Objective Assessment of Equine Locomotor Symmetry Using an Inertial Sensor System and Artificial Intelligence: A Comparative Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Horse Population
2.2. Locomotor Assessment
2.2.1. Locomotor Assessment with an Inertial Measurement Unit System
- -
- HDmin: difference between the vertical minima reached by the head during left and right forelimbs stance, expressed in millimeters;
- -
- HDmax: difference between the vertical maxima reached by the head during left and right forelimb stance, expressed in millimeters;
- -
- H-ROM: range of motion of the head, difference between minimum and maximum values reached by the head throughout the stride cycle, expressed in millimeters;
- -
- PDmin: difference between the vertical minima reached by the pelvis during left and right hindlimbs stance, expressed in millimeters;
- -
- PDmax: difference between the vertical maxima reached by the pelvis during left and right hindlimb stance, expressed in millimeters;
- -
- P-ROM: range of motion of the pelvis, difference between minimum and maximum values reached by the pelvis throughout the stride cycle, expressed in millimeters;
- -
- Number of recorded strides;
- -
- Laterality of the asymmetry (towards the left or the right side).
2.2.2. Locomotor Assessment with an AI Marker-Less Motion Tracking System
- -
- MinDiffhead: difference between two minima in vertical position of the head, during the right and left forelimbs halves of a stride, normalized to the head range of motion;
- -
- MaxDiffhead: difference between two maxima in vertical position of the head, during the right and left forelimbs halves of a stride, normalized to the head range of motion;
- -
- MinDiffpelvis: difference between two minima in vertical position of the pelvis, during the right and left hindlimbs halves of a stride, normalized to the pelvis range of motion;
- -
- MaxDiffpelvis: difference between two maxima in vertical position of the pelvis, during the right and left hindlimbs halves of a stride, normalized to the pelvis range of motion;
- -
- Number of recorded forelimb and hindlimb strides (as the pelvis was visible only when the horse was trotting away from the camera, the number of hindlimb strides was lower than that of the forelimb strides);
- -
- Laterality of the asymmetry and the presumed affected limb(s).
2.3. Statistical Analysis
3. Results
3.1. Horse Population
3.2. Agreement between Inertial Measurement Unit System and AI Marker-Less Motion Tracking System
3.3. Significant Differences in the Locomotor Parameters between Inertial Measurement Unit System and AI Marker-Less Motion Tracking System
3.4. Effect of the Different Assessment Conditions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Uprichard, K.L.; Boden, L.A.; Marshall, J.F. An Online Survey to Characterize Spending Patterns of Horse Owners and to Quantify the Impact of Equine Lameness on a Pleasure Horse Population. Equine Vet. J. 2014, 46, 4. [Google Scholar] [CrossRef]
- McAghon, D. Economics of lameness. J. Equine Vet. Sci. 1985, 5, 244–246. [Google Scholar] [CrossRef]
- Baxter, G.M.; Stashak, T.S.; Keegan, K.G. Examination for lameness: History, visual exam, and conformation. In Adams and Stashak’s Lameness in Horses; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2020; Volume 2, pp. 67–188. [Google Scholar] [CrossRef]
