Hatchery and Dietary Application of Synbiotics in Broilers: Performance and mRNA Abundance of Ileum Tight Junction Proteins, Nutrient Transporters, and Immune Response Markers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Birds, Management, and Experimental Diets
2.2. Total RNA Extraction and Reverse Transcription
2.3. Quantitative Real-Time PCR
2.4. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. mRNA Abundance of Gut Integrity, Nutrient Transporters, and Immune Response-Related Genes in the Ileum on d 7 and d 21
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Cervantes, H.M. Antibiotic-free poultry production: Is it sustainable? J. Appl. Poult. Res. 2015, 24, 91–97. [Google Scholar] [CrossRef]
- Ben, Y.; Fu, C.; Hu, M.; Liu, L.; Wong, M.H.; Zheng, C. Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: A review. Environ. Res. 2019, 169, 483–493. [Google Scholar] [CrossRef]
- Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 2010, 74, 417–433. [Google Scholar] [CrossRef]
- EFSA. Scientific opinion concerning the welfare of animals during transport. EFSA J. 2011, 9, 1966. [Google Scholar] [CrossRef]
- Willemsen, H.; Debonne, M.; Swennen, Q.; Everaert, N.; Careghi, C.; Han, H.; Bruggeman, V.; Tona, K.; Decuypere, E. Delay in feed access and spread of hatch: Importance of early nutrition. World’s Poult. Sci. J. 2010, 66, 177–188. [Google Scholar] [CrossRef]
- Ozlu, S.; Ucar, A.; Romanini, C.E.B.; Banwell, R.; Elibol, O. Effect of posthatch feed and water access time on residual yolk and broiler live performance. Poult. Sci. 2020, 99, 6737–6744. [Google Scholar] [CrossRef]
- Cheled-Shoval, S.L.; Amit-Romach, E.; Barbakov, M.; Uni, Z. The effect of in ovo administration of mannan oligosaccharide on small intestine development during the pre- and posthatch periods in chickens. Poult. Sci. 2011, 90, 2301–2310. [Google Scholar] [CrossRef]
- Proszkowiec-Weglarz, M.; Schreier, L.L.; Kahl, S.; Miska, K.B.; Russell, B.; Elsasser, T.H. Effect of delayed feeding post-hatch on expression of tight junction- and gut barrier-related genes in the small intestine of broiler chickens during neonatal development. Poult. Sci. 2020, 99, 4714–4729. [Google Scholar] [CrossRef]
- Rubio, L.A. Possibilities of early life programming in broiler chickens via intestinal microbiota modulation. Poult. Sci. 2019, 98, 695–706. [Google Scholar] [CrossRef]
- Lan, Y.; Verstegen, M.W.A.; Tamminga, S.; Williams, B.A. The role of the commensal gut microbial community in broiler chickens. World’s Poult. Sci. J. 2013, 61, 95–104. [Google Scholar] [CrossRef]
- Calik, A.; Ceylan, A.; Ekim, B.; Adabi, S.G.; Dilber, F.; Bayraktaroglu, A.G.; Tekinay, T.; Ozen, D.; Sacakli, P. The effect of intra-amniotic and posthatch dietary synbiotic administration on the performance, intestinal histomorphology, cecal microbial population, and short-chain fatty acid composition of broiler chickens. Poult. Sci. 2017, 96, 169–183. [Google Scholar] [CrossRef] [PubMed]
- Uni, Z.; Ferket, R. Methods for early nutrition and their potential. World’s Poult. Sci. J. 2004, 60, 101–111. [Google Scholar] [CrossRef]
