagnetic Radiation (RF-EMR) from GSM (0.9/1.8 GHZ) Mobile Phones Induces Oxidative Stress and Reduces Sperm Motility in Rats. Clinics 2009, 64, 561–565. [Google Scholar] [CrossRef] [PubMed]
- Kesari, K.K.; Behari, J. Effects of Microwave at 2.45 GHz Radiations on Reproductive System of Male Rats. Toxicol. Environ. Chem. 2010, 92, 1135–1147. [Google Scholar] [CrossRef]
- Gutschi, T.; Mohamad Al-Ali, B.; Shamloul, R.; Pummer, K.; Trummer, H. Impact of Cell Phone Use on Men’s Semen Parameters. Andrologia 2011, 43, 312–316. [Google Scholar] [CrossRef]
- Rago, R.; Salacone, P.; Caponecchia, L.; Sebastianelli, A.; Marcucci, I.; Calogero, A.E.; Condorelli, R.; Vicari, E.; Morgia, G.; Favilla, V.; et al. The Semen Quality of the Mobile Phone Users. J. Endocrinol. Investig. 2013, 36, 970–974. [Google Scholar] [CrossRef]
- Yildirim, M.E.; Kaynar, M.; Badem, H.; Cavis, M.; Karatas, O.F.; Cimentepe, E. What Is Harmful for Male Fertility: Cell Phone or the Wireless Internet? Kaohsiung J. Med. Sci. 2015, 31, 480–484. [Google Scholar] [CrossRef]
- Agarwal, A.; Deepinder, F.; Sharma, R.K.; Ranga, G.; Li, J. Effect of Cell Phone Usage on Semen Analysis in Men Attending Infertility Clinic: An Observational Study. Fertil. Steril. 2008, 89, 124–128. [Google Scholar] [CrossRef]
- Avendaño, C.; Mata, A.; Sanchez Sarmiento, C.A.; Doncel, G.F. Use of Laptop Computers Connected to Internet through Wi-Fi Decreases Human Sperm Motility and Increases Sperm DNA Fragmentation. Fertil. Steril. 2012, 97, 39–45.e2. [Google Scholar] [CrossRef]
- Dasdag, S.; Taş, M.; Akdag, M.Z.; Yegin, K. Effect of Long-Term Exposure of 2.4 GHz Radiofrequency Radiation Emitted from Wi-Fi Equipment on Testes Functions. Electromagn. Biol. Med. 2015, 34, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Koohestanidehaghi, Y.; Khalili, M.A.; Fesahat, F.; Seify, M.; Mangoli, E.; Kalantar, S.M.; Annarita Nottola, S.; Macchiarelli, G.; Grazia Palmerini, M. Detrimental Effects of Radiofrequency Electromagnetic Waves Emitted by Mobile Phones on Morphokinetics, Oxidative Stress, and Apoptosis in Mouse Preimplantation Embryos. Environ. Pollut. 2023, 336, 122411. [Google Scholar] [CrossRef] [PubMed]
- Verstegen, J.; Iguer-Ouada, M.; Onclin, K. Computer Assisted Semen Analyzers in Andrology Research and Veterinary Practice. Theriogenology 2002, 57, 149–179. [Google Scholar] [CrossRef] [PubMed]
- Yániz, J.L.; Soler, C.; Santolaria, P. Computer Assisted Sperm Morphometry in Mammals: A Review. Anim. Reprod. Sci. 2015, 156, 1–12. [Google Scholar] [CrossRef]
- Wysokińska, A.; Wójcik, E.; Chłopik, A. Evaluation of the Morphometry of Sperm from the Epididymides of Dogs Using Different Staining Methods. Animals 2021, 11, 227. [Google Scholar] [CrossRef] [PubMed]
