Tramadol and M1 Bioavailability Induced by Metamizole Co-Administration in Donkeys (Equus asinus)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Sample Extraction Procedure
2.3. Instrumentation and LC and MS Conditions
2.4. Validation
2.5. Pharmacokinetic Analysis and Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Regan, F.H.; Hockenhull, J.; Pritchard, J.C.; Waterman-Pearson, A.E.; Whay, H.R. Behavioural repertoire of working donkeys and consistency of behaviour over time, as a preliminary step towards identifying pain-related behaviours. PLoS ONE 2014, 9, e101877. [Google Scholar] [CrossRef]
- Dai, F.; Dalla Costa, E.; Murray, L.M.A.; Canali, E.; Minero, M. Welfare conditions of donkeys in Europe: Initial outcomes from on-farm assessment. Animals 2016, 6, 5. [Google Scholar] [CrossRef]
- Cook, V.L.; Blikslager, A.T. The use of nonsteroidal anti-inflammatory drugs in critically ill horses. J. Vet. Emerg. Crit. Care 2015, 25, 76–88. [Google Scholar] [CrossRef]
- Lutz, M. Metamizole (dipyrone) and the liver: A review of the literature. J. Clin. Pharmacol. 2019, 59, 1433–1442. [Google Scholar] [CrossRef] [PubMed]
- Hedenmalm, K.; Spigset, O. Agranulocytosis and other blood dyscrasias associated with dipyrone (metamizole). Eur. J. Clin. Pharmacol. 2002, 58, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.W.; Łebkowska-Wieruszewska, B.; Sitovs, A.; Poapolathep, A.; Owen, H.; Lisowski, A.; Abilova, Z.; Giorgi, M. Pharmacokinetic profiles of Metamizole (dipyrone) active metabolites in goats and its residues in milk. J. Vet. Pharmacol. Ther. 2018, 41, 699–705. [Google Scholar] [CrossRef] [PubMed]
- Abbiati, R.A.; Cagnardi, P.; Ravasio, G.; Villa, R.; Manca, D. A physiologically based model for tramadol pharmacokinetics in horses. J. Theor. Biol. 2017, 429, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Udegbunam, R.I.; Onuba, A.C.; Okorie-Kanu, C.; Udegbunam, S.O.; Anyanwu, M.U.; Ifeanyi, O.L. Effects of two doses of tramadol on pain and some biochemical parameters in rabbits post-gastrotomy. Comp. Clin. Pathol. 2015, 24, 783–790. [Google Scholar] [CrossRef]
- Bortolami, E.; Della Rocca, G.; Di Salvo, A.; Giorgi, M.; Kim, T.W.; Isola, M.; De Benedictis, G.M. Pharmacokinetics and antinociceptive effects of tramadol and its metabolite O-desmethyltramadol following intravenous administration in sheep. Vet. J. 2015, 205, 404–409. [Google Scholar] [CrossRef]
- Cagnardi, P.; Villa, R.; Zonca, A.; Gallo, M.; Beccaglia, M.; Luvoni, G.C.; Vettorato, E.; Carli, S.; Fonda, D.; Ravasio, G. Pharmacokinetics, intraoperative effect and postoperative analgesia of tramadol in cats. Res. Vet. Sci. 2011, 90, 503–509. [Google Scholar] [CrossRef]
- Sheikholeslami, B.; Gholami, M.; Lavasani, H.; Rouini, M. Evaluation of the route dependency of the pharmacokinetics and neuro-pharmacokinetics of tramadol and its main metabolites in rats. Eur. J. Pharm. Sci. 2016, 92, 55–63. [Google Scholar] [CrossRef]
- Evenson, E.; Mans, C. Antinociceptive efficacy and safety of subcutaneous tramadol in chinchillas (Chinchilla lanigera). J. Exot. Pet. Med. 2019, 28, 98–104. [Google Scholar] [CrossRef]
- Moreno-Rocha, L.A.; López-Muñoz, F.J.; Medina-López, J.R.; Domínguez-Ramírez, A.M. Effect of tramadol on metamizol pharmacokinetics and pharmacodynamics after single and repeated administrations in arthritic rats. Saudi Pharm. J. 2016, 24, 674–684. [Google Scholar] [CrossRef]
- Moreno-Rocha, L.A.; Domínguez-Ramírez, A.M.; Cortés-Arroyo, A.R.; Bravo, G.; López-Muñoz, F.J. Antinociceptive effects of tramadol in co-administration with metamizol after single and repeated administrations in rats. Pharmacol. Biochem. Behav. 2012, 103, 1–5. [Google Scholar] [CrossRef]
- Aupanun, S.; Laus, F.; Poapolathep, A.; Owen, H.; Vullo, C.; Faillace, V.; Giorgi, M. Pharmacokinetic assessment of the marker active metabolites 4-methyl-amino-antipyrine and 4-acetyl-amino-antipyrine after intravenous and intramuscular injection of Metamizole (dipyrone) in healthy donkeys. J. Equine Vet. Sci. 2016, 47, 55–61. [Google Scholar] [CrossRef]
- Matthews, N.; van Loon, J.P.A.M. Anaesthesia and analgesia of the donkey and the mule. Equine Vet. Educ. 2013, 25, 47–51. [Google Scholar] [CrossRef]
- International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. Harmonised Tripartite Guideline for Good Clinical Practice ICH E6(R2); Integrated Addedum: Geneva, Switzerland, 2016; Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/ich-guideline-good-clinical-practice-e6r2-step-5_en.pdf (accessed on 1 November 2020).
