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Simple Summary: Animal movement trajectories are effective indicators of key information such as
social behavior, food acquisition, reproduction, migration, and survival strategies in animal behavior
analysis. However, manual observation is still relied upon in many analysis scenarios, which is
inefficient and error-prone. This paper introduces a computer vision-based method for tracking
animal trajectories, which enables monitoring and accurate acquisition of individual target animal
movement trajectories over extended periods, overcoming the limitations of manual observation. The
experiments demonstrate that the method is efficient and accurate in tracking animals in complex
scenes, providing essential basic data for animal behavior analysis and having a wide range of
potential applications.

Abstract: Animal tracking is crucial for understanding migration, habitat selection, and behavior
patterns. However, challenges in video data acquisition and the unpredictability of animal movements
have hindered progress in this field. To address these challenges, we present a novel animal tracking
method based on correlation filters. Our approach integrates hand-crafted features, deep features,
and temporal context information to learn a rich feature representation of the target animal, enabling
effective monitoring and updating of its state. Specifically, we extract hand-crafted histogram of
oriented gradient features and deep features from different layers of the animal, creating tailored
fusion features that encapsulate both appearance and motion characteristics. By analyzing the
response map, we select optimal fusion features based on the oscillation degree. When the target
animal’s state changes significantly, we adaptively update the target model using temporal context
information and robust feature data from the current frame. This updated model is then used for
re-tracking, leading to improved results compared to recent mainstream algorithms, as demonstrated
in extensive experiments conducted on our self-constructed animal datasets. By addressing specific
challenges in animal tracking, our method offers a promising approach for more effective and accurate
animal behavior research.

Keywords: animal tracking; deep feature; response map; feature fusion

1. Introduction

Animal tracking [1] is a pivotal technology extensively employed in ecology, zool-
ogy, and environmental science, and it can help provide insights into wildlife behavior,
migration patterns, territory utilization, and interactions within ecosystems. Moreover, it
extends into various domains such as resource management, wildlife conservation, and the
prediction of disease spread, and these applications provide crucial additional information
about the behavior of plants and animals and the health of ecosystems. This technology
has progressed significantly over the past few decades, covering many species from small
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birds to large mammals. Currently, animal tracking technology comprises a spectrum of
methods, incorporating radio tracking, satellite tracking, GPS positioning, and approaches
based on computer vision. The ongoing advancement of these technologies empowers
researchers to systematically and accurately track the movement trajectories of animals,
thereby acquiring data pertinent to ecology and physiology.

In recent years, intelligent camera systems have propelled the increasing prominence
of computer vision-based animal tracking technology, which collects animal video data by
deploying smart cameras and then processes the video data using computer vision methods
to track specific animal targets; this process provides foundational data for subsequent
analyses of animal behavior. This approach eliminates the need for capturing animals,
avoiding the installation of sensors on the animals to collect data. It minimizes interference
with the animals to the greatest extent, allowing for data collection in a non-intrusive
manner. Moreover, it can collect data for all animals within the camera’s field of view,
reducing the cost associated with data acquisition. However, animal tracking technology
still faces a number of challenges due to the influences inherent in acquiring video data in
unfavorable environmental conditions.

In this paper, we propose a novel computer vision-based animal tracking method
(RFCEFT) that achieves robust animal trajectory tracking through a correlation filter frame-
work with response map analysis and adaptive feature updating; we utilize the following
strategies to achieve high-quality tracking of animals: since animals undergo continuous
morphological and scale changes during locomotion, and there are similarities between
their appearance and the field environment, a single feature is difficult to represent the ani-
mal model robustly, and we constructed two fusion features by simultaneously extracting
different layers of deep features and hand-crafted Histogram of Oriented Gradients (HOG)
feature in different combinations, which were used to adapt to the complex appearance
changes during animal locomotion. In the tracking stage, the two fusion features are used
to track the target separately. Subsequently, we analyze the response map of the tracking
results and select the tracking outcome with the optimal fusion feature based on the os-
cillation level of the response map as the predicted target position for the current frame.
We analyze the tracking results for each frame and update the model if the results are
deemed unreliable. Considering that the motion process of the target varies continuously
in the time series, we combine temporal context information with the robust features of the
current frame to obtain features for the updated model. Finally, we employ the updated
model for re-tracking to yield the ultimate result.