- Peña, F.J.; Saravia, F.; García-Herreros, M.; Núñezmartínez, I.; Tapia, J.A.; Johannisson, A.; Wallgren, M.; Rodríguez-Martínez, H. Identification of Sperm Morphometric Subpopulations in Two Different Portions of the Boar Ejaculate and Its Relation to Postthaw Quality. J. Androl. 2005, 26, 716–723. [Google Scholar] [CrossRef] [PubMed]
- Barquero, V.; Roldan, E.R.S.; Soler, C.; Yániz, J.L.; Camacho, M.; Valverde, A. Predictive Capacity of Boar Sperm Morphometry and Morphometric Sub-Populations on Reproductive Success after Artificial Insemination. Animals 2021, 11, 920. [Google Scholar] [CrossRef] [PubMed]
- Kondracki, S.; Bonaszewska, D.; Mielnicka, C. The Effect of Age on the Morphometric Sperm Traits of Domestic Pigs (Sus Scrofa Domestica). Cell. Mol. Biol. Lett. 2005, 10, 3–13. [Google Scholar] [PubMed]
- Banaszewska, D.; Andraszek, K. Assessment of the Morphometry of Heads of Normal Sperm and Sperm with the Dag Defect in the Semen of Duroc Boars. J. Vet. Res. 2021, 65, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Szablicka, D.; Wysokińska, A.; Pawlak, A.; Roman, K. Morphometry of Boar Spermatozoa in Semen Stored at 17 °C—The Influence of the Staining Technique. Animals 2022, 12, 1888. [Google Scholar] [CrossRef] [PubMed]
- Žaja, I.Ž.; Vince, S.; Milinković-Tur, S.; Milas, N.P.; Samardžija, M.; Valpotić, H.; Berta, V.; Vilić, M.; Rakić, K. Exogenous Melatonin Influences Distribution of French Alpine Buck Spermatozoa in Morphometrically Distinct Subpopulations during the Non-Breeding Season. Anim. Reprod. Sci. 2018, 192, 154–163. [Google Scholar] [CrossRef]
- De Iuliis, G.N.; Newey, R.J.; King, B.V.; Aitken, R.J. Mobile Phone Radiation Induces Reactive Oxygen Species Production and DNA Damage in Human Spermatozoa In Vitro. PLoS ONE 2009, 4, e6446. [Google Scholar] [CrossRef]
- Saygin, M.; Caliskan, S.; Karahan, N.; Koyu, A.; Gumral, N.; Uguz, A. Testicular Apoptosis and Histopathological Changes Induced by a 2.45 GHz Electromagnetic Field. Toxicol. Ind. Health 2011, 27, 455–463. [Google Scholar] [CrossRef]
- Gye, M.C.; Park, C.J. Effect of Electromagnetic Field Exposure on the Reproductive System. Clin. Exp. Reprod. Med. 2012, 39, 1–9. [Google Scholar] [CrossRef]
- Al-Bayyari, N. The Effect of Cell Phone Usage on Semen Quality and Fertility among Jordanian Males. Middle East Fertil. Soc. J. 2017, 22, 178–182. [Google Scholar] [CrossRef]
- Kıvrak, E.G.; Yurt, K.K.; Kaplan, A.A.; Alkan, I.; Altun, G. Effects of Electromagnetic Fields Exposure on the Antioxidant Defense System. J. Microsc. Ultrastruct. 2017, 5, 167–176. [Google Scholar] [CrossRef]
- Wysokińska, A.; Kondracki, S.; Banaszewska, D. Morphometrical Characteristics of Spermatozoa in Polish Landrace Boars with Regard to the Number of Spermatozoa in an Ejaculate. Reprod. Biol. 2009, 9, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Górski, K.; Kondracki, S.; Wysokińska, A. Ejaculate Traits and Sperm Morphology Depending on Ejaculate Volume in Duroc Boars. J. Vet. Res. 2017, 61, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Druart, X. Sperm Interaction with the Female Reproductive Tract. Reprod. Domest. Anim. 2012, 47, 348–352. [Google Scholar] [CrossRef] [PubMed]