- ANVISA; BRASIL. Agência Nacional de Vigilância Sanitária. Resolução da Diretoria Colegiada-RDC Nº 166. 2017. Available online: https://www.gov.br/anvisa/pt-br (accessed on 1 November 2020).
- Mouta, A.N.; de Oliveira Lima, I.; de Oliveira, M.G.C.; Alves, L.P.; de Macêdo, L.B.; Araujo-Silva, G.; Pérez-Urizar, J.; de Paula, V.V. Pharmacokinetic properties of tramadol and M1 metabolite in Northeast Brazilian donkeys (Equus asinus). J. Vet. Pharmacol. Ther. 2021, 44, 318–325. [Google Scholar] [CrossRef] [PubMed]
- De Macêdo, L.B.; Mouta, A.N.; Araújo-Silva, G.; Perez-Urizar, J.T.; de Paula, V.V. Pharmacokinetic properties of metamizole active metabolites in Northeastern Brazilian donkeys (Equus asinus). J. Vet. Pharmacol. Ther. 2021, 44, 842–849. [Google Scholar] [CrossRef] [PubMed]
- Imagawa, V.H.; Fantoni, D.T.; Tatarunas, A.C.; Mastrocinque, S.; Almeida, T.F.; Ferreira, F.; Posso, I.P. The use of different doses of metamizolfor post-operative analgesia in dogs. Vet. Anaesth. Analg. 2011, 38, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Flôr, P.B.; Yazbek, K.V.; Ida, K.K.; Fantoni, D.T. Tramadol plus Metamizole combined or not with anti-inflammatory drugs is clinically effective for moderate to severe chronic pain treatment in cancer patients. Vet. Anaesth. Analg. 2013, 40, 316–327. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, R.C.; Monteiro, E.R.; Campagnol, D.; Coelho, K.; Bressan, T.F.; Monteiro, B.S. Effects of tramadol alone, in combination with meloxicam or dipyrone, on postoperative pain and the analgesic requirement in dogs undergoing unilateral mastectomy with or without ovariohysterectomy. Vet. Anaesth. Analg. 2013, 40, 641–649. [Google Scholar] [CrossRef] [PubMed]
- Grosenbaugh, D.A.; Reinemeyer, C.R.; Figueiredo, M.D. Pharmacology and therapeutics in donkeys. Equine Vet. Educ. 2011, 23, 523–530. [Google Scholar] [CrossRef]
- Morresey, P.R.; White, G.W.; Poole, H.M.; Hu, T.; Yin, M.; Sundman, E.A. Randomized blinded controlled trial of dipyrone as a treatment for pyrexia in horses. Am. J. Vet. Res. 2019, 80, 294–299. [Google Scholar] [CrossRef] [PubMed]
- Giorgi, M.; Del Carlo, S.; Sgorbini, M.; Saccomanni, G. Pharmacokinetics of tramadol and its metabolites M1, M2, and M5 in donkeys after intravenous and oral immediate release single-dose administration. J. Equine Vet. Sci. 2009, 29, 569–574. [Google Scholar] [CrossRef]
- Saussele, T.; Burk, O.; Blievernicht, J.K.; Klein, K.; Nussler, A.; Nussler, N.; Hengstler, J.G.; Eichelbaum, M.; Schwab, M.; Zanger, U.M. Selective induction of human hepatic cytochromes P450 2B6 and 3A4 by metamizole. Clin. Pharmacol. Ther. 2007, 82, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, J.; Faria, J.; Queirós, O.; Moreira, R.; Carvalho, F.; Dinis-Oliveira, R.J. Comparative metabolism of tramadol and tapentadol: A toxicological perspective. Drug Metab. Rev. 2016, 48, 577–592. [Google Scholar] [CrossRef]
