Effects of Multistrain Probiotic Supplementation on Sows’ Emotional and Cognitive States and Progeny Welfare
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Farm, Animals, Housing, and Management
2.2. Experimental Design, Treatments, and Feeding Practices
2.3. Sow Assessments
2.4. Piglet Assessments
2.5. Statistical Analysis
3. Results
3.1. General Observations
3.2. Sow Assessment
3.3. Piglet Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hayakawa, T.; Masuda, T.; Kurosawa, D.; Tsukahara, T. Dietary administration of probiotics to sows and/or their neonates improves the reproductive performance, incidence of post-weaning diarrhea and histopathological parameters in the intestine of weaned piglets. Anim. Sci. J. 2016, 87, 1501–1510. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, Y.; Li, M.; Wang, W.; Liu, Z.; Xi, C.; Huang, X.; Liu, J.; Huang, J.; Tian, D.; et al. Efficacy of probiotics on stress in healthy volunteers: A systematic review and meta-analysis based on randomized controlled trials. Brain Behav. 2020, 10, e01699. [Google Scholar] [CrossRef]
- Innamma, N.; Ngamwongsatit, N.; Kaeoket, K. The effects of using multi-species probiotics in late-pregnant and lactating sows on milk quality and quantity, fecal microflora, and performance of their offspring. Vet. World 2023, 10, 2055–2062. [Google Scholar] [CrossRef]
- Kritas, S.K.; Marubashi, T.; Filioussis, G.; Petridou, E.; Christodoulopoulos, G.; Burriel, A.R.; Tzivara, A.; Theodoridis, A.; Pískoriková, M. Reproductive performance of sows was improved by administration of a sporing bacillary probiotic (Bacillus subtilis C-3102). Anim. Sci. J. 2015, 93, 405–413. [Google Scholar] [CrossRef]
- Dam, S.A. From Belly to Brain: Investigating the Role of Gut Bacteria in Neurodevelopmental Disorders Using Rodent Models. Ph.D. Thesis, Radbound University, Nijmegen, The Netherlands, 15 December 2021. [Google Scholar]
- Budiño, F.E.L.; Vieira, R.F.N.; Mello, S.P.; Duarte, K.M.R. Behavior and performance of sows fed different levels of fiber and reared in individual cages or collective pens. An. Acad. Bras. Ciências 2014, 86, 2109–2119. [Google Scholar] [CrossRef] [PubMed]
- Sapkota, A.; Marchant-Forde, J.N.; Richert, B.T.; Lay, D.C. Including dietary fiber and resistant starch to increase satiety and reduce aggression in gestating sows. J. Anim. Sci. 2016, 94, 2117–2127. [Google Scholar] [CrossRef] [PubMed]
- Pol, F.; Kling-Eveillard, F.; Champigneulle, F.; Fresnay, E.; Ducrocq, M.; Courboulay, V. Human–animal relationship influences husbandry practices, animal welfare and productivity in pig farming. Animal 2021, 15, 100103. [Google Scholar] [CrossRef] [PubMed]
- Kraimi, N.; Dawkins, M.; Gebhardt-Henrich, S.G.; Velge, P.; Rychlik, I.; Volf, J.; Leterrier, C. Influence of the microbiota-gut-brain axis on behavior and welfare in farm animals: A review. Physiol. Behav. 2019, 210, 112658. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, P.J.; Cryan, J.F.; Dinan, T.G.; Clarke, G. Irritable bowel syndrome: A microbiome-gut-brain axis disorder? World J. Gastroenterol. 2014, 20, 14105–14125. [Google Scholar] [CrossRef] [PubMed]
