Effects of Butterfly Pea Extracts on Phagocytic Activity of Blood Polymorphonuclear Leukocytes and Muscular Lipid Peroxidation in Rabbits
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Preparation and Extraction
2.2. Animals, Housing, Diet, and Recording
2.3. Apparent Digestibility and Digestive Tract Histology
2.4. Phagocytosis Assay and Serum Biochemistry
2.5. Meat Quality and Lipid Peroxidation
2.6. Statistical Analysis
3. Results and Discussion
3.1. The Chemical Composition of the Diets and CTE
3.2. Apparent Digestibility and Digestive Tract Histology
3.3. Phagocytic Function and Serum Biochemistry
3.4. Meat Quality and Lipid Peroxidation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Devasagayam, T.P.A.; Tilak, J.C.; Boloor, K.K.; Sane, K.S.; Ghaskadbi, S.S.; Lele, R.D. Free radicals and antioxidants in human health: Current status and future prospects. J. Assoc. Phys. India 2004, 52, 794–804. [Google Scholar]
- Liu, Z.; Ren, Z.; Zhang, J.; Chuang, C.C.; Kandaswamy, E.; Zhou, T.; Zuo, L. Role of ROS and nutritional antioxidants in human diseases. Front. Physiol. 2018, 9, 477. [Google Scholar] [CrossRef] [PubMed]
- Tian, T.; Wang, Z.; Zhang, J. Phatomechanisms of oxidative stress in inflammatory bowel disease and potential antioxidant therapies. Oxid. Med. Cell. Longev. 2017, 4535194. [Google Scholar] [CrossRef]
- Oglesbee, B.L.; Lord, B. Gastrointestinal diseases of rabbits. In Ferrets, Rabbits, and Rodents: Clinical Medicine and Surgery, 4th ed.; Saunders: London, UK, 2020; pp. 174–187. [Google Scholar] [CrossRef]
- Skowron, M.; Zalejska-Fiolka, J.; Blaszczyk, U.; Chwalinska, E.; Owczarek, A.; Brikner, E. Antioxidant enzyme activities in rabbits under oxidative stress induced by hight fat diet. J. Vet. Res. 2018, 62, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Khalek, A.M. Supplemental antioxidants in rabbit nutrition: A review. Livest. Sci. 2013, 158, 95–105. [Google Scholar] [CrossRef]
- Krishnaiah, D.; Sarbatly, R.; Nithyanandam, R. A review of the antioxidant potential of medicinal plant species. Food Bioprod. Process. 2011, 89, 217–233. [Google Scholar] [CrossRef]
- Ratha, J.; Yongram, C.; Panyatip, P.; Powijitkul, P.; Siriparu, P.; Datham, S.; Priprem, A.; Srisongkram, T.; Puthongking, P. Polyphenol and tryptophan contents of purple corn (Zea mays L.) variety knd and butterfly pea (Clitoria ternatea) aqueous extracts: Insights into phytochemical profiles with antioxidant activities and pca analysis. Plants 2023, 12, 603. [Google Scholar] [CrossRef]
- Oguis, G.K.; Gilding, E.K.; Jackson, M.A.; Craik, D.J. Butterfly pea (Clitoria ternatea), a cyclotide-bearing plant with applications in agriculture and medicine. Front. Plant Sci. 2019, 10, 645. [Google Scholar] [CrossRef]
- Maneesai, P.; Iampanichakul, M.; Chaihongsa, N.; Poasakate, A.; Potue, P.; Rattanakanokchai, S.; Bunbupha, S.; Chiangsaen, P.; Pakdeechote, P. Butterfly pea flower (Clitoria ternatea Linn.) extract ameliorates cardiovascular dysfunction and oxidative stress in nitric oxide-deficient hypertensive rats. Antioxidants 2021, 10, 523. [Google Scholar] [CrossRef]
- Jeyaraj, E.J.; Lim, Y.Y.; Choo, W.S. Extraction methods of butterfly pea (Clitoria ternatea) flower and biological activities of its phytochemicals. J. Food Sci. Technol. 2021, 58, 2054–2067. [Google Scholar] [CrossRef]
- Sapsuha, Y.; Sjafani, N.; Fatmona, S.; Tjokrodiningrat, S. Butterfly pea (Clitoria ternatea) extract as a potential feed additive for broiler chickens. Livest. Res. Rural. Dev. 2023, 35, 89. [Google Scholar]