- Jha, R.; Singh, A.K.; Yadav, S.; Berrocoso, J.F.D.; Mishra, B. Early nutrition programming (in ovo and post-hatch feeding) as a strategy to modulate gut health of poultry. Front. Vet. Sci. 2019, 6, 82. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Iji, P.; Choct, M. Dietary modulation of gut microflora in broiler chickens: A review of the role of six kinds of alternatives to in-feed antibiotics. World’s Poult. Sci. J. 2009, 65, 97–114. [Google Scholar] [CrossRef]
- Teng, P.-Y.; Kim, W.K. Roles of prebiotics in intestinal ecosystem of broilers. Front. Vet. Sci. 2018, 5, 245. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Hack, M.E.; El-Saadony, M.T.; Shafi, M.E.; Qattan, S.Y.; Batiha, G.E.; Khafaga, A.F.; Abdel-Moneim, A.M.E.; Alagawany, M. Probiotics in poultry feed: A comprehensive review. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1835–1850. [Google Scholar] [CrossRef] [PubMed]
- Bogusławska-Tryk, M.; Ziółkowska, E.; Sławińska, A.; Siwek, M.; Bogucka, J. Modulation of intestinal histology by probiotics, prebiotics and synbiotics delivered in ovo in distinct chicken genotypes. Animals 2021, 11, 3293. [Google Scholar] [CrossRef] [PubMed]
- Stefaniak, T.; Madej, J.P.; Graczyk, S.; Siwek, M.; Łukaszewicz, E.; Kowalczyk, A.; Sieńczyk, M.; Bednarczyk, M. Selected prebiotics and synbiotics administered in ovo can modify innate immunity in chicken broilers. BMC Vet. Res. 2019, 15, 105. [Google Scholar] [CrossRef]
- Stefaniak, T.; Madej, J.P.; Graczyk, S.; Siwek, M.; Łukaszewicz, E.; Kowalczyk, A.; Sieńczyk, M.; Maiorano, G.; Bednarczyk, M. Impact of prebiotics and synbiotics administered in ovo on the immune response against experimental antigens in chicken broilers. Animals 2020, 10, 643. [Google Scholar] [CrossRef]
- Dunislawska, A.; Slawinska, A.; Stadnicka, K.; Bednarczyk, M.; Gulewicz, P.; Jozefiak, D.; Siwek, M. Synbiotics for broiler chickens—In vitro design and evaluation of the influence on host and selected microbiota populations following in ovo delivery. PLoS ONE 2017, 12, e0168587. [Google Scholar] [CrossRef]
- Duan, A.-Y.; Ju, A.-Q.; Zhang, Y.-N.; Qin, Y.-J.; Xue, L.-G.; Ma, X.; Luan, W.-M.; Yang, S.-B. The effects of in ovo injection of synbiotics on the early growth performance and intestinal health of chicks. Front. Vet. Sci. 2021, 8, 658301. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Das, R.; Mishra, P.; Jha, R. In ovo feeding as a tool for improving performance and gut health of poultry: A review. Front. Vet. Sci. 2021, 8, 754246. [Google Scholar] [CrossRef]
- Dunislawska, A.; Gryzinska, M.; Siwek, M. Changes in the gene expression and methylation in chicken cecal tonsils after in ovo administration of bioactive substances. Sci. Rep. 2023, 13, 19840. [Google Scholar] [CrossRef] [PubMed]
- Tavaniello, S.; De Marzo, D.; Bednarczyk, M.; Palazzo, M.; Zejnelhoxha, S.; Wu, M.; Peng, M.; Stadnicka, K.; Maiorano, G. Influence of a commercial synbiotic administered in ovo and in-water on broiler chicken performance and meat quality. Foods 2023, 12, 2470. [Google Scholar] [CrossRef] [PubMed]
- Maiorano, G.; Sobolewska, A.; Cianciullo, D.; Walasik, K.; Elminowska-Wenda, G.; Slawinska, A.; Tavaniello, S.; Zylinska, J.; Bardowski, J.; Bednarczyk, M. Influence of in ovo prebiotic and synbiotic administration on meat quality of broiler chickens. Poult. Sci. 2012, 91, 2963–2969. [Google Scholar] [CrossRef] [PubMed]