- Dyson, S. Can Lameness Be Graded Reliably?: Can Lameness Be Graded Reliably? Equine Vet. J. 2011, 43, 379–382. [Google Scholar] [CrossRef]
- Keegan, K.G. Evidence-Based Lameness Detection and Quantification. Vet. Clin. N. Am. Equine Pract. 2007, 23, 403–423. [Google Scholar] [CrossRef]
- Starke, S.D.; Oosterlinck, M. Reliability of Equine Visual Lameness Classification as a Function of Expertise, Lameness Severity and Rater Confidence. Vet. Rec. 2019, 184, 63. [Google Scholar] [CrossRef]
- Hardeman, A.M.; Egenvall, A.; Serra Bragança, F.M.; Swagemakers, J.H.; Koene, M.H.W.; Roepstorff, L.; Van Weeren, R.; Byström, A. Visual Lameness Assessment in Comparison to Quantitative Gait Analysis Data in Horses. Equine Vet. J. 2022, 54, 1076–1085. [Google Scholar] [CrossRef] [PubMed]
- Hammarberg, M.; Egenvall, A.; Pfau, T.; Rhodin, M. Rater Agreement of Visual Lameness Assessment in Horses during Lungeing. Equine Vet. J. 2016, 48, 78–82. [Google Scholar] [CrossRef] [PubMed]
- Keegan, K.G.; Dent, E.V.; Wilson, D.A.; Janicek, J.; Kramer, J.; Lacarrubba, A.; Walsh, D.M.; Cassells, M.W.; Esther, T.M.; Schiltz, P.; et al. Repeatability of Subjective Evaluation of Lameness in Horses. Equine Vet. J. 2010, 42, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Parkes, R.S.V.; Weller, R.; Groth, A.M.; May, S.; Pfau, T. Evidence of the Development of ‘Domain-restricted’ Expertise in the Recognition of Asymmetric Motion Characteristics of Hindlimb Lameness in the Horse. Equine Vet. J. 2009, 41, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Hammarberg, M.; Egenvall, A.; Rhodin, M. Subjective Evaluation of Lameness in Horses During Lungeing. Equine Vet. J. 2014, 46, 41. [Google Scholar] [CrossRef]
- Arkell, M.; Archer, R.M.; Guitian, F.J.; May, S.A. Evidence of Bias Affecting the Interpretation of the Results of Local Anaesthetic Nerve Blocks When Assessing Lameness in Horses. Vet. Rec. 2006, 159, 346–348. [Google Scholar] [CrossRef]
- Crecan, C.M.; Peștean, C.P. Inertial Sensor Technologies—Their Role in Equine Gait Analysis, a Review. Sensors 2023, 23, 6301. [Google Scholar] [CrossRef]
- Keegan, K.G.; Wilson, D.A.; Kramer, J.; Reed, S.K.; Yonezawa, Y.; Maki, H.; Pai, P.F.; Lopes, M.A.F. Comparison of a body-mounted inertial sensor system–based method with subjective evaluation for detection of lameness in horses. Am. J. Vet. Res. 2013, 74, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Rhodin, M.; Persson-Sjodin, E.; Egenvall, A.; Serra Bragança, F.M.; Pfau, T.; Roepstorff, L.; Weishaupt, M.A.; Thomsen, M.H.; Van Weeren, P.R.; Hernlund, E. Vertical Movement Symmetry of the Withers in Horses with Induced Forelimb and Hindlimb Lameness at Trot. Equine Vet. J. 2018, 50, 818–824. [Google Scholar] [CrossRef]
- Keegan, K.G.; Kramer, J.; Yonezawa, Y.; Maki, H.; Pai, P.F.; Dent, E.V.; Kellerman, T.E.; Wilson, D.A.; Reed, S.K. Assessment of repeatability of a wireless, inertial sensor–based lameness evaluation system for horses. Am. J. Vet. Res. 2011, 72, 1156–1163. [Google Scholar] [CrossRef] [PubMed]
- Pfau, T.; Weller, R. Comparison of a Standalone Consumer Grade Smartphone with a Specialist Inertial Measurement Unit for Quantification of Movement Symmetry in the Trotting Horse. Equine Vet. J. 2017, 49, 124–129. [Google Scholar] [CrossRef]
- Pfau, T. Sensor-Based Equine Gait Analysis: More than Meets the Eye? UK-Vet Equine 2019, 3, 102–112. [Google Scholar] [CrossRef]