- Suwannamanee, J.; Sritiwong, S.; Krutthai, N.; Chaiwang, N.; Marupanthorn, K.; Wattanakul, W. Eggs production and quality from hens fed with concentrate containing butterfly pea plant extract. Khon Kaen Agric. J. 2022, 50, 471–480. [Google Scholar] [CrossRef]
- Gerencsér, Z.S.; Szendrő, Z.S.; Matics, Z.S.; Radnai, I.; Kovacs, M.; Nagy, I.; Cullere, M.; Bosco, A.D.; Zotte, A.D. Effect of Dietary supplementation of Spirulina (Arthrospira platensis) and Thyme (Thymus vulgaris) on apparent digestibility and productive performance of growing rabbits. World Rabbit Sci. 2014, 22, 1–9. [Google Scholar] [CrossRef]
- Kovitvadhi, A.; Gasco, L.; Ferrocino, I.; Rotolo, L.; Dabbou, S.; Malfatto, V.; Gai, F.; Peiretti, P.G.; Falzone, M.; Vignolini, C.; et al. Effect of purple loosestrife (Lythrum salicaria) diet supplementation in rabbit nutrition on performance, digestibility, health and meat quality. Animal 2016, 10, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, P.K.; Kumar, V.; Kumar, N.S.; Heinrich, M. The ayurvedic medicine Clitoria ternatea—From traditional use to scientific assessment. J. Ethnopharmacol. 2008, 20, 291–301. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Method of Analysis, 17th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fibre, neutral detergent fibre, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- European Economic Community. Analytical determination of starch. OJEC 1972, 123, 7. [Google Scholar]
- Gidenne, T.; Combes, S.; Feugier, A.; Jehl, N.; Arveux, P.; Boisot, P.; Briens, C.; Corrent, E.; Fortune, H.; Montessuy, S.; et al. Feed restriction strategy in the growing rabbit. 2. Impact on digestive health, growth and carcass characteristics. Animal 2009, 3, 509–515. [Google Scholar] [CrossRef]
- Perez, J.M.; Lebas, F.; Gidenne, T.; Maertens, L.; Xiccato, G.; Parigi-Bini, R.; Dalle Zotte, A.; Cossu, M.E.; Carazzolo, A.; Vilamide, M.J.; et al. European reference method for in vivo determination of diet digestibility in rabbits. World Rabbit Sci. 1995, 3, 41–43. [Google Scholar]
- Witte, V.C.; Krause, G.F.; Bailey, M.E. A new extraction method for determining 2-thiobarbituric acid values of pork and beef during storage. J. Food Sci. 1970, 35, 582–585. [Google Scholar] [CrossRef]
- Umami, N.; Wardi, W.W.; Nisa, R.L.; Suhartanto, B.; Suseno, N. Butterfly pea (Clitoria ternatea) plants nutrient content and In vitro digestibility at different harvest ages at the second defoliation. Adv. Biol. Sci. Res. 2022, 21, 6–10. [Google Scholar] [CrossRef]
- Patil, P.V.; Gendley, M.K.; Patil, M.K. Leaf protein: New protein source for ruminants. J. Entomol. Zool. Stud. 2021, 9, 161–165. [Google Scholar]
- Nynäs, A.L.; Newason, W.R.; Langton, M.; Wouters, A.G.B.; Johansson, E. Application of leaf protein concentrate from various sources in food: Solubility at food-relevant pH values and air-water interfacial properties. LWT 2023, 184, 114962. [Google Scholar] [CrossRef]
- Amad, A.A.; Männer, K.; Wendler, K.R.; Neumann, K.; Zentek, J. Effects of a phytogenic feed additive on growth performance and ileal nutrient digestibility in broiler chickens. Poult. Sci. 2011, 90, 2811–2816. [Google Scholar] [CrossRef] [PubMed]
- Hernández, F.; Madrid, J.; García, V.; Orengo, J.; Megías, M.D. Influence of two plant extracts on broilers performance, digestibility, and digestive organ size. Poult. Sci. 2004, 83, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Chwen, L.T.; Foo, H.L.; Than, N.T.; Choe, D.W. Growth performance, plasma fatty acids, villous height and crypt depth of preweaning piglets fed with medium chain triacylglycerol. Asian Australs J. Anim. Sci. 2013, 26, 700–704. [Google Scholar] [CrossRef] [PubMed]