- Olorocisimo, J.P.; Diaz, L.A.; Co, D.E.; Carag, H.M.; Ibana, J.A.; Velarde, M.C. Lactobacillus delbrueckii reduces anxiety-like behavior in zebrafish through a gut microbiome–brain crosstalk. Neuropharmacology 2023, 225, 109401. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Hou, C.; Zeng, X.; Qiao, S. The use of lactic acid bacteria as a probiotic in swine diets. Pathogens 2015, 1, 34–45. [Google Scholar] [CrossRef] [PubMed]
- Thananimit, S.; Pahumunto, N.; Teanpaisan, R. Characterization of short chain fatty acids produced by selected potential probiotic lactobacillus strains. Biomolecules 2022, 12, 1829. [Google Scholar] [CrossRef]
- Liang, S.T.; Wang, X.; Hu, J.; Luo, W.; Li, X.; Wu, Y.; Duan, F. Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive and biochemical aberrations caused by chronic restraint stress. Neuroscience 2015, 310, 561–577. [Google Scholar] [CrossRef]
- Chen, X.; Xu, J.; Ren, E.; Su, Y.; Zhu, W. Co-occurrence of early gut colonization in neonatal piglets with microbiota in the maternal and surrounding delivery environments. Anaerobe 2018, 49, 30–40. [Google Scholar] [CrossRef]
- Rooney, H.B.; Schmitt, O.; Courty, A.; Lawlor, P.G.; O’Driscoll, K. Like mother like child: Do fearful sows have fearful piglets? Animals 2021, 11, 1232. [Google Scholar] [CrossRef]
- Rutherford, K.M.; Piastowska-Ciesielska, A.; Donald, R.D.; Robson, S.K.; Ison, S.H.; Jarvis, S.; Lawrence, A.B. Prenatal stress produces anxiety prone female offspring and impaired maternal behaviour in the domestic pig. Physiol. Behav. 2014, 129, 255–264. [Google Scholar] [CrossRef]
- Rostagno, H.S.; Albino, F.L.T.; Hannas, M.I.; Donzele, J.L.; Sakomura, N.K.; Perazzo, F.G.; Saraiva, A.; Oliveira, R.F.; Barreto, S.L.T. Tabelas Brasileiras para Aves e Suínos—Composição de Alimentos e Exigências Nutricionais, 4th ed.; Universidade Federal de Viçosa: Viçosa, Brasil, 2017; pp. 1–469. [Google Scholar]
- Blokhuis, H.J. Welfare Quality. Welfare Quality: Assessment Protocol for Pigs (Sows and Piglets, Growing and Finishing Pigs); Welfare Quality Consortium: Lelystad, The Netherlands, 2009. [Google Scholar]
- Morgan, L.; Klement, E.; Novak, S.; Eliahoo, E.; Younis, A.; Sutton, G.A.; Raz, T. Effects of group housing on reproductive performance, lameness, injuries and saliva cortisol in gestating sows. Prev. Vet. Med. 2018, 160, 10–17. [Google Scholar] [CrossRef]
- Bolhuis, J.E.; Parmentier, H.K.; Schouten, W.G.P.; Schrama, J.W.; Wiegant, V.M. Effects of housing and individual coping characteristics on immune responses of pigs. Physiol. Behav. 2003, 79, 289–296. [Google Scholar] [CrossRef]
- Melotti, L.; Oostindjer, M.; Bolhuis, J.E.; Held, S.; Mendl, M. Coping personality type and environmental enrichment affect aggression at weaning in pigs. Appl. Anim. Behav. Sci. 2011, 133, 144–153. [Google Scholar] [CrossRef]