- Serra Bragança, F.M.; Broomé, S.; Rhodin, M.; Björnsdóttir, S.; Gunnarsson, V.; Voskamp, J.P.; Persson-Sjodin, E.; Back, W.; Lindgren, G.; Novoa-Bravo, M.; et al. Improving Gait Classification in Horses by Using Inertial Measurement Unit (IMU) Generated Data and Machine Learning. Sci. Rep. 2020, 10, 17785. [Google Scholar] [CrossRef] [PubMed]
- Bosch, S.; Serra Bragança, F.; Marin-Perianu, M.; Marin-Perianu, R.; Van Der Zwaag, B.; Voskamp, J.; Back, W.; Van Weeren, R.; Havinga, P. EquiMoves: A Wireless Networked Inertial Measurement System for Objective Examination of Horse Gait. Sensors 2018, 18, 850. [Google Scholar] [CrossRef]
- Rana, M.; Mittal, V. Horse Gait Analysis Using Wearable Inertial Sensors and Machine Learning. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2023. [Google Scholar] [CrossRef]
- Pfau, T.; Boultbee, H.; Davis, H.; Walker, A.; Rhodin, M. Agreement between Two Inertial Sensor Gait Analysis Systems for Lameness Examinations in Horses. Equine Vet. Educ. 2016, 28, 203–208. [Google Scholar] [CrossRef]
- Keegan, K.G.; MacAllister, C.G.; Wilson, D.A.; Gedon, C.A.; Kramer, J.; Yonezawa, Y.; Maki, Y.; Pai, P.F. Comparison of an inertial sensor system with a stationary force plate for evaluation of horses with bilateral forelimb lameness. Am. J. Vet. Res. 2012, 73, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Bell, R.P.; Reed, S.K.; Schoonover, M.J.; Whitfield, C.T.; Yonezawa, Y.; Maki, H.; Pai, P.F.; Keegan, K.G. Associations of force plate and body-mounted inertial sensor measurements for identification of hind limb lameness in horses. Am. J. Vet. Res. 2016, 77, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Tijssen, M.; Hernlund, E.; Rhodin, M.; Bosch, S.; Voskamp, J.P.; Nielen, M.; Serra Braganςa, F.M. Automatic Hoof-on and -off Detection in Horses Using Hoof-Mounted Inertial Measurement Unit Sensors. PLoS ONE 2020, 15, e0233266. [Google Scholar] [CrossRef]
- Bragança, F.M.; Bosch, S.; Voskamp, P.; Marin-Perianu, M.; Van Der Zwaag, B.J.; Vernooij, J.C.M.; Van Weeren, P.R.; Back, W. Validation of Distal Limb Mounted Inertial Measurement Unit Sensors for Stride Detection in Warmblood Horses at Walk and Trot. Equine Vet. J. 2017, 49, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Donnell, J.R.; Frisbie, D.D.; King, M.R.; Goodrich, L.R.; Haussler, K.K. Comparison of Subjective Lameness Evaluation, Force Platforms and an Inertial-Sensor System to Identify Mild Lameness in an Equine Osteoarthritis Model. Vet. J. 2015, 206, 136–142. [Google Scholar] [CrossRef]
- Crecan, C.M.; Morar, I.A.; Lupsan, A.F.; Lupsan, C.C.; Rus, M.A.; Repciuc, C.C. Development of a Novel Approach for Detection of Equine Lameness Based on Inertial Sensors: A Preliminary Study. Sensors 2022, 22, 7082. [Google Scholar] [CrossRef] [PubMed]
- Darbandi, H.; Braganca, F.S.; van der Zwaag, B.J.; Havinga, P. Accurate Horse Gait Event Estimation Using an Inertial Sensor Mounted on Different Body Locations. In Proceedings of the 2022 IEEE International Conference on Smart Computing, SMARTCOMP, Helsinki, Finland, 20–24 June 2022; pp. 329–335. [Google Scholar] [CrossRef]
- Roepstorff, C.; Dittmann, M.T.; Arpagaus, S.; Braganca, F.M.S.; Hardeman, A.; Persson-Sjödin, E.; Roepstorff, L.; Gmel, A.I.; Weishaupt, M.A. Reliable and clinically applicable gait event classification using upper body motion in walking and trotting horses. J. Biomech. 2021, 114, 110146. [Google Scholar] [CrossRef]