To summarize, the main contributions of this paper are as follows.

We propose an adaptive feature fusion mechanism to construct an optimal animal
representation model that blends the semantic information and discriminative advantages
of hand-crafted features and multiple layers of deep features to improve the representation
of features in complex environments and enhance tracking robustness.

We reformulate the reliability assessment methods. By analyzing the response map,
we actively employ two critical indicators within the response map, namely oscillation
amplitude and peak variation rate, to comprehensively evaluate the reliability of the
tracking results for the current frame, and to promptly monitor the changing state of the
target animal.

We have devised a re-tracking model that integrates temporal context information of
the target, along with the target’s robust feature and shallow features in the current frame.
This model is deployed for re-tracking when the tracking results are deemed unreliable.

Due to the lack of specialized animal tracking datasets, we collected specific animal
data from popular datasets. We also obtained partial animal videos from the internet
and annotated them ourselves, creating dedicated animal tracking datasets. We further
validated our proposed method on this animal dataset, and experimental results confirmed
the effectiveness of our tracker.
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2. Related Works

Traditional visual object tracking methods can be classified into generative and dis-
criminative approaches. However, with the growing interest and development of machine
learning techniques in recent years, a variety of machine learning methods are applied in
visual object tracking. Examples comprise support vector machines (SVM) [2], correlation
filter [3], convolutional neural networks (CNN) [4], recurrent neural networks (RNN) [5],
and Siamese neural networks [6]. Hence, the principal research approaches in the visual
object tracking field in recent years can be generally divided into two main categories:
those based on the correlation filter approach and those using the deep learning approach.

The concept of a correlation filter originated in the field of signal processing. Cor-
relation is an intuitive means to describe the similarity between two variables in signal
processing. Leveraging this principle, a filter template is trained using a correlation filter in
the context of target tracking. This template is then utilized for executing correlation-based
calculations with the target region. Consequently, the current frame’s object position is
identified as that corresponding to the maximum output response. Visual object tracking
based on correlation filter has yielded significant performance and established itself as one
of the most prominent frameworks in recent years.

In 2010, Bolme introduced the MOSSE [3], which paved the way for incorporating
correlation filter principles into the visual object tracking domain and exhibited outstand-
ing results. To avoid overfitting problems, CSK [7] introduces regularization terms and
kernel methods to convert the linear regression problem into a kernel ridge regression
problem [8], which improves the solution of the regression problem and increases the speed
of computation. KCF [9] uses HOG [10] features to characterize the target, improving the
target representation’s robustness. To estimate the target scale more flexibly, DSST [11]
proposes a three-dimensional filter consisting of a one-dimensional scale filter and a two-
dimensional position filter to achieve adaptive estimation of the target scale. A cyclic
sampling technique is commonly used in correlation filter methods, where training samples
are generated by cyclically shifting the original target. However, this practice often leads
to boundary effects [12]. To address these boundary effects, SRDCF [13] implements a
spatial regularization on the filter that significantly expands the search region, thereby
preserving a greater amount of true target information. BACF [14] increases the number
of true negative samples by expanding the search to crop small samples, AutoTrack [15]
employs local and global information from the response maps to achieve adaptive spatio-
temporal regularization. STTCF [16] incorporates a weight matrix into traditional spatial
regularization and introduces two long and short-term regularization terms to enhance the
performance of the tracker further.

Correlation filter tracking methods combined with deep learning have also been
widely developed to improve tracking quality further. HCF [17] proposes to use a pre-
trained convolutional neural network framework as a feature extractor, replacing traditional
hand-crafted features with deep models that have high-level semantic features. C-COT [18]
uses VGG [19] neural network to extract the target features, which effectively improves the
robustness of the target features. TCNN [20] utilizes multiple CNN models and builds them
into a tree structure for target tracking to enhance the reliability of the model. SINT [6] first
proposed a Siamese network-based tracking algorithm, through offline training, to learn a
matching function to be utilized for locating the target in subsequent frames. SiamFC [21]
adopts the tracking method of offline training and online fine-tuning, which maintains
tracking accuracy and improves tracking efficiency.

