Estimation of Adult Sex Ratio and Size-Related Sexual Dimorphism Based on Molecular Sex Determination in the Vulnerable La Selle Thrush, Turdus swalesi
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site and Data Collection
2.2. Molecular Analyses
2.3. Statistical Analysis
3. Results
Sexual Size Differences in the La Selle Thrush
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dunn, P.O.; Whittingham, L.A.; Pitcher, T.E. Mating systems, sperm competition, and the evolution of sexual dimorphism in birds. Evolution 2001, 55, 161–175. [Google Scholar]
- Dobreva, M.P.; Lynton-Jenkins, J.G.; Chaves, J.A.; Tokita, M.; Bonneaud, C.; Abzhanov, A. Sex identification in embryos and adults of Darwin’s Finches. PLoS ONE 2021, 16, e0237687. [Google Scholar] [CrossRef] [PubMed]
- Lewis, S.; Schreiber, E.A.; Daunt, F.; Schenk, G.A.; Orr, K.; Adams, A.; Wanless, S.; Hamer, K.C. Sex-specific foraging behaviour in tropical boobies: Does size matter? Ibis 2005, 147, 408–414. [Google Scholar] [CrossRef]
- Quinard, A.; Cézilly, F. Sex roles during conspecific territorial defence in the Zenaida dove, Zenaida aurita. Anim. Behav. 2012, 83, 47–54. [Google Scholar]
- Breitwisch, R. Mortality patterns, sex ratios, and parental investment in monogamous birds. In Current Ornithology; Power, D.M., Ed.; Springer: Boston, MA, USA, 1989; pp. 1–50. [Google Scholar]
- Tavecchia, G.; Pradel, R.; Boy, V.; Johnson, A.R.; Cézilly, F. Sex- and age-related variation in survival and cost of first reproduction in Greater flamingos. Ecology 2001, 82, 165–174. [Google Scholar] [CrossRef]
- Millar, C.D.; Reed, C.E.M.; Halverson, J.L.; Lambert, D.M. Captive management and molecular sexing of endangered avian species: An application to the Black stilt Himantopus novaezelandiae and hybrids. Biol. Conserv. 1997, 82, 81–86. [Google Scholar]
- Bermúdez-Humarán, L.G.; García-García, A.; Leal-Garza, C.H.; Riojas-Valdes, V.M.; Jaramillo-Rangel, G.; Montes-de-Oca-Luna, R. Molecular sexing of monomorphic endangered Ara birds. J. Exp. Zool. 2002, 292, 677–680. [Google Scholar] [CrossRef]
- Boulord, A.; Yang, X.-T.; Wang, T.-H.; Wang, X.-M.; Jiguet, F. Determining the sex of Reed Parrotbills Paradoxornis heudei from biometrics and variations in the estimated sex ratio, Chongming Dongtan Nature Reserve, China. Zool. Stud. 2011, 50, 560–565. [Google Scholar]
- Veran, S.; Beissinger, S.R. Demographic origins of skewed operational and adult sex ratios: Perturbation analyses of two-sex models. Ecol. Lett. 2009, 12, 129–143. [Google Scholar] [CrossRef] [PubMed]
- Lens, L.; Galbusera, P.; Brooks, T.; Waiyaki, E.; Schenck, T. Highly skewed sex ratios in the critically endangered Taita thrush as revealed by CHD genes. Biodivers. Conserv. 1998, 7, 869–873. [Google Scholar] [CrossRef]
- Rodrigues, J.F.M.; Coelho, M.T.P. Differences in movement pattern and detectability between males and females influence how common sampling methods estimate sex ratio. PLoS ONE 2016, 11, e0159736. [Google Scholar] [CrossRef]