- Tan, T.; Chiasson, D.P.; Hu, H.; Shull, P.B. Influence of IMU position and orientation placement errors on ground reaction force estimation. J. Biomech. 2019, 97, 109416. [Google Scholar] [CrossRef]
- Kiernan, D.; Katzman, Z.D.; Hawkins, D.A.; Christiansen, B.A. A 0.05 m Change in Inertial Measurement Unit Placement Alters Time and Frequency Domain Metrics during Running. Sensors 2024, 24, 656. [Google Scholar] [CrossRef]
- Lawin, F.J.; Byström, A.; Roepstorff, C.; Rhodin, M.; Almlöf, M.; Silva, M.; Haubro Andersen, P.; Kjellström, H.; Hernlund, E. Is Markerless More or Less? Comparing a Smartphone Computer Vision Method for Equine Lameness Assessment to Multi-Camera Motion Capture. Animals 2023, 13, 390. [Google Scholar] [CrossRef] [PubMed]
- Martinsson, J. Gait Screening Using a Mobile Phone Application: Horse Asymmetry Levels and Usability of a Mobile Phone Application for Gait Analysis, during a Long Format FEI Eventing Competition. Bachelor´s Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, 23 February 2022. [Google Scholar]
- Wang, J.; Sun, K.; Cheng, T.; Jiang, B.; Deng, C.; Zhao, Y.; Liu, D.; Mu, Y.; Tan, M.; Wang, X.; et al. Deep High-Resolution Representation Learning for Visual Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 3349–3364. [Google Scholar] [CrossRef] [PubMed]
- Alagele, M.; Yildirim, R. Animal gait identification using a deep learning method. In Proceedings of the 2022 International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara, Turkey, 20–22 October 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 540–542. [Google Scholar] [CrossRef]
- Azhand, A.; Rabe, S.; Müller, S.; Sattler, I.; Heimann-Steinert, A. Algorithm based on one monocular video delivers highly valid and reliable gait parameters. Sci. Rep. 2021, 11, 14065. [Google Scholar] [CrossRef]
- Pfau, T.; Witte, T.H.; Wilson, A.M. A method for deriving displacement data during cyclical movement using an inertial sensor. J. Exp. Biol. 2005, 208, 2503–2514. [Google Scholar] [CrossRef]
- Warner, S.M.; Koch, T.O.; Pfau, T. Inertial sensors for assessment of back movement in horses during locomotion over ground. Equine Vet. J. 2010, 42 (Suppl. 38), 417–424. [Google Scholar] [CrossRef]
- Pfau, T.; Landsbergen, K.; Davis, B.L.; Kenny, O.; Kernot, N.; Rochard, N.; Porte-Proust, M.; Sparks, H.; Takahashi, Y.; Toth, K.; et al. Comparing Inertial Measurement Units to Markerless Video Analysis for Movement Symmetry in Quarter Horses. Sensors 2023, 23, 8414. [Google Scholar] [CrossRef]
- Ross, M.W.; McIlwraith, C.W. Conformation and Lameness. In Diagnosis and Management of Lameness in the Horse, 2nd ed.; Scott, M.W., Dyson, S.J., Eds.; Elsevier: St. Louis, MO, USA, 2011; pp. 15–32. [Google Scholar] [CrossRef]
- Starke, S.D.; May, S.A.; Pfau, T. Understanding Hind Limb Lameness Signs in Horses Using Simple Rigid Body Mechanics. J. Biomech. 2015, 48, 3323–3331. [Google Scholar] [CrossRef] [PubMed]
- Starke, S.D.; May, S.A. Robustness of Five Different Visual Assessment Methods for the Evaluation of Hindlimb Lameness Based on Tubera Coxarum Movement in Horses at the Trot on a Straight Line. Equine Vet. J. 2022, 54, 1103–1113. [Google Scholar] [CrossRef]
- Buchner, H.H.F.; Savelberg, H.H.C.M.; Schamhardt, H.C.; Barneveld, A. Head and Trunk Movement Adaptations in Horses with Experimentally Induced Fore- or Hindlimb Lameness. Equine Vet. J. 1996, 28, 71–76. [Google Scholar] [CrossRef]