Benefiting from these works, we adopt correlation filtering as the matching mechanism,
but use a different approach to feature selection than traditional correlation filtering tracking
algorithms, taking advantage of the different characteristics of hand-crafted features and
deep features to complement each other’s strengths, in order to ensure that we can provide a
robust representation of a specific individual animal and improve the robustness of tracking.
Also different from classical deep learning methods, we extract three deep features from
different layers of the VGG network with the fully connected layer removed, and add
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temporal context information as a supplement when necessary to cope with the complex
and variable pose changes of the animal and improve the tracking accuracy.

3. Overview

The algorithm is divided into five parts: (1) use of the labeled data in the first frame
of the video sequence to train the correlation filter; (2) input of the target image into
the VGG19 network without the fully connected layer, extraction of the deep features of
the conv3-4 layer, conv4-4 layer, and conv5-4 layer, and extraction of the hand-crafted
feature HOG; (3) use of the combination of full deep features and the combination of
deep features and HOG feature to construct two fusion features, then selection of the best
fusion features by measuring the average peak-to-correlation energy and the maximum
peak of the response map; (4) the optimal fusion feature and the current frame image are
input into the correlation filter for correlation calculation, and the predicted position is
finally calculated by using the fast Fourier transform; and (5) for unreliable tracking results,
updating of the model, building of a new model, and evaluation of the confidence of the
updated tracking results to obtain the final tracking results. An overview of the algorithm
is shown in Figure 1.

Input Frame

Fusion Feature A Response map
Analysis

HOG Feature Feature Pool

P <
P <

s Multi-layer
f “ Deep Features
u -
’ ip—
v T Fusion Feature B
Pre-trained
VGG19 Net
Predicted
Model Update Position
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Tracking Reliability
Result Assessment
|:] Target bounding box e Direction of data flow

Figure 1. Overview of algorithm.

4. Method
4.1. DCF Framework
The tracking algorithm is based on the DCF framework. DCF is divided into three

stages: training, model update, and detection. In the training stage, the filter is trained by a
nonlinear regression equation:

min - [wa; — yil3 + Al[wl3 M
i
where ; is the data matrix and A is regularization parameter (A > 0). Using kernel methods

to transform a nonlinear space into a linear space and introducing coefficient « to replace
filter coefficients w to represent filter solutions within the dual vector space:

flx) = whx =} aik(x, x;) b))
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where k(x, x;) denotes the kernel function (commonly used kernel functions include Gaus-
sian kernel and polynomial kernel), and f(x) denotes the response map. The filter can be
obtained by the combined solution of (1) and (2):

h= 3)
kxx + A
where"denotes Fourier transform form in the frequency domain.
In the detection stage, the response map can be obtained using

R(z) = F (k= 0 &) 4)

where z denotes the samples in the search region, ® is the element-wise product, k*/ is the
result of the kernel correlation operation between the search image block z and the target
template x, and F~!(+) is inverse Fourier transform.

In the model update stage, using linear interpolation to update template x and the
filter coefficients «, calculated by

Xi=nXi+ (1 -n)Xi (5)

& = nd; + (1 —n)di_q (6)

where 7 denote learning rate, X; is the Fourier transform of the cyclic shift sample in i-th
frame, &; is the Fourier transform of the filter coefficient in i-th frame.

4.2. Feature Model

The continuous evolution of animals results in their colors and forms becoming in-
creasingly similar to their surrounding environment, as shown in Figure 2. Moreover, the
complex video capture environment significantly impedes the tracking task. As a result,
single features are difficult to model robustly for tracked animals. Consequently, we used a
multi-feature fusion approach to construct a feature model of the animal. HOG [10] features
exhibit strong illumination invariance and robust resistance to geometric deformations, and
HOG partially addresses the significant pose variations in animals and the interferences
introduced by the complex field conditions in video images; as the layers of the convolu-
tional neural network become deeper, the deeper features acquire richer semantics, thus
enhancing the robustness of the features; nevertheless, this progression comes at the cost of
gradually diminishing resolution, impacting the precision of localization. First, we extract
the hand-crafted feature HOG, denoted as Fyjo¢, then we extract deep features of diverse
depths from layers conv3-4, conv4-4, and conv5-4 of the pre-trained VGG19 convolutional
neural network model. These are denoted as Fconv3—4, Fconva—4, and Fconys—4, respec-
tively. We utilize various feature fusion methods to create two fusion features, consequently
enhancing the representational capacity in complex tracking scenarios. The fusion feature
is calculated as follows.