- Amrhein, V.; Scaar, B.; Baumann, M.; Minéry, N.; Binnert, J.-P.; Korner-Nievergelt, F. Estimating adult sex ratios from bird mist netting data: Mist netting results on adult sex ratios. Methods Ecol. Evol. 2012, 3, 713–720. [Google Scholar] [CrossRef]
- VanderWerf, E.A.; Crampton, L.H.; Diegmann, J.S.; Atkinson, C.T.; Leonard, D.L. Survival estimates of wild and captive-bred released Puaiohi, an endangered Hawaiian thrush. Condor 2014, 116, 609–618. [Google Scholar]
- Grüebler, M.; Schuler, H.; Müller, M.; Spaar, R.; Horch, P.; Naef-Daenzer, B. Female biased mortality caused by anthropogenic nest loss contributes to population decline and adult sex ratio of a meadow bird. Biol. Conserv. 2008, 141, 3040–3049. [Google Scholar]
- Heinsohn, R.; Olah, G.; Webb, M.; Peakall, R.; Stojanovic, D. Sex ratio bias and shared paternity reduce individual fitness and population viability in a critically endangered parrot. J. Anim. Ecol. 2019, 88, 502–510. [Google Scholar] [PubMed]
- Risser, A.C. A technique for performing laparotomy on small birds. Condor 1971, 73, 376–379. [Google Scholar] [CrossRef]
- Fletcher, K.L.; Hamer, K.C. Sexing Terns Using Biometrics: The advantage of within-pair comparisons. Bird Study 2003, 50, 78–83. [Google Scholar] [CrossRef]
- Daniel, C.; Millar, C.D.; Ismar, S.M.H.; Stephenson, B.M.; Hauber, M.E.; Daniel, C.; Millar, C.D.; Ismar, S.M.H.; Stephenson, B.M.; Hauber, M.E. Evaluating molecular and behavioural sexing methods for the Australasian gannet (Morus serrator). Aust. J. Zool. 2007, 55, 377–382. [Google Scholar] [CrossRef]
- Griffiths, R.; Daan, S.; Dijkstra, C. Sex identification in birds using two CHD genes. Proc. R. Soc. B Biol. Sci. 1996, 263, 1251–1256. [Google Scholar]
- Ellegren, H.; Sheldon, B.C. New tools for sex identification and the study of sex allocation in birds. Trends Ecol. Evol. 1997, 12, 255–259. [Google Scholar]
- Dai, Y.; Lin, Q.; Fang, W.; Zhou, X.; Chen, X. Noninvasive and nondestructive sampling for avian microsatellite genotyping: A case study on the vulnerable Chinese egret (Egretta eulophotes). Avian Res. 2015, 6, 24. [Google Scholar] [CrossRef]
- Maurer, G.; Beck, N.; Double, M.C. A ‘feather-trap’ for collecting DNA samples from birds. Mol. Ecol. Resour. 2010, 10, 129–134. [Google Scholar] [CrossRef]
- Yannic, G.; Sermier, R.; Aebischer, A.; Gavrilo, M.V.; Gilg, O.; Miljeteig, C.; Sabard, B.; Strøm, H.; Pouivé, E.; Broquet, T. Description of microsatellite markers and genotyping performances using feathers and buccal swabs for the Ivory gull (Pagophila eburnea): Feather and swab genotyping performances. Mol. Ecol. Resour. 2011, 11, 877–889. [Google Scholar] [CrossRef]
- Costantini, V.; Guaricci, A.C.; Laricchiuta, P.; Rausa, F.; Lacalandra, G.M. DNA sexing in Humboldt penguins (Spheniscus humboldti) from feather samples. Anim. Reprod. Sci. 2008, 106, 162–167. [Google Scholar] [CrossRef]
- Cambrone, C.; Motreuil, S.; Reyes, F.O.; Landestoy, M.A.; Cézilly, F.; Bezault, E. Obtaining DNA samples from sensitive and endangered bird species: A comparison of saliva and blood samples. Ardeola 2022, 69, 311–326. [Google Scholar] [CrossRef]