- Savignac, H.M.; Kiely, B.; Dinan, T.G.; Cryan, J.F. Bifidobacteria exert strain-specific effects on stress-related behavior and physiology in BALB/c mice. Neurogastroenterol. Motil. 2014, 26, 1615–1627. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, C.H.; Pereira, M.M.C.; Stefanello, T.B.; Mariani, A.B.; Camargo, N.T.; Cony, B.S.L.; Furtado, J.C.V.; Kipper, M.; Andretta, I. Effect of multi-strain probiotic on the performance of sows and their progeny. In Proceedings of the 14th International Symposium of Swine Industry (SINSUI 2022), Porto Alegre, BR, 17-19 May 2022; pp. 113–114. [Google Scholar]
- Zhang, M.Y.; Li, X.; Zhang, X.H.; Liu, H.G.; Li, J.H.; Bao, J. Effects of confinement duration and parity on stereotypic behavioral and physiological responses of pregnant sows. Physiol. Behav. 2017, 179, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Tatemoto, P.; Bernardino, T.; Rodrigues, F.A.M.L.; Zanella, A.J. Does high stereotypic behavior expression affect productivity measures in sows? Rev. Bras. Zootec. 2019, 48, 1–10. [Google Scholar] [CrossRef]
- Wang, H.; Braun, C.; Murphy, E.F.; Enck, P. Bifidobacterium longum 1714™ strain modulates brain activity of healthy volunteers during social stress. Am. J. Gastroenterol. 2019, 114, 1152. [Google Scholar] [CrossRef] [PubMed]
- Mayer, E.A.; Tillisch, K.; Gupta, A. Gut/brain axis and the microbiota. J. Clin. Investig. 2015, 3, 926–938. [Google Scholar] [CrossRef] [PubMed]
- Agirman, G.; Hsiao, E.Y. SnapShot: The microbiota-gut-brain axis. Cell 2021, 184, 2524. [Google Scholar] [CrossRef] [PubMed]
- Powell, C.; Hemsworth, L.M.; Rice, M.; Hemsworth, P.H. Comparison of methods to assess fear of humans in commercial breeding gilts and sows. Appl. Anim. Behav. Sci. 2016, 181, 70–75. [Google Scholar] [CrossRef]
- Prunier, A.; Tallet, C. Endocrine and behavioural responses of sows to human interactions and consequences on reproductive performance. In The Gestating and Lactating Sow, 1st ed.; Farmer, C., Ed.; Wageningen Academic: Wageningen, The Netherlands, 2015; Volume 1, pp. 279–295. [Google Scholar]
- Munsterhjelm, C.; Brunberg, E.; Heinonen, M.; Keeling, L.; Valros, A. Stress measures in tail biters and bitten pigs in a matched case-control study. Anim. Welf. 2013, 22, 331–338. [Google Scholar] [CrossRef]
- Leliveld, L.M.C.; Düpjan, S.; Tuchscherer, A.; Puppe, B. Vocal correlates of emotional reactivity within and across contexts in domestic pigs (Sus scrofa). Physiol. Behav. 2017, 181, 117–126. [Google Scholar] [CrossRef]
- Tatemoto, P.; Bernardino, T.; Morrone, B.; Queiroz, M.R.; Zanella, A.J. Stereotypic behavior in sows is related to emotionality changes in the offspring. Front. Vet. Sci. 2020, 7, 79. [Google Scholar] [CrossRef]
- Muns, R.; Malmkvist, J.; Larsen, M.L.V.; Sørensen, D.; Pedersen, L.J. High environmental temperature around farrowing induced heat stress in crated sows. J. Anim. Sci. 2016, 94, 377–384. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, L.; Yin, G. Evaluation of behavior and affective state of different-parity sows with strong/weak pupil light reflex. Animals. 2022, 12, 1184. [Google Scholar] [CrossRef]