- McCracken, M.J.; Kramer, J.; Keegan, K.G.; Lopes, M.; Wilson, D.A.; Reed, S.K.; LaCarrubba, A.; Rasch, M. Comparison of an Inertial Sensor System of Lameness Quantification with Subjective Lameness Evaluation: Comparison of Inertial System with Subjective Lameness Evaluation. Equine Vet. J. 2012, 44, 652–656. [Google Scholar] [CrossRef]
- Müller-Quirin, J.; Dittmann, M.T.; Roepstorff, C.; Arpagaus, S.; Latif, S.N.; Weishaupt, M.A. Riding Soundness—Comparison of Subjective with Objective Lameness Assessments of Owner-Sound Horses at Trot on a Treadmill. J. Equine Vet. Sci. 2020, 95, 103314. [Google Scholar] [CrossRef]
- Scheidegger, M.D.; Gerber, V.; Dolf, G.; Burger, D.; Flammer, S.A.; Ramseyer, A. Quantitative Gait Analysis Before and After a Cross-Country Test in a Population of Elite Eventing Horses. J. Equine Vet. Sci. 2022, 117, 104077. [Google Scholar] [CrossRef]
- Pfau, T.; Jennings, C.; Mitchell, H.; Olsen, E.; Walker, A.; Egenvall, A.; Tröster, S.; Weller, R.; Rhodin, M. Lungeing on Hard and Soft Surfaces: Movement Symmetry of Trotting Horses Considered Sound by Their Owners. Equine Vet. J. 2016, 48, 83–89. [Google Scholar] [CrossRef]
- Rhodin, M.; Egenvall, A.; Haubro Andersen, P.; Pfau, T. Head and Pelvic Movement Asymmetries at Trot in Riding Horses in Training and Perceived as Free from Lameness by the Owner. PLoS ONE 2017, 12, e0176253. [Google Scholar] [CrossRef] [PubMed]
- Lopes, M.A.; Eleuterio, A.; Mira, M.C. Objective detection and quantification of irregular gait with a portable inertial sensor-based system in horses during an endurance race—A preliminary assessment. J. Equine Vet. Sci. 2018, 70, 123–129. [Google Scholar] [CrossRef]
- Jansson, A.; Gunnarsson, V.T.; Ringmark, S.; Ragnarsson, S.; Söderroos, D.; Asgeirsson, E.; Jóhannsdóttir, T.R.; Liedberg, C.; Stefánsdóttir, G.J. Increased Body Fat Content in Horses Alters Metabolic and Physiological Exercise Response, Decreases Performance, and Increases Locomotion Asymmetry. Physiol. Rep. 2021, 9, e14814. [Google Scholar] [CrossRef] [PubMed]
- Greve, L.; Dyson, S. What Can We Learn from Visual and Objective Assessment of Non-lame and Lame Horses in Straight Lines, on the Lunge and Ridden? Equine Vet. Educ. 2020, 32, 479–491. [Google Scholar] [CrossRef]
Horse | AAEP Grade | IMUs | AI-MTS | |
---|---|---|---|---|
Millimeters Cut-Off | Severity | |||
1 | RF: 2/5 | Asymmetric (FL, HL) | RF: moderate impact, very mild push-off; RH: very mild impact | RF: mild impact, mild push off; RH: very mild impact |
2 | Sound | Symmetric | LF: very mild impact | LF: very mild impact |
3 | RF: 2/5 | Asymmetric (FL) | RF: very mild impact, very mild push-off; LH: very mild push-off | RF: mild impact, very mild push-off; LH: very mild push-off |
4 | Sound | Asymmetric (HL) | LH: very mild impact, very mild push-off | Symmetric |
5 | LF: 1/5; LH: 2/5 | Asymmetric (FL, HL) | LF: mild impact, mild push-off; LH: very mild impact, mild push-off | LF: mild impact, mild push-off; LH: mild push-off |
6 | Sound | Symmetric | LF: very mild impact, very mild push-off; RH: mild push-off | LF: very mild impact; RH: mild push-off |
7 | RF: 1/5 | Asymmetric (FL) | RF: very mild impact; LF: very mild push-off; LH: very mild impact, very mild push-off | RF: mild impact; LF: very mild push- off; RH: very mild impact; LH: very mild push-off |