- Taberlet, P.; Waits, L.P.; Luikart, G. Noninvasive genetic sampling: Look before you leap. Trends Ecol. Evol. 1999, 14, 323–327. [Google Scholar] [CrossRef] [PubMed]
- Landers, T.J.; Dennis, T.E.; Hauber, M.E. Gender assignment of Westland petrels (Procellaria westlandica) using linear discriminant function analysis. Wilson J. Ornithol. 2011, 123, 720–725. [Google Scholar] [CrossRef]
- Ayala-Pérez, V.; Carmona, R.; Baker, A.J.; Farmer, A.H.; Uraga, R.F.; Arce, N. Phenotypic sexing of Marbled godwits (Limosa fedoa): A molecular validation. Waterbirds 2013, 36, 418–425. [Google Scholar] [CrossRef]
- Jakubas, D.; Wojczulanis-Jakubas, K.; Kulaszewicz, I. Factors affecting haematological variables and body mass of Reed warblers (Acrocephalus scirpaceus) and Sedge warblers (A. schoenobaenus). Ann. Zool. Fenn. 2013, 50, 146–157. [Google Scholar] [CrossRef]
- Montalvo, A.E.; Powell, R.A.; MACdonald, M.D.; Ransom, D., Jr.; Lopez, R.R. A morphometric sex determination model for adult Greater roadrunners (Geococcyx californianus). Wildl. Soc. Bull. 2014, 38, 837–841. [Google Scholar] [CrossRef]
- Nana, E.D.; Munclinger, P.; Ferenc, M.; Sedláček, O.; Albrecht, T.; Hořák, D. Sexing monomorphic western mountain greenbuls on Mount Cameroon using morphometric measurements. Afr. Zool. 2014, 49, 247–252. [Google Scholar] [CrossRef]
- Yannic, G.; Broquet, T.; Strøm, H.; Aebischer, A.; Dufresnes, C.; Gavrilo, M.V.; Grant Gilchrist, H.; Mallory, M.L.; Guy Morrison, R.I.; Sabard, B.; et al. Genetic and morphological sex identification methods reveal a male-biased sex ratio in the Ivory gull Pagophila eburnea. J. Ornithol. 2016, 157, 861–873. [Google Scholar] [CrossRef]
- Petracci, P.F.; Burgos, J.M.; López, G.C.; Delhey, K.; Carrizo, M.; Sarria, R.; Sotelo, M.; Somoza, G.M.; Sala, L.F.L. Field sexing Olrog’s gull (Larus atlanticus) using morphometry. Waterbirds 2018, 41, 411–416. [Google Scholar] [CrossRef]
- Kirwan, G.M.; Levesque, A.; Oberle, M.; Sharpe, C.J. Birds of the West Indies: Lynx and BridLife International Field Guides; Lynx Edicions: Barcelona, Spain, 2019. [Google Scholar]
- Wetmore, A. A thrush new to science from Haiti. Proc. Biol. Soc. Wash. 1927, 40, 55–56. [Google Scholar]
- Stockton de Dod, A. Aves de República Dominicana; Museo Nacional de Historia Natural: Santo Domingo, Dominican Republic, 1978. [Google Scholar]
- Stockton de Dod, A. Endangered and Endemic Birds of the Dominican Republic; Cypress House: Fort Bragg, CA, USA, 1992. [Google Scholar]
- Graves, G.R.; Olson, S.L. A new subspecies of Turdus swalesi (aves: Passeriformes: Muscïcapidae) from the Dominican Republic. Proc. Biol. Soc. Wash. 1986, 99, 580–583. [Google Scholar]
- Birdlife International. Turdus swalesi. The IUCN Red List of Threatened Species 2021: E.T22708955A179861776. 2021. Available online: http://nabanding.net/wp-content/uploads/2012/04/Passereaux-et-de-Pass%C3%A9riformes.pdf (accessed on 16 June 2023).