- Arreguin-Nava, M.A.; Graham, B.D.; Adhikari, B.; Agnello, M.; Selby, C.M.; Hernandez-Velasco, X.; Vuong, C.N.; Solis-Cruz, B.; Hernandez-Patlan, D.; Latorre, J.D. In ovo administration of defined lactic acid bacteria previously isolated from adult hens induced variations in the cecae microbiota structure and enterobacteriaceae colonization on a virulent Escherichia coli horizontal infection model in broiler chickens. Front. Vet. Sci. 2020, 7, 489. [Google Scholar] [CrossRef] [PubMed]
- Pender, C.M.; Kim, S.; Potter, T.D.; Ritzi, M.M.; Young, M.; Dalloul, R.A. Effects of in ovo supplementation of probiotics on performance and immunocompetence of broiler chicks to an Eimeria challenge. Benef. Microbes 2016, 7, 699–705. [Google Scholar] [CrossRef]
- Dibner, J.; Richards, J.D. Antibiotic growth promoters in agriculture: History and mode of action. Poult. Sci. 2005, 84, 634–643. [Google Scholar] [CrossRef]
- Timmerman, H.; Veldman, A.; Van den Elsen, E.; Rombouts, F.; Beynen, A. Mortality and growth performance of broilers given drinking water supplemented with chicken-specific probiotics. Poult. Sci. 2006, 85, 1383–1388. [Google Scholar] [CrossRef]
- Emami, N.K.; Calik, A.; White, M.B.; Young, M.; Dalloul, R.A. Necrotic enteritis in broiler chickens: The role of tight junctions and mucosal immune responses in alleviating the effect of the disease. Microorganisms 2019, 7, 231. [Google Scholar] [CrossRef] [PubMed]
- Calik, A.; Omara, I.I.; White, M.B.; Li, W.T.; Dalloul, R.A. Effects of dietary direct fed microbial supplementation on performance, intestinal morphology and immune response of broiler chickens challenged with coccidiosis. Front. Vet. Sci. 2019, 6, 463. [Google Scholar] [CrossRef] [PubMed]
- Zeisel, M.B.; Dhawan, P.; Baumert, T.F. Tight junction proteins in gastrointestinal and liver disease. Gut 2019, 68, 547–561. [Google Scholar] [CrossRef] [PubMed]
- Hollemans, M.S.; van Baal, J.; de Vries Reilingh, G.; Kemp, B.; Lammers, A.; de Vries, S. Intestinal epithelium integrity after delayed onset of nutrition in broiler chickens. Poult. Sci. 2020, 99, 6818–6827. [Google Scholar] [CrossRef]
- Cason, E.; Al Hakeem, W.; Adams, D.; Shanmugasundaram, R.; Selvaraj, R. Effects of synbiotic supplementation as an antibiotic growth promoter replacement on cecal Campylobacter jejuni load in broilers challenged with C. jejuni. J. Appl. Poult. Res. 2023, 32, 100315. [Google Scholar] [CrossRef]
- Du, M.; Cheng, Y.; Chen, Y.; Wang, S.; Zhao, H.; Wen, C.; Zhou, Y. Dietary supplementation with synbiotics improves growth performance, antioxidant status, immune function, and intestinal barrier function in broilers subjected to cyclic heat stress. Environ. Sci. Pollut. Res. 2023, 30, 18026–18038. [Google Scholar] [CrossRef] [PubMed]
- Broom, L.J.; Kogut, M.H. The role of the gut microbiome in shaping the immune system of chickens. Vet. Immunol. Immunopathol. 2018, 204, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Kamdar, K.; Nguyen, V.; DePaolo, R.W. Toll-like receptor signaling and regulation of intestinal immunity. Virulence 2013, 4, 207–212. [Google Scholar] [CrossRef]
- De Kivit, S.; Tobin, M.C.; Forsyth, C.B.; Keshavarzian, A.; Landay, A.L. Regulation of intestinal immune responses through TLR activation: Implications for pro-and prebiotics. Front. Immun. 2014, 5, 60. [Google Scholar] [CrossRef]