Eq = wi)xs + waxm + w3xy (7)

Ep = wyxy + wsxm + weXa (8)

Fconvs—4, Fconva—a and Fconys—4 are the shallow, medium and deep features ex-
tracted from the convolutional neural network, denoted by xs, xm, x4, respectively, Fyog
is the hand-crafted feature HOG, denoted by xj, and w; represents the weight parameter.
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Figure 2. Some wildlife exhibits a significant resemblance in appearance to its surrounding environment.

4.3. Reliability Assessment

During tracking, we input the constructed fusion features into a location filter to
calculate correlation, thereby obtaining the response map for the current frame. The
response map is a Gaussian response map centered on the target, with the peak point on the
response map indicating the predicted position of the target in the current frame. Except for
the peak, the values of points at other positions in the response map are relatively similar
but substantially deviate from the peak value, and a greater peak value corresponds to a
more reliable point position. Simultaneously, the overall oscillation level of the response
map can also reflect the reliability of the current result, a smaller oscillation level indicates
a more reliable tracking result. We utilize both the maximum response peak value Fy;ux
and the average peak-to-correlation energy (APCE) as integrated discriminative metrics to
assess the quality of the tracking results. The calculation method is as follows.

|Fmax - Fmin|2

APCE = 5
mean (Zw,h (Fw,h - Fmin) )

©)

where Fy;4y represents the peak value of the response map, F,,;, represents the valley value
of the response map, and F,, represents the corresponding response value at position
(w, h). In tracking, we independently compute the F,;x and APCE values for the two
fusion features. When the F,,;;y and APCE values calculated for the current frame meet the
criteria outlined in Equations (10) and (11), this implies a high degree of reliability in the
tracking results for both fusion features. Consequently, the tracking results for the current
frame are considered trustworthy, and we select the best outcome from the two fusion
features as the final result.

Fith > wy % Mean(Fpax) (10)

APCE;;, > ap X Mean(APCE) (11)

where F:l! represents the peak value of the i-th fusion feature, APCE;;, represents the
APCE value of the i-th fusion feature, a1 and a; are adjustment factors, and Mean(Fy)
denotes the mean value of the peaks in the response maps obtained from different fusion
features, and Mean(APCE) denotes the average APCE value of the response maps obtained
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from different fusion features; herein, the variables a1 and «; represent empirical thresholds,
with specific values assigned: a; = 0.8 and a, = 0.8. If the values of F;;,x and APCE do not
meet the criteria defined in the formula above, indicating that the tracking results for the
current frame lack reliability, the results for the current frame are discarded, and the model
update module is initiated.

4.4. Model Update

Unreliable tracking results during the tracking process can adversely affect the tracking
quality in subsequent frames, and the continuous accumulation of errors in each frame
may ultimately lead to tracking failure. Thus, we propose a model update strategy that
directly removes unreliable tracking results. Subsequently, employ a new tracking model
to retrack the target in the current frame, with the dependable results obtained through
this re-tracking process considered as the final target position for the current frame. In
light of the continuity of changes in the target over the time series during tracking, we
introduce a method to incorporate temporal context information of the target during the
re-tracking phase. Integrating the temporal contextual information of the target animal
with the robust features of the current frame, along with the shallow features possessing a
specific resolution and semantic information in the current frame, collectively constructs the
re-tracking feature model for the target animal. The re-tracking feature model is as follows:

Eupdate = W7 Xr-time + W8 Xr-current T W9Xs (12)

where X,tim. is the optimal tracking feature extracted in the case of robust tracking in a
short time interval, Xy-currenr is the optimal fusion feature extracted from the current frame,
Xs is the shallow deep feature of the conv3-3 layer of the current frame, and w; is the weight
parameter. An overview of the model update is shown in Figure 3.