- Marchant, J.N.; Broom, D.M. Factors affecting posture-changing in loose-housed and confined gestating sows. Anim. Sci. 1996, 63, 477–485. [Google Scholar] [CrossRef]
- Nandam, L.S.; Brazel, M.; Zhou, M.; Jhaveri, D.J. Cortisol and major depressive disorder—Translating findings from humans to animal models and back. Front. Psychiatry 2020, 10, 974. [Google Scholar] [CrossRef] [PubMed]
- Kandola, A.; Lewis, G.; Osborn, D.P.J.; Stubbs, B.; Hayes, J.F. Depressive symptoms and objectively measured physical activity and sedentary behaviour throughout adolescence: A prospective cohort study. Lancet Psychiatry 2020, 7, 262–271. [Google Scholar] [CrossRef] [PubMed]
- Takada, M.; Nishida, K.; Katoaka-Kato, A.; Gondo, Y.; Ishikawa, H.; Suda, K.; Kawai, M.; Hoshi, R.; Watanabe, O.; Igarashi, T.; et al. Probiotic Lactobacillus casei strain Shirota relieves stress-associated symptoms by modulating the gut–brain interaction in human and animal models. Neurogastroenterol. Motil. 2016, 28, 1027–1036. [Google Scholar] [CrossRef]
- Tanida, M.; Imanishi, K.; Akashi, H.; Kurata, Y.; Chonan, O.; Naito, E.; Kunihiro, S.; Kawai, M.; Kato-kataoka, A.; Shibamoto, T. Injection of Lactobacillus casei strain S hirota affects autonomic nerve activities in a tissue-specific manner, and regulates glucose and lipid metabolism in rats. J. Diabetes Investig. 2014, 5, 153–161. [Google Scholar] [CrossRef]
- Laval, L.; Martin, R.; Natividad, J.N.; Chain, F.; Miquel, S.; De Maredsous, C.D.; Capronnier, S.; Sokol, H.; Verdu, E.F.; Van Hylckama Vlieg, J.E.T.; et al. Lactobacillus rhamnosus CNCM I-3690 and the commensal bacterium Faecalibacterium prausnitzii A2-165 exhibit similar protective effects to induced barrier hyper-permeability in mice. Gut Microbes 2015, 6, 1–9. [Google Scholar] [CrossRef]
- Inda, C.; Armando, N.G.; dos Santos Claro, P.A.; Silberstein, S. Endocrinology and the brain: Corticotropin-releasing hormone signaling. Endocr. Connect. 2017, 6, 6. [Google Scholar] [CrossRef]
- Hales, J.; Moustsen, V.A.; Nielsen, M.B.F.; Hansen, C.F. The effect of temporary confinement of hyperprolific sows in Sow Welfare and Piglet protection pens on sow behaviour and salivary cortisol concentrations. Appl. Anim. Behav. Sci. 2016, 183, 19–27. [Google Scholar] [CrossRef]
- Kim, J.S.; de La Serre, C.B. Diet, gut microbiota composition and feeding behavior. Physiol. Behav. 2018, 192, 177–181. [Google Scholar] [CrossRef]
- Petra, A.I.; Panagiotidou, S.; Hatziagelaki, E.; Stewart, J.M.; Conti, P.; Theoharides, T.C. Gut-microbiota-brain axis and its effect on neuropsychiatric disorders with suspected immune dysregulation. Clin. Ther. 2015, 37, 984–995. [Google Scholar] [CrossRef]
- Cryan, J.F.; Kenneth, J.O.; Caitlin, S.M.; Cowan, K.V.; Sandhu, T.F.S.; Bastiaanssen, M.B.; Martin, G.; Codagnone, S.C.; Fulling, C.; Gulubeva, A.V.; et al. The microbiota-gut-brain axis. Physiol. Rev. 2019, 99, 1877–2013. [Google Scholar] [CrossRef]