- Oni, O.; Amuda, D. Effects of radiofrequency radiation from wifi devices on human ejaculated semen. Int. J. Res. Rev. Appl. Sci. 2011, 9, 292–294. [Google Scholar]
- Gorpinchenko, I.; Nikitin, O.; Banyra, O.; Shulyak, A. The Influence of Direct Mobile Phone Radiation on Sperm Quality. Cent. Eur. J. Urol. 2014, 67, 65–71. [Google Scholar] [CrossRef]
- Ghanbari, M.; Mortazavi, S.B.; Khavanin, A.; Khazaei, M. The Effects of Cell Phone Waves (900 MHz-GSM Band) on Sperm Parameters and Total Antioxidant Capacity in Rats. Int. J. Fertil. Steril. 2013, 7, 21–28. [Google Scholar]
- Kumar, S.; Kesari, K.K.; Behari, J. Influence of Microwave Exposure on Fertility of Male Rats. Fertil. Steril. 2011, 95, 1500–1502. [Google Scholar] [CrossRef]
- Meena, R.; Kumari, K.; Kumar, J.; Rajamani, P.; Verma, H.N.; Kesari, K.K. Therapeutic Approaches of Melatonin in Microwave Radiations-Induced Oxidative Stress-Mediated Toxicity on Male Fertility Pattern of Wistar Rats. Electromagn. Biol. Med. 2014, 33, 81–91. [Google Scholar] [CrossRef]
- Immler, S.; Pryke, S.R.; Birkhead, T.R.; Griffith, S.C. Pronounced Within-Individual Plasticity in Sperm Morphometry Across Social Environments. Evolution 2010, 64, 1634–1643. [Google Scholar] [CrossRef] [PubMed]
- Shahani, S.K.; Revell, S.G.; Argo, C.G.; Murray, R.D. Mid-Piece Length of Spermatozoa in Different Cattle Breeds and Its Relationship to Fertility. Pak. J. Biol. Sci. PJBS 2010, 13, 802–808. [Google Scholar] [CrossRef] [PubMed]
- Ramón, M.; Soler, A.J.; Ortiz, J.A.; García-Alvarez, O.; Maroto-Morales, A.; Roldan, E.R.S.; Garde, J.J. Sperm Population Structure and Male Fertility: An Intraspecific Study of Sperm Design and Velocity in Red Deer. Biol. Reprod. 2013, 89, 110. [Google Scholar] [CrossRef] [PubMed]
- Malo, A.F.; Garde, J.J.; Soler, A.J.; García, A.J.; Gomendio, M.; Roldan, E.R.S. Male Fertility in Natural Populations of Red Deer Is Determined by Sperm Velocity and the Proportion of Normal Spermatozoa1. Biol. Reprod. 2005, 72, 822–829. [Google Scholar] [CrossRef] [PubMed]
- Gomendio, M.; Roldan, E.R.S. Implications of Diversity in Sperm Size and Function for Sperm Competition and Fertility. Int. J. Dev. Biol. 2008, 52, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Firman, R.C.; Simmons, L.W. Sperm Midpiece Length Predicts Sperm Swimming Velocity in House Mice. Biol. Lett. 2010, 6, 513–516. [Google Scholar] [CrossRef] [PubMed]
- Costa, J.; Braga, P.C.; Rebelo, I.; Oliveira, P.F.; Alves, M.G. Mitochondria Quality Control and Male Fertility. Biology 2023, 12, 827. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Si, T.; Xu, X.; Liang, F.; Wang, L.; Pan, S. Electromagnetic Radiation at 900 MHz Induces Sperm Apoptosis through Bcl-2, Bax and Caspase-3 Signaling Pathways in Rats. Reprod. Health 2015, 12, 65. [Google Scholar] [CrossRef]