Time tn ... t-1 t Model Update at time t

£ £ &£
¥ ! ‘Tracking Result

at time t

Feature Pool Feature Pool Feature Pool

}
@-@ @%

1

L

» »

G

Hand-crafted Feature(HCF) HOG

Low layer Feature(LLF) Conv3-4

[ Optimizer ]

Middle layer Feature(MLF) Conv4-4

Deep layer Feature(DLF) Conv5-4

Robust Fusion Feature

H 11 Ju.

Target bounding box

Direction of data flow
Figure 3. Illustration of model update.

4.5. Algorithm Flow

Combined with the above description of the key steps of our algorithm, the overall
process of the algorithm is shown in Algorithm 1.
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Algorithm 1 Proposed Tracking Algorithm

Input: Initial target position P;_1 = (x;_1,Y;—1, wt—1, h1—1), the correlation filter w

Output: Estimated object position

Repeat
1: Crop out the searching window in frame t centered at P; = (x,y;, wy, hy) and extract
HOG features and deep features;

. Construct two fusion features;

: For each sample compute response map R; using (4);

: Estimate the new position (x¢, y¢) on response map;

: Estimate the new scale of sample and extract feature;

: Compute Fyyy and APCE using (9);

. if Not satisfying formula (10) or (11) then

Update the model using (12);

. end if

: Estimate new position (x,y;) and scale of target;

11: Get the final position (x, y¢) of the current frame;

O N O U AW N

—_
(=)

Until End of video sequence

5. Experiments
5.1. Experimental environment

Our trackers are implemented in MATLAB 2022a on a computer with a 13th Gen
Intel(R) Core(TM) i5-13490F 2.50 GHz CPU and 16GB RAM and NVIDIA GeForce 4070 GPU.
The MatConvNet toolbox is used to extract the deep features from VGG-19. We use the
LaSOT benchmark official tools to test the algorithm and the comparison algorithm in
the same environment and analyze the performance of the algorithm using the One-Pass
Evolution (OPE) standard; at the same time, seven popular tracking algorithms in recent
years are used as a comparison: STRCF [22], DAHCEF [23], DSARCEF [24], BSTCF [25],
AutoTrack [15], ARCF [26], SiamFC [21].

5.2. Datasets

Currently, most public datasets in object tracking primarily focus on tracking generic
targets, with a conspicuous absence of specialized datasets for animal tracking. This
situation presents a substantial challenge to the progress of animal tracking. To ascertain
the robustness of our method, we established a dataset specifically designed for animal
tracking. We extracted animal data from existing generic object tracking datasets, including
OTB50 [27], OTB100 [28], and LaSOT [29], and supplemented our collection with animal
videos obtained from the internet and conducted manual annotations to create our animal
datasets. The datasets encompass twenty-nine animal categories, including bears, birds,
tigers, elephants, cats, deer, and others. It includes 54 video sequences comprising more
than ninety thousand frames. To ensure the effectiveness of the algorithm in real-world
scenarios, the datasets we use are captured in authentic environments. The datasets include
a broad spectrum of animal video data, spanning various video scenes such as wildlife
habitats, domestic settings, public environments, and other scenarios. This contributes
to validating the algorithm’s effectiveness in tracking animals across various scenarios.
Figure 4 presents a selection of data from the datasets.

To comprehensively evaluate the performance of tracker, as with the LaSOT datasets,
we label each sequence with 14 attributes, including out-of-view (OV), partial occlusion
(POC), deformation (DEF), motion blur (MB), aspect ratio change (ARC), full occlusion
(FOC), fast motion (FM), background clutter (BC), scale variation (SV), rotation (ROT), low
resolution (LR), viewpoint change (VC), illumination variation (IV), and camera motion
(CM). The attributions are defined in Table 1.
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Figure 4. Dataset overviews.
Table 1. Descriptions of 14 different attributes in animal datasets.