- Dolisca, F.; McDaniel, J.M.; Teeter, L.D. Farmers’ perceptions towards forests: A case study from Haiti. For. Policy Econ. 2007, 9, 704–712. [Google Scholar] [CrossRef]
- Hedges, S.B.; Cohen, W.B.; Timyan, J.; Yang, Z. Haiti’s biodiversity threatened by nearly complete loss of primary forest. Proc. Natl. Acad. Sci. USA 2018, 115, 11850–11855. [Google Scholar] [CrossRef] [PubMed]
- Ellegren, H.; Gustafsson, L.; Sheldon, B.C. Sex ratio adjustment in relation to paternal attractiveness in a wild bird population. Proc. Natl. Acad. Sci. USA 1996, 93, 11723–11728. [Google Scholar] [CrossRef]
- Tomasulo, A.M.; Del Lama, S.N.; Rocha, C.D. Molecular method of sexing waterbirds without DNA extraction. Waterbirds 2002, 25, 245–248. [Google Scholar] [CrossRef]
- Huynen, L.; Millar, C.D.; Lambert, D.M. A DNA test to sex ratite birds. Mol. Ecol. 2002, 11, 851–856. [Google Scholar] [CrossRef]
- Ritter, P.; Miyaki, C.Y.; de Leon, A.P.; Alves, M.A.S. Sex determination using CHD-1 gene and sexual dimorphism in the White-necked thrush (Turdus albicollis) in the atlantic forest at Ilha Grande, Rio de Janeiro, southeastern Brazil. Ornitol. Neotrop. 2003, 14, 433–440. [Google Scholar]
- Redlisiak, M.; Mazur, A.; Remisiewicz, M. Size dimorphism and sex determination in the song Thrush (Turdus philomelos) migrating through the southern Baltic Coast. Ann. Zool. Fenn. 2020, 57, 31–40. [Google Scholar] [CrossRef]
- Bond, J. Nidification of the passerine birds of Hispaniola. Wilson Bull. 1943, 55, 115–125. [Google Scholar]
- Townsend, J.M.; Rimmer, C.C.; Latta, S.C.; Mejia, D.; Garrido, E.G.; McFarland, K.P. Nesting ecology and nesting success of resident and endemic tropical birds in the Dominican Republic. Wilson J. Ornithol. 2018, 130, 849–858. [Google Scholar] [CrossRef]
- Allan, R.K.; Wiley, J.W.; Latta, S.C.; Ottenwalder, J.A. The Birds of Hispaniola, Haiti and the Dominican Republic: An Annotated Checklist; British Ornithologists’ Union: The Natural History Museum: Tring, Herts, UK, 2003. [Google Scholar]
- Ndlovu, M. Birdcall lures improve passerine mist-net captures at a sub-tropical african savanna. PLoS ONE 2018, 13, e0199595. [Google Scholar] [CrossRef]
- CRBPO. Guide de Saisie des Données Issues du Baguage d’Oiseaux v.4; Museum National d’Hiatoire Naturelle: Paris, France, 2018. [Google Scholar]
- North American Banding Council. Guide d’Etude des Bagueurs Nord-Américains; North American Banding Council: Point Reyes Station, CA, USA, 2001. Available online: http://www.pwrc.nbs.gov/bbl/resource/nabc.html (accessed on 10 September 2019).