- MacKinnon, K.M.; He, H.; Nerren, J.R.; Swaggerty, C.L.; Genovese, K.J.; Kogut, M.H. Expression profile of toll-like receptors within the gastrointestinal tract of 2-day-old Salmonella enteriditis-infected broiler chickens. Vet. Microbiol. 2009, 137, 313–319. [Google Scholar] [CrossRef]
- Toor, D.; Wsson, M.K.; Kumar, P.; Karthikeyan, G.; Kaushik, N.K.; Goel, C.; Singh, S.; Kumar, A.; Prakash, H. Dysbiosis disrupts gut Immune homeostasis and promotes gastric diseases. Int. J. Mol. Sci. 2019, 20, 2432. [Google Scholar] [CrossRef] [PubMed]
- Goel, A.; Ncho, C.M.; Choi, Y.H. Regulation of gene expression in chickens by heat stress. J. Anim. Sci. Biotechnol. 2021, 12, 11. [Google Scholar] [CrossRef] [PubMed]
- Calik, A.; Emami, N.K.; Schyns, G.; White, M.B.; Walsh, M.C.; Romero, L.F.; Dalloul, R.A. Influence of dietary vitamin E and selenium supplementation on broilers subjected to heat stress, Part II: Oxidative stress, immune response, gut integrity, and intestinal microbiota. Poult. Sci. 2022, 101, 101858. [Google Scholar] [CrossRef] [PubMed]
- Karczewski, J.; Poniedzialek, B.; Adamski, Z.; Rzymski, P. The effects of the microbiota on the host immune system. Autoimmunity 2014, 47, 494–504. [Google Scholar] [CrossRef] [PubMed]
- Pender, C.M.; Kim, S.; Potter, T.D.; Ritzi, M.M.; Young, M.; Dalloul, R.A. In ovo supplementation of probiotics and its effects on performance and immune-related gene expression in broiler chicks. Poult. Sci. 2017, 96, 1052–1062. [Google Scholar] [CrossRef] [PubMed]
- Dibaji, S.M.; Seidavi, A.; Asadpour, L.; da Silva, F.M. Effect of a synbiotic on the intestinal microflora of chickens. J. Appl. Poult. Res. 2014, 23, 1–6. [Google Scholar] [CrossRef]
- Gilbert, E.R.; Li, H.; Emmerson, D.A.; Webb, K.E., Jr.; Wong, E.A. Dietary protein quality and feed restriction influence abundance of nutrient transporter mRNA in the small intestine of broiler chicks. J. Nutr. 2008, 138, 262–271. [Google Scholar] [CrossRef]
- Calik, A.; Emami, N.K.; White, M.B.; Walsh, M.C.; Romero, L.F.; Dalloul, R.A. Influence of dietary vitamin E and selenium supplementation on broilers subjected to heat stress, Part I: Growth performance, body composition and intestinal nutrient transporters. Poult. Sci. 2022, 101, 101857. [Google Scholar] [CrossRef]
- Madsen, S.L.; Wong, E.A. Expression of the chicken peptide transporter 1 and the peroxisome proliferator-activated receptor alpha following feed restriction and subsequent refeeding. Poult. Sci. 2011, 90, 2295–2300. [Google Scholar] [CrossRef]
- Moran, A.W.; Al-Rammahi, M.A.; Arora, D.K.; Batchelor, D.J.; Coulter, E.A.; Ionescu, C.; Bravo, D.; Shirazi-Beechey, S.P. Expression of Na+/glucose co-transporter 1 (SGLT1) in the intestine of piglets weaned to different concentrations of dietary carbohydrate. Br. J. Nutr. 2010, 104, 647–655. [Google Scholar] [CrossRef]
- Huang, P.; Zhang, Y.; Xiao, K.; Jiang, F.; Wang, H.; Tang, D.; Liu, D.; Liu, B.; Liu, Y.; He, X.; et al. The chicken gut metagenome and the modulatory effects of plant-derived benzylisoquinoline alkaloids. Microbiome 2018, 6, 211. [Google Scholar] [CrossRef] [PubMed]
Ingredient, % | 0–21 d |
---|---|
Corn | 59.73 |