Attribute  Definition Attribute  Definition

M Abrupt motion of the camera vC Viewpoint affects target appearance significantly

ROT The target rotates in the image SV The ratio of bounding box is outside the rage

DEF The target is deformable during tracking BC The background has the similar appearance as the target

FOC The target is fully occluded in the sequence MB The target region is blurred due to target or camera motion

v The illumination in the target region changes ARC The ratio of bounding box aspect ratio is outside the rage

ov The target completely leaves the video frame LR The target box is smaller than 1000 pixels in at least one frame

POC The target is partially occluded in the sequence ~ FM The motion of the target is larger than the size of its bounding box

5.3. Evaluation Metrics

To objectively evaluate the effectiveness of the algorithm, we utilize precision and
success score provided by the OTB tool as evaluation metrics. Precision is defined as the
percentage of video frames in which the distance between the estimated center point of
the target bounding box generated by the tracking algorithm and the ground-truth center
point is less than a specified threshold. In our paper, the threshold is set at 20 pixels. The
success score is obtained by calculating the overlap score (OS). If the OS for a specific frame
exceeds the designated threshold, we consider that frame as successfully tracked. The
overall success score is the percentage of frames identified as successful out of all frames. In
our paper, the threshold is set at 0.5, given a tracked bounding box r; and the ground-truth
bounding extent r( of a target object, the overlap score is defined as

_ [Nt

= 13
|T’tUt0| (13)

where N and U represent the intersection and union operators, respectively, and |-| denotes
the number of pixels in a region.

5.4. Experimental Process

In the experiment, all data are derived from real-world scenarios. The experimental
procedure is illustrated in Figure 5, and during the operational process, the system simply
requires the sequential input of video data frame by frame. In the initial frame, we manually
delineated the individuals to be tracked. Subsequently, the system autonomously tracks
each frame, extracts position data, and thereby obtains the motion trajectory. Due to the
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limitations of target detection, which can only identify the category of the target without
accurately distinguishing specific individuals within a category, such as a particular deer in
a herd; manual selection of the target is necessary when tracking specific individuals. After
the initial frame, the system will automatically continue tracking the chosen target.

Video capture Video frame Target selection
extraction
Manual
selection
g Sl |
Further behavior Tracking result Frame-by-frame
analysis localization
Q:eeeeees .
— @ (o]
R o
I:l Target bounding box

Figure 5. System operation procedure.

5.5. Ablation Study

To verify the impact of adaptive fusion feature selection and feature update on tracking
performance used in this paper, we performed ablation experiments on the datasets. The
experimental results are presented in Table 2, where RFCFT-NU represents the algorithm
without feature update mechanism, and RFCFT-NF represents the algorithm without
adaptive fusion feature selection. It can be observed that, after removing the feature update
mechanism, the success rate decreased by 0.5%, and precision decreased by 1.4%. Similarly,
without adaptive fusion feature selection, there was a 1.6% decrease in success rate and a
3.2% decrease in precision.

Table 2. Results of ablation experiments.

Precision Success
RFCFT 0.765 0.562
RFCFT-NU 0.751 0.557
RFCFT-NF 0.733 0.546

The bolded data represents the optimal result for this metric.

5.6. Quantitative Analysis

For performance evaluation, we compare the proposed RFCFT method with seven
other state-of-the-art trackers on our constructed animal datasets. As shown in Figure 6,
the proposed method RFCFT achieves the best precision and success scores 76.5% and
56.2%, respectively. However, due to the introduction of animal state monitoring and
updating mechanisms in our algorithm compared to traditional algorithms, the complexity
of our algorithm has correspondingly increased. Table 3 presents the precision scores,
success scores, and fps data for all compared algorithms experimented on the animal
dataset, where bold font denotes the optimal values, and underscored values denote the
second-best results. Ultimately, our algorithm achieves a speed of approximately 1.915 fps,
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which still requires further improvement. In terms of algorithm precision, the DAHCF
algorithm ranks second with a precision of 74.1%. Compared to DAHCE, our algorithm
has improved precision by 2.4% and excels in both real-time performance and success rate.
In terms of success rate, the algorithm ranking second is SiamFC, with a success rate of
55.5%. Compared to SiamFC, our algorithm has improved the success rate by 0.7%; despite
the lower complexity of the SiamFC algorithm, its accuracy is also 5.1% lower than our
algorithm. In overall effectiveness, through comparisons with seven contrasting algorithms,
our algorithm achieves the optimal results. Overall, while there is room for improvement
in the complexity of our algorithm, it performs exceptionally well in key metrics such as
precision and success rate. Through comparison with other contrastive algorithms, our
algorithm demonstrates superiority in overall performance.