- Owen, J.C. Collecting, processing, and storing avian blood: A review: Avian blood collection techniques. J. Field Ornithol. 2011, 82, 339–354. [Google Scholar] [CrossRef]
- Bayer, D.M.; Mohan, K.; Jayakumar, K.; Manafi, M.; Pavithra, B.H. Simple cannulation procedure for serial blood sampling through cutaneous ulnar vein in chickens. J. Appl. Anim. Welf. Sci. 2012, 15, 91–100. [Google Scholar] [CrossRef]
- Horváth, M.B.; Martínez-Cruz, B.; Negro, J.J.; Kalmár, L.; Godoy, J.A. An overlooked DNA source for non-invasive genetic analysis in birds. J. Avian Biol. 2005, 36, 84–88. [Google Scholar] [CrossRef]
- Speller, C.F.; Nicholas, G.P.; Yang, D.Y. Feather barbs as a good source of MtDNA for bird species identification in forensic wildlife investigations. Investig. Genet. 2011, 2, 16. [Google Scholar] [CrossRef]
- Cambrone, C. Biology and Population Genetics of the White-Crowned Pigeon Patagioenas leucocephala, and the Scaly-Naped Pigeon P. squamosa: Implications for Conservation. Ph.D. Thesis, French West Indies University, Guadeloupe, France, 2022; p. 252. [Google Scholar]
- Fridolfsson, A.-K.; Ellegren, H. A simple and universal method for molecular sexing of non-ratite birds. J. Avian Biol. 1999, 30, 116–121. [Google Scholar] [CrossRef]
- Dechaume-Moncharmont, F.-X.; Monceau, K.; Cezilly, F. Sexing birds using discriminant function analysis: A critical appraisal. Auk 2011, 128, 78–86. [Google Scholar] [CrossRef]
- Burnham, K.P.; Anderson, D.R.; Huyvaert, K.P. AIC model selection and multimodel inference in behavioral ecology: Some background, observations, and comparisons. Behav. Ecol. Sociobiol. 2011, 65, 23–35. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 10 April 2023).
- Madsen, V. Sex-determination of continental European robins Erithacus r. rubecula. Bird Study 1997, 44, 239–244. [Google Scholar] [CrossRef]
- Von Kossel de Andrade Silva, K.; Lôbo-Hajdu, G.; Alice, S.; Alves, M. Sex determination in Turdus amaurochalinus (passeriformes: Muscicapidae): Morphometrical analysis supported by CHD gene. Rev. Biol. Trop. 2011, 59, 789–794. [Google Scholar] [CrossRef]
- Covino, K.M. Determination of sex using morphometrics in the Northern waterthrush (Parkesia noveboracensis) and Swainson’s thrush (Catharus ustulatus). Wilson J. Ornithol. 2015, 127, 706–711. [Google Scholar] [CrossRef]
- Harvey, M.G.; Bonter, D.N.; Stenzler, L.M.; Lovette, I.J. A comparison of plucked feathers versus blood samples as DNA sources for molecular sexing. J. Field Ornithol. 2006, 77, 136–140. [Google Scholar] [CrossRef]
- Arnoux, E.; Eraud, C.; Navarro, N.; Tougard, C.; Thomas, A.; Cavallo, F.; Vetter, N.; Faivre, B.; Garnier, S. Morphology and genetics reveal an intriguing pattern of differentiation at a very small geographic scale in a bird species, the Forest thrush Turdus lherminieri. Heredity 2014, 113, 514–525. [Google Scholar] [CrossRef]
- Wojczulanis-Jakubas, K.; Wietrzykowski, J.; Jakubas, D. Response of Reed warbler and Sedge warbler to acoustic playback in relation to age, sex, and body condition. J. Ornithol. 2016, 157, 137–143. [Google Scholar] [CrossRef]
- Chin, S.; McKinnon, E.A.; Fraser, K.C.; Rotenberg, J.; Stutchbury, B.J.M. No sex bias in Wood thrushes (Hylocichla mustelina) captured by using audio playback during the non-breeding season. Wilson J. Ornithol. 2014, 126, 599–605. [Google Scholar] [CrossRef]