- Giorgi, M.; Aupanun, S.; Lee, H.K.; Poapolathep, A.; Rychshanova, R.; Vullo, C.; Laus, F. Pharmacokinetic profiles of the active Metamizole metabolites in healthy horses. J. Vet. Pharmacol. Ther. 2016, 40, 165–171. [Google Scholar] [CrossRef]
- Zhou, S.F.; Zhou, Z.W.; Yang, L.P.; Cai, J.P. Substrates, inducers, inhibitors and structure-activity relationships of human Cytochrome P450 2C9 and implications in drug development. Curr. Med. Chem. 2009, 16, 3480–3675. [Google Scholar] [CrossRef]
- Stewart, A.J.; Boothe, D.M.; Cruz-Espindola, C.; Mitchum, E.J.; Springfield, J. Pharmacokinetics of tramadol and metabolites O-desmethyltramadol and N-desmethyltramadol in adult horses. Am. J. Vet. Res. 2011, 72, 967–974. [Google Scholar] [CrossRef]
- McMillan, C.J.; Livingston, A.; Clark, C.R.; Dowling, P.M.; Taylor, S.M.; Duke, T.; Terlinden, R. Pharmacokinetics of intravenous tramadol in dogs. Can. J. Vet. Res. 2008, 72, 325–331. [Google Scholar]
- Dhanjal, J.K.; Wilson, D.V.; Robinson, E.; Tobin, T.T.; Dirikolu, L. Intravenous tramadol: Effects, nociceptive properties, and pharmacokinetics in horses. Vet. Anaesth. Analg. 2009, 36, 581–590. [Google Scholar] [CrossRef] [PubMed]
- Ruel, H.L.; Steagall, P.V. Adjuvant analgesics in acute pain management. Vet. Clin. Small Anim. Pract. 2019, 49, 1127–1141. [Google Scholar] [CrossRef] [PubMed]
- Bibi, Z. Role of cytochrome P450 in drug interactions. Nutr. Metab. 2008, 5, 27. [Google Scholar] [CrossRef] [PubMed]
Tramadol | (Tramadol 2 mg∙kg−1 IV) Mouta et al., 2021 [19] | T2M10 (Tramadol 2 mg∙kg−1 and Metamizole 10 mg∙kg−1 IV) | T2M25 (Tramadol 2 mg∙kg−1 and Metamizole 25 mg∙kg−1 IV) |
---|---|---|---|
C0 (ng/mL) | 6150 ± 1717 b | 9995 ± 2095 a | 13,776 ± 3254 a |
AUC0 → ∞ (h.ng/mL) | 2663 ± 1828 b | 3882 ± 764 a | 5008 ± 808 b |
T1/2 (h) | 0.97 ± 0.17 a | 8.12 ± 1.55 b | 13.62 ± 1.26 a |
Vz (L/h/kg) | 1.32 ± 0.63 a | 9.15 ± 7.01 b | 8.75 ± 7.21 b |
Cl (L/h/kg) | 1.01 ± 0.50 a | 0.76 ± 0.32 b | 0.42 ± 0.18 c |
MRT0 → ∞ (h) | 1.34 ± 0.36 a | 2.10 ± 0.48 b | 8.35 ± 2.44 c |
M1 | (Tramadol 2 mg∙kg−1 IV) Mouta et al., 2021 [19] | T2M10 (Tramadol 2 mg∙kg−1 and Metamizole 10 mg∙kg−1 IV) | T2M25 (Tramadol 2 mg∙kg−1 and Metamizole 25 mg∙kg IV) |
---|---|---|---|
Cmax (ng/mL) | 90 ± 61 a | 94 ± 22 a | 124 ± 30 b |
Tmax (h) | 1.00 ± 0.16 a | 0.72 ± 0.14 a | 0.91 ± 0.08 a |
AUC0 → ∞ (h.ng/mL) | 379 ± 238 a | 303 ± 76 a | 584 ± 412 b |
T1/2 (h) | 8.43 ± 3.57 a | 6.11 ± 1.35 a | 13.50 ± 2.62 b |
Vz (L/h/kg) | NA | 8.05 ± 5.12 a | 8.32 ± 7.73 a |
Cl (L/h/kg) | NA | 9.32 ± 6.51 a | 5.48 ± 2.54 a |