Precision plots of OPE on Animal Datasets Success plots of OPE on Animal Datasets

" e os\‘\\ N\
B VA //// ’//_—- i \\\\\\\Qk\
co /7/’// / %os \\ \\\
S / s ~_|— 0765 RFCFT | o ||—0562] RFCFT \\\\
oo / / __—[0.741] DAHCF || 8 1110555 SiamFC N\
o 74 —[0.714] SiamFC | S ,.[l—[0.547] DAHCF NG
Vi —[0.667] BSTCF ® ||—[0.539] BSTCF
” / —[0.587] STRCF “Il—T[0.476] STRCF
02 // [0.512] ARCF o2f{——[0.403] ARCF \\\\
o / ~—[0.466] AutoTrack|| 5:1/=[0.393] AutoTrack \
—[0.406] DSARCF —[0.376] DSARCF

0 5 10 15 2 2

5

3 3 40 45 50

Location error threshold

0 01 02 03 04 05 06 o7 08 09
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Figure 6. Comparisons with the state-of-the-art tracking algorithms on animal datasets.

Table 3. Tracking performance on the animal datasets.

RFCFT DAHCF BSTCF STRCF ARCF AutoTrack DSARCF SiamFC

precision 0.765 0.741 0.667 0.587 0.512 0.466 0.406 0.714
Success 0.562 0.547 0.539 0.476 0.403 0.393 0.376 0.555
Fps 1.915 0.004 17.309 27.655  22.720 60.801 8.896 73.910

The bolded data indicates the optimal data and the underlined data indicates the sub-optimal results.

To further validate the capability of our method in handling complex scenarios, we
conducted a detailed analysis of the tracking results for different challenging video se-
quences. Figure 7 shows the tracking precision in various challenging environments, and
Table 4 shows the specific values of the precision scores of our tracker and each of the
seven other state-of-the-art trackers based on different attributes on the datasets, where the
bolded data indicates the optimal data and the underlined data indicates the sub-optimal
results. From the results, we can conclude that our method RFCFT has obtained the best
results on 10 out of 14 attributes including aspect ratio change (79.4%), background clutter
(69.3%), camera motion (76.8%), deformation (81.8%), full occlusion (70.4%), low resolution
(82.9%), out-of-view (79.1%), rotation (77.4%), scale variation (74.4%), motion blur (72.2%),
and obtained sub-optimal in [llumination Variation. Figure 8 presents the success rate of
the tracking process, and we can also see that our method RFCFT has obtained the best
results on 3 out of 14 attributes and sub-optimal results on 8 attributes. To conclude, we can
demonstrate that the proposed method RFCFT is more effective in distinguishing animals
from backgrounds and similar objects and achieves excellent performance improvement in
most of the attributes of animal tracking.
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Table 4. Performance evaluations of different attributes on animal datasets.
RFCFT DAHCF BSTCF STRCF ARCF AutoTrack DSARCF SiamFC
ARC 0.794 0.717 0.6 0.559 0.444 0.424 0.37 0.698
BC 0.693 0.639 0.618 0.523 0.375 0.414 0.406 0.563
CM 0.768 0.724 0.605 0.579 0.439 0.368 0.418 0.635
DEF 0.818 0.763 0.66 0.586 0.529 0.464 0.393 0.710
M 0.686 0.689 0.784 0.752 0.472 0.458 0.685 0.732
FOC 0.704 0.579 0.672 0.559 0.316 0.304 0.423 0.633
LR 0.829 0.701 0.742 0.653 0.570 0.537 0.545 0.808
ov 0.791 0.671 0.521 0.356 0.290 0.241 0.430 0.703
POC 0.726 0.736 0.646 0.529 0.390 0.396 0.358 0.728
ROT 0.774 0.765 0.687 0.529 0.529 0.479 0.349 0.753
SV 0.744 0.714 0.653 0.571 0.490 0.451 0.397 0.711
v 0.853 0.831 0.795 0.809 0.693 0.58 0.479 0.880
MB 0.722 0.717 0.559 0.563 0.42 0.385 0.406 0.617
VC 0.441 0.426 0.511 0.457 0.442 0.359 0.264 0.552

The bolded data indicates the optimal data and the underlined data indicates the sub-optimal results.
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Figure 7. Precision plots evaluated trackers on the animal datasets in terms of 14 challenging attributes.
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Figure 8. Success plots evaluated trackers on the animal datasets in terms of 14 challenging attributes.