- Morrison, C.A.; Robinson, R.A.; Clark, J.A.; Gill, J.A. Causes and consequences of spatial variation in sex ratios in a declining bird species. J. Anim. Ecol. 2016, 85, 1298–1306. [Google Scholar] [CrossRef]
- Uller, T. Sex-specific sibling interactions and offspring fitness in vertebrates: Patterns and implications for maternal sex ratios. Biol. Rev. 2006, 81, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-Y.; Kokko, H. Intersexual resource competition and the evolution of sex-biased dispersal. Front. Ecol. Evol. 2019, 7, 111. [Google Scholar] [CrossRef]
- Cézilly, F.; Préault, M.; Dubois, F.; Faivre, B.; Patris, B. Pair-bonding in birds and the active role of females: A critical review of the empirical evidence. Behav. Process. 2000, 51, 83–92. [Google Scholar] [CrossRef]
- Végvári, Z.; Katona, G.; Vági, B.; Freckleton, R.P.; Gaillard, J.-M.; Székely, T.; Liker, A. Sex-biased breeding dispersal is predicted by social environment in birds. Ecol. Evol. 2018, 8, 6483–6491. [Google Scholar] [CrossRef] [PubMed]
- Aubry, Y.; Desrochers, A.; Seutin, G. Response of Bicknell’s thrush (Catharus bicknelli) to boreal silviculture and forest stand edges: A radio-tracking study. Can. J. Zool. 2011, 89, 474–482. [Google Scholar] [CrossRef]
- Ricklefs, R.E. Comparative demography of new world populations of thrushes (Turdus spp.). Ecol. Monogr. 1997, 67, 23–43. [Google Scholar] [CrossRef]
- Székely, T.; Liker, A.; Freckleton, R.P.; Fichtel, C.; Kappeler, P.M. Sex-biased survival predicts adult sex ratio variation in wild birds. Proc. R. Soc. B Biol. Sci. 2014, 281, 20140342. [Google Scholar] [CrossRef]
- Robinson, R.A.; Kew, J.J.; Kew, A.J. Survival of suburban Blackbirds Turdus merula varies seasonally but not by sex. J. Avian Biol. 2010, 41, 83–87. [Google Scholar] [CrossRef]
- Frey, S.J.K.; Rimmer, C.C.; McFarland, K.P.; Menu, S. Identification and sex determination of Bicknell’s thrushes using morphometric data. J. Field Ornithol. 2008, 79, 408–420. [Google Scholar] [CrossRef]
- Dilger, W.C. Hostile behavior and reproductive isolating mechanisms in the avian genera Catharus and Hylocichla. Auk 1956, 73, 313–353. [Google Scholar] [CrossRef]
- Martin, S.G. The agonistic behavior of Varied Thrushes (Ixoreus naevius) in winter assemblages. Condor 1970, 72, 452–459. [Google Scholar] [CrossRef]
- Loonstra, A.H.J.; Verhoeven, M.A.; Senner, N.R.; Hooijmeijer, J.C.E.W.; Piersma, T.; Kentie, R. Natal habitat and sex-specific survival rates result in a male-biased adult sex ratio. Behav. Ecol. 2019, 30, 843–851. [Google Scholar] [CrossRef] [PubMed]
- Davalos, L.M.; Brooks, T. Parc National La Visite, Haiti: A last refuge for the country’s montane birds. Cotinga 2001, 16, 36–39. [Google Scholar]
- Rimmer, C.C.; Goetz, J.E.; Garrido-Gomez, E.; Brocca, J.L.; Bayard, P.; Hilaire, J.V. Avifaunal surveys in La Visite National Park—Last vestiges of montane broadleaf forest in eastern Haiti. J. Carib. Ornithol. 2010, 23, 31–43. [Google Scholar]
- Donald, P.F. Adult sex ratios in wild bird populations. Ibis 2007, 149, 671–692. [Google Scholar]