- Verediano, T.A.; Stampini Duarte Martino, H.; Dias Paes, M.C.; Tako, E. Effects of Anthocyanin on Intestinal Health: A Systematic Review. Nutrients 2021, 13, 1331. [Google Scholar] [CrossRef]
- Nurcholis, W.; Iqbal, T.M.; Sulistiyani, S.; Liwanda, N. Profile of secondary metabolites in different parts of the butterfly pea (Clitoria ternatea) plant with antioxidant activity. Yuzuncu Yıl Univ. J. Agric. Sci. 2023, 33, 231–247. [Google Scholar] [CrossRef]
- Swallah, M.S.; Sun, H.; Affoh, R.; Fu, H.; Yu, H. Antioxidant potential overviews of secondary metabolites (polyphenols) in fruits. Int. J. Food Sci. 2020, 2020, 9081686. [Google Scholar] [CrossRef]
- Prihambodo, T.R.; Sholikin, M.M.; Qomariyah, N.; Jayanegara, A.; Batubara, I.; Utomo, D.B.; Nahrowi, N. Effects of dietary flavonoids on performance, blood constituents, carcass composition and small intestinal morphology of broilers: A meta-analysis. Anim. Biosci. 2020, 34, 434–442. [Google Scholar] [CrossRef]
- Sandoval-Ramírez, B.A.; Catalán, Ú.; Pedret, A.; Valls, R.M.; Motilva, M.J.; Rubió, L.; Solá, R. Exploring the effects of phenolic compounds to reduce intestinal damage and improve the intestinal barrier integrity: A systematic review of in vivo animal studies. Clin. Nutr. 2020, 40, 1719–1732. [Google Scholar] [CrossRef] [PubMed]
- Tizard, I. Veterinary Immunology, 9th ed.; Elsevier Saunders: St. Louis, MO, USA, 2013. [Google Scholar]
- Nithianantham, K.; Ping, K.Y.; Latha, L.Y.; Jothy, S.L.; Darah, I.; Chen, Y.; Chew, A.-L.; Sasidharan, S. Evaluation of hepatoprotective effect of methanolic extract of Clitoria ternatea (Linn.) flower against acetaminophen-induced liver damage. Asian Pac. J. Trop. Dis. 2013, 3, 314–319. [Google Scholar] [CrossRef]
- Kumar, C.H.; Ramesh, A.; Kumar, J.N.S.; Mohammed Ishaq, B. A review on hepatoprotective activity of medicinal plants. Int. J. Pharm. Sci. Res. 2011, 2, 501–515. [Google Scholar] [CrossRef]
- Daisy, P.; Santosh, K.; Rajathi, M. Antihyperglycemic and antihyperlipidemic effects of Clitoria ternatea Linn. in alloxan-induced diabetic rats. Afr. J. Microbiol. Res. 2009, 3, 287–291. [Google Scholar]
- Lo Fiego, D.P.; Santoro, P.; Macchioni, P.; Mazzoni, D.; Piattoni, F.; Tassone, F.; De Leonibus, E. The effect of dietary supplementation of vitamins C and E on the a-tocopherol content of muscles, liver and kidney, on the stability of lipids, and on certain meat quality parameters of the longissimus dorsi of rabbits. Meat Sci. 2004, 67, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Dalle Zotte, A. Perception of rabbit meat quality and major factors influencing the rabbit carcass and meat quality. Livest. Prod. Sci. 2002, 75, 11–32. [Google Scholar] [CrossRef]
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A Comprehensive Review on Lipid Oxidation in Meat and Meat Products. Antioxidants. 2019, 8, 429. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Lee, D.Y.; Kim, O.Y.; Kang, H.J.; Kim, H.S.; Hur, S.J. Overview of studies on the use natural antioxidative materials in meat products. Food Sci. Anim. Resour. 2020, 40, 863–880. [Google Scholar] [CrossRef]
- Mukhopadhyay, R.; Bhattacharya, S.; Biswas, M. In vitro free radical scavenging activity of Clitorea ternatea leaf extracts. J. Adv. Pharm. Educ. Res. 2012, 2, 206–209. [Google Scholar]
- Rabeta, M.S.; An Nabil, Z. Total phenolic compounds and scavenging activity in Clitoria ternatea and Vitex negundo linn. Int. Food Res. J. 2013, 20, 495–500. [Google Scholar]
Chemical Components | Control | CTE |
---|---|---|
Metabolizable energy (kcal/kg) | 2570 | - |
Dry matter | 90.1 | 91.6 |
Crude protein (CP) | 16.5 | 43.7 |