- Legan, T.B.; Lavoie, B.; Mawe, G.M. Direct and indirect mechanisms by which the gut microbiota influence host serotonin systems. Neurogastroenterol. Motil. 2022, 34, 10. [Google Scholar] [CrossRef]
- Simpson, C.A.; Diaz-Arteche, C.; Eliby, D.; Schwartz, O.S.; Simmons, J.G.; Cowan, C.S.M. The Gut microbiota in anxiety and depression—A systematic review. Clin. Psychol. Rev. 2021, 83, 1–79. [Google Scholar] [CrossRef]
- Carhart-Harris, R.L.; Nutt, D.J. Serotonin and brain function: A tale of two receptors. J. Psychopharmacol. 2017, 31, 1091–1120. [Google Scholar] [CrossRef]
- Choudhury, R.; Middelkoop, A.; Bolhuis, J.E.; Kleerebezem, M. Exploring the association between microbiota and behaviour in suckling piglets. Sci. Rep. 2022, 12, 12322. [Google Scholar] [CrossRef]
- Horback, K.M. Personality in swine. In Personality in Nonhuman Animals, 1st ed.; Vonk, J., Weiss, A., Kuczaj, S.A., Eds.; Springer: Cham, Switzerland, 2017; Volume 1, pp. 185–204. [Google Scholar] [CrossRef]
- Horback, K.M.; Parsons, T.D. Ontogeny of behavioral traits in commercial sows. Animal 2018, 12, 11. [Google Scholar] [CrossRef]
- O’Malley, C.I.; Turner, S.P.; D’Eath, R.B.; Steibel, J.P.; Bates, R.O.; Ernst, C.W.; Siegford, J.M. Animal personality in the management and welfare of pigs. Appl. Anim. Behav. Sci. 2019, 218, 104821. [Google Scholar] [CrossRef]
- Blavi, L.; Solà-Oriol, D.; Llonch, P.; López-Vergé, S.; Martín-Orúe, S.M.; Pérez, J.F. Management and feeding strategies in early life to increase piglet performance and welfare around weaning: A review. Animals 2021, 2, 302. [Google Scholar] [CrossRef] [PubMed]
- Trujillo-Ortega, M.E.; Mota-Rojas, D.; Juárez, O.; Villanueva-García, D.; Roldan-Santiago, P.; Becerril-Herrera, M.; Hernández_González, R.; Mora-Medina, P.; Alonso-Spilsbury, M.; Rosales, A.M.; et al. Porcine neonates failing vitality score: Physio-metabolic profile and latency to the first teat contact. Czech J. Anim. Sci. 2011, 56, 499–508. [Google Scholar] [CrossRef]
- Zebunke, M.; Repsilber, D.; Nürnberg, G.; Wittenburg, D.; Puppe, B. The backtest in pigs revisited–an analysis of intra-situational behaviour. Appl. Anim. Behav. Sci. 2015, 169, 17–25. [Google Scholar] [CrossRef]
- Curley, J.P.; Branchi, I.G.O.R. Ontogeny of stable individual differences. In Animal Personalities: Behavior, Physiology, and Evolution; Carere, C., Maestripieri, D., Eds.; University of Chicago Press: Chicago, IL, USA; London, UK, 2013; Volume 1, pp. 279–316, Chapter 10. [Google Scholar]
Variables | Treatments 1 | p-Value 2 | |
---|---|---|---|
Control | Probiotic | ||
Sows, number | 76 | 71 | - |
HAR 3 score—morning | 0.923 (0.221) | 0.400 (0.178) | 0.075 |
Vocalization HAR 4—morning | 0.153 (0.095) | 0.111 (0.081) | 0.736 |
HAR score—afternoon | 0.627 (0.056) | 0.433 (0.058) | 0.017 |
Vocalization HAR—afternoon | 0.538 (0.035) | 0.529 (0.036) | 0.859 |
HAR score—morning + afternoon | 0.645 (0.054) | 0.430 (0.055) | 0.005 |
Vocalization HAR—morning + afternoon | 0.514 (0.034) | 0.492 (0.035) | 0.659 |