- Vallès, H.; Labaude, S.; Bezault, E.; Browne, D.; Deacon, A.; Guppy, R.; Pujadas Clavel, A.; Cézilly, F. Low contribution of Caribbean-based researchers to academic publications on biodiversity conservation in the insular Caribbean. Perspect. Ecol. Conserv. 2021, 19, 443–453. [Google Scholar] [CrossRef]
- Exantus, J.-M.; Beaune, D.; Cézilly, F. The relevance of urban agroforestry and urban remnant forest for avian diversity in a densely-populated developing country: The case of Port-au-Prince, Haiti. Urban For. Urban Green. 2021, 63, 127217. [Google Scholar] [CrossRef]
- Saint-Louis, L.J.; Paul, J.-F.; Beaune, D.; Célestin, W.; Cézilly, F. A baseline survey of waterbirds in five major wetlands of Haiti. Waterbirds 2021, 44, 370–375. [Google Scholar] [CrossRef]
Males | Females | Percentage of Females | |
---|---|---|---|
Breeding season | 2 | 7 | 77.78% |
Non-breeding season | 43 | 14 | 24.56% |
Males (n = 29) | Females (n = 14) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Median Value | IQR | Min | Max | Median Value | IQR | Min | Max | z | p | |
TarL | 46.3 | 44.3–48.0 | 40.3 | 52.4 | 46.1 | 43.8–49.3 | 42 | 55.5 | 0.29 | 0.7755 |
TarW | 33 | 33.0–33.6 | 31 | 34 | 33 | 33.0–33.0 | 31 | 34 | 1.62 | 0.1031 |
BWN | 7.2 | 6.8–8.0 | 5.4 | 10.4 | 7.4 | 6.9–7.9 | 6.1 | 8.5 | 0.27 | 0.7849 |
BWT | 2.2 | 2.0–2.4 | 2 | 2.9 | 2.2 | 2.1–2.4 | 2 | 2.9 | 0.52 | 0.606 |
BL | 21.8 | 20.2–23.4 | 18.6 | 27 | 22.4 | 20.1–23.9 | 19.5 | 27.3 | 0.43 | 0.6686 |
HBL | 56.9 | 55.1–58.5 | 50 | 60 | 57 | 55.5–58.7 | 50.5 | 61.4 | 0.31 | 0.7557 |
WCL | 128 | 126–130 | 120 | 132 | 124 | 120–130 | 120 | 130 | 2.38 | 0.0173 |
TaiL | 110 | 105–110 | 99 | 120 | 100 | 98–109 | 90 | 110 | 3.11 | 0.0019 |
W | 120 | 110–125 | 98 | 135 | 120 | 110–120 | 90 | 150 | 0.36 | 0.707 |
Goodness of Fit | Model Selection | |||
---|---|---|---|---|
Independent variables | X2 | p | AICc | Δ AICc |
Tail length | 12.15 | 0.0005 | 46.42 | - |
Tail length and tarsus width | 14.07 | 0.0009 | 46.81 | 0.41 |
Wing chord length and tarsus width | 10.64 | 0.0049 | 50.24 | 3.82 |
Wing chord length | 7.16 | 0.0075 | 51.41 | 4.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Exantus, J.-M.; Bezault, E.; Cambrone, C.; Cézilly, F. Estimation of Adult Sex Ratio and Size-Related Sexual Dimorphism Based on Molecular Sex Determination in the Vulnerable La Selle Thrush, Turdus swalesi. Animals 2024, 14, 842. https://doi.org/10.3390/ani14060842
Exantus J-M, Bezault E, Cambrone C, Cézilly F. Estimation of Adult Sex Ratio and Size-Related Sexual Dimorphism Based on Molecular Sex Determination in the Vulnerable La Selle Thrush, Turdus swalesi. Animals. 2024; 14(6):842. https://doi.org/10.3390/ani14060842
Chicago/Turabian StyleExantus, Jean-Marry, Etienne Bezault, Christopher Cambrone, and Frank Cézilly. 2024. "Estimation of Adult Sex Ratio and Size-Related Sexual Dimorphism Based on Molecular Sex Determination in the Vulnerable La Selle Thrush, Turdus swalesi" Animals 14, no. 6: 842. https://doi.org/10.3390/ani14060842
APA StyleExantus, J. -M., Bezault, E., Cambrone, C., & Cézilly, F. (2024). Estimation of Adult Sex Ratio and Size-Related Sexual Dimorphism Based on Molecular Sex Determination in the Vulnerable La Selle Thrush, Turdus swalesi. Animals, 14(6), 842. https://doi.org/10.3390/ani14060842