8 | Sound | Symmetric | RF: very mild push-off | RF: very mild push-off |
9 | LF: 1/5 | Asymmetric (FL, HL) | LF: mild impact; LH: very mild impact, very mild push-off | LF: very mild impact |
10 | RF: 2/5 | Asymmetric (FL) | RF: mild impact; RH: very mild push-off | RF: very mild impact; RH: very mild impact |
11 | LH: 1/5 | Asymmetric (HL) | LH: very mild impact., very mild push-off | LH: very mild push-off |
12 | Sound | Asymmetric (HL) | LF: very mild impact; RH: very mild impact | LF: very mild impact |
13 | LF: 1/5 | Asymmetric (FL) | LF: mild impact | LF: very mild impact, very mild push-off; RH: very mild impact |
14 | LH: 1/5 | Asymmetric (HL) | LH: very mild impact, mild push-off | LH: very mild impact, very mild push-off |
15 | Sound | Asymmetric (FL) | RF: very mild impact | RH: very mild impact |
16 | RF: 1/5 | Asymmetric (FL) | RF: mild impact, mild push-off | RF: very mild impact, very mild push-off |
17 | LF: 1/1 | Symmetric | LF: very mild impact; LH: very mild push-off | LF: very mild impact; LH: very mild push-off |
18 | Sound | Symmetric | RF: very mild impact; LF: very mild push-off; LH: very mild impact | RF: very mild impact; RH: very mild push-off |
19 | Sound | Asymmetric (HL) | LF: very mild impact; RH: very mild push-off; LH: very mild impact | RH: very mild push-off |
20 | Sound | Symmetric | LF: very mild impact; RH: mild push-off | RH: very mild push-off; LH: very mild impact |
Locomotion Parameters | SH | SS | LCH | LCS | RCH | RCS |
---|---|---|---|---|---|---|
MinDiffhead | 0.80 | 0.65 | 0.58 | 0.53 | 0.67 | 0.60 |
MaxDiffhead | 0.55 | 0.25 | 0.54 | 0.54 | 0.74 | 0.77 |
MinDiffpelvis | 0.12 | 0.08 | 0.35 | 0.17 | 0.47 | 0.59 |
MaxDiffpelvis | 0.50 | 0.51 | 0.49 | 0.68 | 0.69 | 0.63 |
Assessment Condition | IMUs | AI-MTS | |
---|---|---|---|
Forelimbs | Hindlimbs | ||
Straight hard (SH) | 23 ± 7 b | 34 ± 9 a | 21 ± 7 b |
Straight soft (SS) | 21 ± 6 a | 25 ± 6 a | 16 ± 4 b |
Left circle hard (LCH) | 28 ± 11 c | 44 ± 14 a | 37 ± 11 b |
Left circle soft (LCS) | 30 ± 9 b | 40 ± 16 a | 34 ± 11 b |
Right circle hard (RCH) | 29 ± 12 c | 48 ± 9 a | 36 ± 8 b |
Right circle soft (RCS) | 29 ± 12 b | 42 ± 15 a | 35 ± 10 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calle-González, N.; Lo Feudo, C.M.; Ferrucci, F.; Requena, F.; Stucchi, L.; Muñoz, A. Objective Assessment of Equine Locomotor Symmetry Using an Inertial Sensor System and Artificial Intelligence: A Comparative Study. Animals 2024, 14, 921. https://doi.org/10.3390/ani14060921
Calle-González N, Lo Feudo CM, Ferrucci F, Requena F, Stucchi L, Muñoz A. Objective Assessment of Equine Locomotor Symmetry Using an Inertial Sensor System and Artificial Intelligence: A Comparative Study. Animals. 2024; 14(6):921. https://doi.org/10.3390/ani14060921
Chicago/Turabian StyleCalle-González, Natalie, Chiara Maria Lo Feudo, Francesco Ferrucci, Francisco Requena, Luca Stucchi, and Ana Muñoz. 2024. "Objective Assessment of Equine Locomotor Symmetry Using an Inertial Sensor System and Artificial Intelligence: A Comparative Study" Animals 14, no. 6: 921. https://doi.org/10.3390/ani14060921
APA StyleCalle-González, N., Lo Feudo, C. M., Ferrucci, F., Requena, F., Stucchi, L., & Muñoz, A. (2024). Objective Assessment of Equine Locomotor Symmetry Using an Inertial Sensor System and Artificial Intelligence: A Comparative Study. Animals, 14(6), 921. https://doi.org/10.3390/ani14060921