Variables | Treatments 1 | p-Value 2 | |
---|---|---|---|
Control | Probiotic | ||
Sows, number | 66 | 56 | - |
Stereotypes 3 | |||
Sham chewing | 0.798 (0.050) | 0.771 (0.055) | 0.716 |
Tongue rolling | 0.127 (0.026) | 0.173 (0.029) | 0.245 |
Bar biting | 0.127 (0.025) | 0.135 (0.028) | 0.831 |
Floor licking | 0.116 (0.024) | 0.122 (0.026) | 0.873 |
Posture 4 | |||
Standing | 0.277 (0.024) | 0.347 (0.026) | 0.054 |
Lying | 0.780 (0.023) | 0.662 (0.025) | 0.008 |
Lean forward | 0.044 (0.011) | 0.045 (0.012) | 0.998 |
Sitting | 0.034 (0.010) | 0.051 (0.011) | 0.284 |
Change in posture | 1.137 (0.028) | 1.102 (0.031) | 0.408 |
Variables | Treatments * | p-Value 1 | |
---|---|---|---|
Control | Probiotic | ||
Sows, number | 7 | 7 | - |
Salivary cortisol, mcg/dL | 0.665 (0.084) | 0.335 (0.094) | 0.047 |
Blood serotonin, ng/dL | 151.5 (3.456) | 166.5 (4.340) | 0.034 |
Variables | Treatments 1 | p-Value 2 | |
---|---|---|---|
Control | Probiotic | ||
Piglets, number | 71 | 90 | - |
Escape attempts, number | 2.014 (0.161) | 1.833 (0.143) | 0.404 |
Time to first vocalization, sec | 20.32 (2.662) | 14.05 (2.292) | 0.076 |
Vocalizations, number | 1.971 (0.131) | 2.211 (0.116) | 0.175 |
Vocalizations, % of time | 34.36 (4.478) | 23.42 (3.824) | 0.065 |
Variables | Treatments 1 | p-Value 2 | |
---|---|---|---|
Control | Probiotic | ||
Piglets, number | 6 | 6 | - |
Thymus, % BW | 0.211 (0.033) | 0.216 (0.036) | 0.911 |
Heart, % BW | 0.565 (0.032) | 0.609 (0.035) | 0.386 |
Spleen, % BW | 0.519 (0.238) | 0.211 (0.261) | 0.406 |
Average adrenal 3, % BW | 0.141 (0.017) | 0.163 (0.019) | 0.426 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, M.M.C.; Andretta, I.; Franceschi, C.H.; Kipper, M.; Mariani, A.; Stefanello, T.; Carvalho, C.; Vieira, J.; Moura Rocha, L.; Ribeiro, A.M.L. Effects of Multistrain Probiotic Supplementation on Sows’ Emotional and Cognitive States and Progeny Welfare. Animals 2024, 14, 847. https://doi.org/10.3390/ani14060847
Pereira MMC, Andretta I, Franceschi CH, Kipper M, Mariani A, Stefanello T, Carvalho C, Vieira J, Moura Rocha L, Ribeiro AML. Effects of Multistrain Probiotic Supplementation on Sows’ Emotional and Cognitive States and Progeny Welfare. Animals. 2024; 14(6):847. https://doi.org/10.3390/ani14060847
Chicago/Turabian StylePereira, Melody Martins Cavalcante, Ines Andretta, Carolina Haubert Franceschi, Marcos Kipper, Alexandre Mariani, Thais Stefanello, Camila Carvalho, Júlio Vieira, Luiene Moura Rocha, and Andrea Machado Leal Ribeiro. 2024. "Effects of Multistrain Probiotic Supplementation on Sows’ Emotional and Cognitive States and Progeny Welfare" Animals 14, no. 6: 847. https://doi.org/10.3390/ani14060847
APA StylePereira, M. M. C., Andretta, I., Franceschi, C. H., Kipper, M., Mariani, A., Stefanello, T., Carvalho, C., Vieira, J., Moura Rocha, L., & Ribeiro, A. M. L. (2024). Effects of Multistrain Probiotic Supplementation on Sows’ Emotional and Cognitive States and Progeny Welfare. Animals, 14(6), 847. https://doi.org/10.3390/ani14060847