5.7. Qualitative Evaluation

Figure 9 shows some tracking results of our tracker and the other seven trackers on
different challenging sequences. As we can see, the tracked zebra in the Zebra2 video
sequence suffers from partial occlusion, deformation, rotation, scale variation, and aspect
ratio change, initiating from the 345th frame; all other trackers experienced instances of
drifting or tracking failures, only our tracker and DAHCF demonstrated the capability to
consistently and steadfastly track the target zebra, but the fitting accuracy of our tracker is
superior. The tracked chameleon in the chameleon-12 video sequence suffers deformation,
background clutter, scale variation, and aspect ratio change; starting from frame 1858, most
of the rest of the trackers were confused by the mirrored chameleon in the mirror and
experienced tracking failures, and only our tracker was able to track the target stably. In
the video sequence squirrell6, the tracked squirrel is notably small, and its color closely
resembles the background; additionally, the squirrel appears to fast motion during its
trajectory; ultimately, only our tracker and tracker DAHCEF successfully tracked the target,
most other trackers were confused by the squirrel’s tail, leading to tracking failures. The
target squirrel in video sequence squirrel12 suffers from deformation, motion blur, camera
motion, rotation, scale variation, out-of-view, low resolution, aspect ratio change and so on;
among trackers considered for the analysis, our tracker and SiamFC were able to track the
target in most of the frames, all other trackers showed tracking drift, especially DSARCEF,
which failed to track from frame 320.
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Figure 9. The qualitative results of the algorithm on certain video sequences.

6. Conclusions

In this paper, we propose an animal tracking algorithm based on correlation filters
with response map analysis and adaptive fusion feature update (RFCFT) for tracking spe-
cific individual animals’ trajectories. The key contribution is to design a novel adaptive
feature fusion mechanism that integrates multi-level deep features and hand-crafted fea-
tures for effective and efficient animal tracking; by analyzing the response map, we assess
the reliability of the tracking results. When the tracking results are unreliable, we introduce
temporal information and current frame target information to re-model the target and
perform re-tracking to obtain the optimal predicted position; the proposed method auto-
matically enhances the discrimination and suppresses misleading information, enabling
online tracking adaptation. In addition, we constructed a specialized animal tracking
dataset that enables us to evaluate the effectiveness of animal tracking algorithms objec-
tively. The extensive experimental results on animal datasets demonstrate the effectiveness
and robustness of our tracker in comparison with the other seven state-of-the-art trackers.

Furthermore, despite significant findings in achieving a comprehensive balance between
tracking accuracy and robustness for individual animals, we candidly acknowledge certain
limitations in this study. For instance, the increased complexity resulting from the additional
inclusion of animal state change detection and updating modules has elevated the algorithm’s
complexity, leading to some loss in tracking speed. Nevertheless, we maintain the belief that
these preliminary results provide a valuable foundation for further research.

In future research, we aim to further explore and improve animal trajectory tracking
algorithms to address increasingly complex and challenging scenarios. Firstly, we will
strive to enhance the accuracy and robustness of the algorithms, particularly in complex
environments characterized by large numbers of animals and chaotic motion. Secondly, we
plan to investigate methods for better handling occlusions, dynamic backgrounds, and other
challenges during the tracking process to improve tracking performance. Additionally, we
will explore the utilization of cutting-edge technologies such as deep learning to further
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enhance algorithm performance, reduce algorithm complexity, and achieve faster end-to-
end trajectory tracking. Moreover, we will consider applying the algorithms to a wider
range of animal species and real-world application scenarios. Lastly, we aim to strengthen
collaboration with fields such as biology and ecology to better understand animal behavior
and provide more effective technical support for areas such as animal conservation and
ecological environment monitoring.
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