MRT0 → ∞ (h) | 10.80 ± 4.30 a | 5.09 ± 0.91 b | 18.25 ± 4.35 c |
4-MAA | (Metamizol 10 mg∙kg−1 IV) Macêdo et al., 2021 [20] | T2M10 (Tramadol 2 mg∙kg−1 and Metamizol 10 mg∙kg−1 IV) | (Metamizol 25 mg∙kg−1 IV) Macêdo et al., 2021 [20] | T2M25 (Tramadol 2 mg∙kg−1 and Metamizol 25 mg∙kg−1 IV) |
---|---|---|---|---|
C0 (µg/mL) | 31 ± 9.7 a | 109 ± 29 b | 100 ± 34 b | 128 ± 30 b |
AUC0 → ∞ (h.µg/mL) | 14.51 ± 1.9 a | 53.70 ± 7.3 b | 44.78 ± 5.5 b | 52.2 ± 4.4 b |
T1/2 (h) | 2.69 ± 0.34 a | 2.05 ± 0.19 a | 3.62 ± 0.24 b | 4.51 ± 0.94 b |
Vz (L/h/kg) | NA | 1.6 ± 0.1 a | NA | 3.4 ± 0.2 b |
Cl (L/h/kg) | NA | 5.0 ± 0.5 | NA | 4.9 ± 0.5 |
MRT0 → ∞ (h) | 2.84 ± 0.3 a | 1.92 ± 0.24 a | 3.92 ± 0.36 b | 3.99 ± 0.74 b |
4-AA | (Metamizol 10 mg∙kg−1 IV) Macêdo et al., 2021 [20] | T2M10 (Tramadol 2 mg∙kg−1 and Metamizol 10 mg∙kg−1 IV) | (Metamizol 25 mg∙kg−1 IV) Macêdo et al., 2021 [20] | T2M25 (Tramadol 2 mg∙kg−1 and Metamizol 25 mg∙kg−1 IV) |
---|---|---|---|---|
Cmax (µg/mL) | 1598 ± 0.25 a | 1941 ± 0.46 a | 2855 ± 0.55 b | 1067 ± 0.14 a |
Tmax (h) | 0.22 ± 0.06 a | 1.56 ± 0.65 b | 0.15 ± 0.06 a | 0.91 ± 0.36 b |
AUC0→ ∞ (h.µg/mL) | 6801 ± 1569 a | 14,175 ± 4367 b | 12,494 ± 1532 b | 11,981 ± 2583 b |
T1/2 (h) | 6.37 ± 1.30 a | 9.41 ± 2.42 b | 7.11 ± 1.01 a | 10.47 ± 0.98 b |
Vz (L/h/kg) | NA | 33.2 ± 3.4 a | NA | 37.1 ± 3.5 a |
Cl (L/h/kg) | NA | 3.1 ± 0.3 a | NA | 2.5 ± 0.3 a |
MRT0 → ∞ (h) | 10.95 ± 1.61 a | 14.04 ± 3.54 a | 11.20 ± 1.43 a | 15.55 ± 1.41 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Araújo-Silva, G.; de Macêdo, L.B.; Mouta, A.N.; de Oliveira, M.G.C.; Arcoverde, K.N.; Solon, L.G.S.; Perez-Urizar, J.T.; de Paula, V.V. Tramadol and M1 Bioavailability Induced by Metamizole Co-Administration in Donkeys (Equus asinus). Animals 2024, 14, 929. https://doi.org/10.3390/ani14060929
Araújo-Silva G, de Macêdo LB, Mouta AN, de Oliveira MGC, Arcoverde KN, Solon LGS, Perez-Urizar JT, de Paula VV. Tramadol and M1 Bioavailability Induced by Metamizole Co-Administration in Donkeys (Equus asinus). Animals. 2024; 14(6):929. https://doi.org/10.3390/ani14060929
Chicago/Turabian StyleAraújo-Silva, Gabriel, Luã B. de Macêdo, Andressa N. Mouta, Maria Gláucia C. de Oliveira, Kathryn N. Arcoverde, Lilian G. S. Solon, José T. Perez-Urizar, and Valéria V. de Paula. 2024. "Tramadol and M1 Bioavailability Induced by Metamizole Co-Administration in Donkeys (Equus asinus)" Animals 14, no. 6: 929. https://doi.org/10.3390/ani14060929
APA StyleAraújo-Silva, G., de Macêdo, L. B., Mouta, A. N., de Oliveira, M. G. C., Arcoverde, K. N., Solon, L. G. S., Perez-Urizar, J. T., & de Paula, V. V. (2024). Tramadol and M1 Bioavailability Induced by Metamizole Co-Administration in Donkeys (Equus asinus). Animals, 14(6), 929. https://doi.org/10.3390/ani14060929