Ether extract (EE) | 2.38 | 10.2 |
Ash | 7.17 | 11.4 |
Crude fiber | 13.0 | 2.90 |
Neutral detergent fiber (NDF) | 27.7 | - |
Acid detergent fiber (ADF) | 17.7 | - |
Acid detergent lignin (ADL) | 4.53 | - |
Starch | 29.7 | 23.4 |
Parameters | Groups | SEM 1 | p-Value | |
---|---|---|---|---|
Control (n = 8) | CTE (n = 8) | |||
Apparent digestibility (%) | ||||
Dry matter | 66.0 | 68.5 | 0.71 | 0.09 |
Organic matter | 57.9 | 67.9 | 2.62 | 0.04 |
Ether extract | 55.4 | 61.7 | 2.15 | 0.003 |
Crude protein | 93.4 | 94.8 | 0.39 | 0.07 |
Leukocyte phagocytic activity 2 | ||||
75 days | 0.87 | 1.06 | 0.07 | 0.17 |
90 days | 1.26 | 1.42 | 0.06 | 0.50 |
Alveolar macrophage activity 2 | 0.97 | 0.86 | 0.06 | 0.43 |
Serum biochemistry | ||||
Total protein (g%) | 5.78 | 5.55 | 0.13 | 0.42 |
Albumin (g%) | 3.35 | 3.28 | 0.05 | 0.59 |
Globulin (g%) | 2.43 | 2.27 | 0.11 | 0.51 |
Aspartate aminotransferase (AST, U/L) | 60.2 | 50.3 | 7.05 | 0.52 |
Alanine aminotransferase (ALT, U/L) | 53.2 | 35.7 | 6.67 | 0.20 |
Blood urea nitrogen (g%) | 14.8 | 12.0 | 0.69 | 0.05 |
Creatinine (g%) | 1.08 | 0.86 | 0.06 | 0.12 |
Cholesterol (g%) | 96.5 | 88.5 | 11.2 | 0.74 |
Villus height and crypt depth (µm) | ||||
Jejunal height | 474 | 476 | 20.0 | 0.97 |
Ileal height | 623 | 658 | 35.3 | 0.64 |
Jejunal crypt | 108 | 114 | 4.27 | 0.49 |
Ileal crypt | 122 | 124 | 3.30 | 0.74 |
Carcass characteristics | ||||
Skin, paws, and feet (%SW) | 18.0 | 18.4 | 0.31 | 0.49 |
Full gastrointestinal tract (%SW) | 22.3 | 23.7 | 1.40 | 0.63 |
Cold carcass weight (CCW, g) | 1397 | 1367 | 60.0 | 0.82 |
Dressing percentage (%) | 61.2 | 59.3 | 0.73 | 0.23 |
Liver (%CCW) | 5.41 | 6.78 | 0.33 | 0.03 |
Kidneys (%CCW) | 1.14 | 1.18 | 0.05 | 0.76 |
Perirenal fat (%CCW) | 2.35 | 2.02 | 0.22 | 0.51 |
Thoracic organs (%CCW) | 1.49 | 1.40 | 0.05 | 0.69 |
Cecal trials | ||||
Full caecum (%SW) | 6.84 | 7.45 | 0.55 | 0.60 |
Empty caecum (%SW) | 1.52 | 1.61 | 0.09 | 0.65 |
Cecal content (%SW) | 5.31 | 5.84 | 0.47 | 0.60 |
Cecal pH | 6.57 | 6.45 | 0.07 | 0.46 |
Meat quality | ||||
pH24 | 5.89 | 5.79 | 0.01 | 0.005 |
Lightness (L*) | 52.1 | 56.2 | 0.60 | 0.001 |
Redness (a*) | 1.54 | 1.60 | 0.04 | 0.49 |
Yellowness (b*) | 3.50 | 1.71 | 0.36 | 0.01 |
Hue (H*) | 60.7 | 33.7 | 5.09 | 0.006 |
Chroma (C*) | 3.93 | 2.81 | 0.27 | 0.03 |
Moisture (%fresh meat) | 76.4 | 77.1 | 0.23 | 0.13 |
Protein (%dry matter) | 92.8 | 92.4 | 0.23 | 0.39 |
Ether extract (%dry matter) | 1.86 | 1.82 | 0.24 | 0.95 |
Ash (%dry matter) | 4.93 | 5.04 | 0.06 | 0.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovitvadhi, A.; Gasco, L.; Zoccarato, I.; Rukkwamsuk, T. Effects of Butterfly Pea Extracts on Phagocytic Activity of Blood Polymorphonuclear Leukocytes and Muscular Lipid Peroxidation in Rabbits. Animals 2024, 14, 958. https://doi.org/10.3390/ani14060958
Kovitvadhi A, Gasco L, Zoccarato I, Rukkwamsuk T. Effects of Butterfly Pea Extracts on Phagocytic Activity of Blood Polymorphonuclear Leukocytes and Muscular Lipid Peroxidation in Rabbits. Animals. 2024; 14(6):958. https://doi.org/10.3390/ani14060958
Chicago/Turabian StyleKovitvadhi, Attawit, Laura Gasco, Ivo Zoccarato, and Theera Rukkwamsuk. 2024. "Effects of Butterfly Pea Extracts on Phagocytic Activity of Blood Polymorphonuclear Leukocytes and Muscular Lipid Peroxidation in Rabbits" Animals 14, no. 6: 958. https://doi.org/10.3390/ani14060958
APA StyleKovitvadhi, A., Gasco, L., Zoccarato, I., & Rukkwamsuk, T. (2024). Effects of Butterfly Pea Extracts on Phagocytic Activity of Blood Polymorphonuclear Leukocytes and Muscular Lipid Peroxidation in Rabbits. Animals, 14(6), 958. https://doi.org/10.3390/ani14060958