- Houston, B.J.; Nixon, B.; King, B.V.; Iuliis, G.N.D.; Aitken, R.J. The Effects of Radiofrequency Electromagnetic Radiation on Sperm Function. Reproduction 2016, 152, R263–R276. [Google Scholar] [CrossRef]
- Talarczyk-Desole, J.; Kotwicka, M.; Jendraszak, M.; Pawelczyk, L.; Murawski, M.; Jędrzejczak, P. Sperm Midpiece Apoptotic Markers: Impact on Fertilizing Potential in in Vitro Fertilization and Intracytoplasmic Sperm Injection. Hum. Cell 2016, 29, 67–75. [Google Scholar] [CrossRef]
Spermatozoa Morphometric Parameters | Control Group | Experimental Group | ||||
---|---|---|---|---|---|---|
Mean | 95% Confidence Interval | Mean | 95% Confidence Interval | p Value | ||
Morphometric parameters of the head | Area (µm2) | 46.79 | 46.47–47.11 | 46.75 | 46.43–47.07 | 0.84 |
Outline (µm) | 27.31 | 27.21–27.41 | 27.26 | 27.16–27.36 | 0.49 | |
Minimal radius (µm) | 2.48 | 2.47–2.49 | 2.48 | 2.47–2.49 | 0.81 | |
Maximal radius (µm) | 5.34 | 5.32–5.37 | 5.34 | 5.32–5.37 | 0.93 | |
Convex (µm) | 47.39 | 47.06–47.72 | 47.43 | 47.11–47.76 | 0.85 | |
Length (µm) | 10.31 | 10.26–10.36 | 10.3 | 10.26–10.35 | 0.86 | |
Bredth (µm) | 5.45 | 5.42–5.47 | 5.45 | 5.42–5.47 | 0.89 | |
Ellipticity | 1.9 | 1.89–1.91 | 1.89 | 1.89–1.91 | 0.78 | |
Rugosity | 0.79 | 0.785–0.789 | 0.79 | 0.787–0.791 | 0.27 | |
Elongation | 0.31 | 0.305–0.311 | 0.31 | 0.30–0.31 | 0.8 | |
Regularity | 0.94 | 0.941–0.944 | 0.94 | 0.94–0.95 | 0.26 |
Spermatozoa Morphometric Parameters | Control Group | Experimental Group | ||||
---|---|---|---|---|---|---|
Mean | 95% Confidence Interval | Mean | 95% Confidence Interval | p Value | ||
Parameters of morphometric characteristics of the midpiece and the tail | Midpiece area (µm2) | 19.42 | 19.29–19.55 | 19.48 | 19.35–19.60 | 0.52 |
Midpiece outline (µm) | 30.44 | 30.32–30.56 | 30.35 | 30.23–30.46 | 0.27 | |
Midpiece min. radius (µm) | 0.39 | 0.37–0.39 | 0.39 | 0.38–0.40 | 0.66 | |
Midpiece max. radius (µm) | 6.78 | 6.75–6.81 | 6.76 | 6.73–6.78 | 0.25 | |
Midpiece convex (µm) | 24.58 | 24.32–24.84 | 24.92 | 24.67–25.18 | 0.06 | |
Midpiece length (µm) | 13.25 | 13.19–13.30 | 13.2 | 13.15–13.26 | 0.27 | |
Midpiece width (µm) | 2.05 | 2.03–2.08 | 2.08 | 2.05–2.11 | 0.21 | |
Tail length (µm) | 34.05 | 33.84–34.26 | 33.92 | 33.71–34.12 | 0.37 |
Spermatozoa Morphometric Parameters | Control Group | Experimental Group | ||||
---|---|---|---|---|---|---|
Mean | 95% Confidence Interval | Mean | 95% Confidence Interval | p Value | ||
Different ratios of morphometric parameters | Total length * | 44.36 | 44.13–44.59 | 44.22 | 43.99–44.45 | 0.4 |
Head length/Total length | 0.23 | 0.232–0.234 | 0.23 | 0.23–0.24 | 0.52 | |
Head length/Tail length | 0.31 | 0.30–0.31 | 0.31 | 0.30–0.31 | 0.53 | |
Tail length/Total length | 0.77 | 0.766–0.768 | 0.77 | 0.765–0.767 | 0.52 | |
Head outline/Total length | 0.62 | 0.615–0.621 | 0.62 | 0.616–0.621 | 0.78 | |
Head area/Total length | 1.06 | 1.05–1.06 | 1.06 | 1.05–1.07 | 0.75 | |
Head length and width/ Total length * | 1.27 | 1.26–1.28 | 1.27 | 1.27–1.28 | 0.53 |
Spermatozoa Indicators | Factor 1 | Factor 2 | Factor 3 | Factor 4 |
---|---|---|---|---|
Head length | 0.93 * | |||
Head width | 0.97 * | |||
Head area | 0.62 | |||
Head outline | 0.83 | |||
Ellipticity | 0.72 | |||
Rugosity | −0.69 | |||
Elongation | 0.72 | |||
Regularity | 0.89 * | |||
Midpiece length | 0.70 | |||
Midpiece width | 0.39 | |||
Midpiece area | 0.65 | |||
Midpiece outline | 0.72 * | |||
Tail length | 0.39 | |||
Characteristic root (λ) and explained variance (%) | 4.78 (36.8) | 3.66 (28.2) | 1.53 (11.8) | 1.01 (7.8) |
Spermatozoa Subpopulation | ||
---|---|---|
Spermatozoa Morphometric Head and Midpiece Parameters Mean ± SD | S1 | S2 |
n (%) | 942 (55.71) | 749 (44.29) |
Head length (µm) | 10.16 ± 0.65 | 10.77 ± 0.68 |
Head width (µm) | 5.44 ± 0.38 | 5.45 ± 0.35 |
Midpiece outline (µm) | 29.67 ± 1.17 | 32.66 ± 1.09 |
Regularity | 0.943 ± 0.02 | 0.941 ± 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Žaja, I.Ž.; Vince, S.; Butković, I.; Senaši, K.; Milas, N.P.; Malarić, K.; Lojkić, M.; Folnožić, I.; Tur, S.M.; Kreszinger, M.; et al. The Distribution of Boars Spermatozoa in Morphometrically Distinct Subpopulations after In Vitro Exposure to Radiofrequency Electromagnetic Radiation at 2500 MHz and Their Motility. Animals 2024, 14, 828. https://doi.org/10.3390/ani14060828
Žaja IŽ, Vince S, Butković I, Senaši K, Milas NP, Malarić K, Lojkić M, Folnožić I, Tur SM, Kreszinger M, et al. The Distribution of Boars Spermatozoa in Morphometrically Distinct Subpopulations after In Vitro Exposure to Radiofrequency Electromagnetic Radiation at 2500 MHz and Their Motility. Animals. 2024; 14(6):828. https://doi.org/10.3390/ani14060828
Chicago/Turabian StyleŽaja, Ivona Žura, Silvijo Vince, Ivan Butković, Kim Senaši, Nina Poljičak Milas, Krešimir Malarić, Martina Lojkić, Ivan Folnožić, Suzana Milinković Tur, Mario Kreszinger, and et al. 2024. "The Distribution of Boars Spermatozoa in Morphometrically Distinct Subpopulations after In Vitro Exposure to Radiofrequency Electromagnetic Radiation at 2500 MHz and Their Motility" Animals 14, no. 6: 828. https://doi.org/10.3390/ani14060828
APA StyleŽaja, I. Ž., Vince, S., Butković, I., Senaši, K., Milas, N. P., Malarić, K., Lojkić, M., Folnožić, I., Tur, S. M., Kreszinger, M., Samardžija, M., Čipčić, S., Žura, N., Ostović, M., & Vilić, M. (2024). The Distribution of Boars Spermatozoa in Morphometrically Distinct Subpopulations after In Vitro Exposure to Radiofrequency Electromagnetic Radiation at 2500 MHz and Their Motility. Animals, 14(6), 828. https://doi.org/10.3390/ani14060828