Soybean meal, CP 48% | 33.20 |
Vegetable oil | 3.00 |
Limestone | 0.68 |
Dicalcium phosphate | 2.20 |
DL-Methionine | 0.20 |
L-Lysine HCl | 0.24 |
L-Threonine | 0.09 |
Salt | 0.30 |
Vitamin–Mineral Premix (NB3000) 1 | 0.36 |
Total | 100.0 |
Chemical composition (Calculated) | |
Dry Matter, % | 87.75 |
Crude Protein, % | 21.00 |
AMEn, kcal/kg | 3060 |
Lysine, % | 1.32 |
Dig. Lysine, % | 1.18 |
Methionine + cysteine, % | 0.88 |
Dig. Methionine + cysteine, % | 0.78 |
Threonine, % | 0.90 |
Dig. Threonine, % | 0.77 |
Calcium, % | 0.90 |
Available phosphorus, % | 0.45 |
Gene 2 | Primer Sequence (5′–3′) | Size (bp) | Acc (Reference) |
---|---|---|---|
GAPDH | CCTAGGATACACAGAGGACCAGGTT | 64 | NM_204305 |
GGTGGAGGAATGGCTGTCA | |||
ZO-1 | GGAGTACGAGCAGTCAACATAC | 101 | XM_413773 |
GAGGCGCACGATCTTCATAA | |||
ZO-2 | GCGTCCCATCCTGAGAAATAC | 89 | NM_205149.1 |
CTTGTTCACTCCCTTCCTCTTC | |||
CLDN-1 | GTGTTCAGAGGCATCAGGTATC | 107 | NM_001013611.2 |
GTCAGGTCAAACAGAGGTACAA | |||
PepT1 | CCCCTGAGGAGGATCACTGTT | 66 | NM_204365 |
CAAAAGAGCAGCAGCAACGA | |||
SGLT1 | GCCATGGCCAGGGCTTA | 71 | XM_415247 |
CAATAACCTGATCTGTGCACCAGTA | |||
TLR2 | GCGAGCCCCCACGAA | 61 | NM_204278 |
GGAGTCGTTCTCACTGTAGGAGACA | |||
TLR4 | CCACACACCTGCCTACATGAA | 63 | NM_001030693 |
GGATGGCAAGAGGACATATCAAA | |||
IL-10 | CGCTGTCACCGCTTCTTCA | 63 | NM_001004414 |
CGTCTCCTTGATCTGCTTGATG |
Treatments 2 | Diet 3 | Hatchery 3 | Statistics | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Basal Diet | Synbiotic Diet | p-Value | ||||||||||
Item | Gel- (CTRL) | Gel+ (HS) | Gel- (DS) | Gel+ (HSDS) | Basal | Synbiotic | Gel- | Gel+ | RMSE 4 | Diet | Gel | D × G |
0 to 7 d | ||||||||||||
BW d 0 (g) | 43.11 | 42.70 | 42.81 | 42.64 | 42.91 | 42.73 | 42.96 | 42.67 | 0.72 | 0.486 | 0.262 | 0.631 |
BWG (g) | 118.9 | 110.5 | 110.1 | 107.7 | 114.7 | 109.3 | 114.9 | 109.1 | 6.55 | 0.031 | 0.020 | 0.286 |
FI (g) | 161.5 | 160.4 | 154.1 | 151.8 | 160.9 | 153.0 | 157.8 | 156.0 | 8.35 | 0.019 | 0.609 | 0.857 |
FCR | 1.36 | 1.43 | 1.39 | 1.41 | 1.39 | 1.40 | 1.37 | 1.42 | 0.08 | 0.557 | 0.058 | 0.333 |
7 to 14 d | ||||||||||||
BWG (g) | 307.8 | 276.9 | 287.5 | 288.1 | 292.4 | 287.8 | 297.7 | 282.5 | 24.58 | 0.608 | 0.097 | 0.087 |
FI (g) | 399.8 | 369.7 | 376.5 | 376.3 | 384.8 | 376.4 | 388.1 | 373.0 | 22.03 | 0.300 | 0.067 | 0.070 |
FCR | 1.30 | 1.34 | 1.31 | 1.31 | 1.32 | 1.31 | 1.31 | 1.33 | 0.08 | 0.837 | 0.488 | 0.530 |
0 to 14 d | ||||||||||||
BWG (g) | 426.7 | 387.5 | 398.5 | 395.8 | 407.1 | 397.2 | 412.6 | 391.6 | 29.81 | 0.362 | 0.061 | 0.100 |
FI (g) | 561.2 | 538.3 | 530.6 | 528.2 | 549.8 | 529.4 | 545.9 | 533.2 | 28.82 | 0.059 | 0.233 | 0.331 |
FCR | 1.32 | 1.39 | 1.33 | 1.34 | 1.36 | 1.34 | 1.33 | 1.37 | 0.08 | 0.529 | 0.144 | 0.218 |
14 to 21 d | ||||||||||||
BWG (g) | 505.9 | 484.7 | 487.2 | 504.0 | 495.3 | 495.6 | 496.5 | 494.3 | 31.49 | 0.980 | 0.849 | 0.105 |
FI (g) | 732.3 a | 647.2 b | 664.0 b | 694.9 ab | 689.8 | 679.4 | 698.1 | 671.0 | 49.53 | 0.567 | 0.140 | 0.003 |
FCR | 1.45 a | 1.34 b | 1.37 b | 1.38b | 1.39 | 1.37 | 1.41 | 1.36 | 0.06 | 0.406 | 0.042 | 0.013 |
0 to 21 d | ||||||||||||
BWG (g) | 932.6 | 872.2 | 885.7 | 899.8 | 902.4 | 892.7 | 909.2 | 886.0 | 58.44 | 0.650 | 0.280 | 0.087 |
FI (g) | 1293.6 a | 1185.5 b | 1194.5 b | 1205.5 ab | 1239.5 | 1208.8 | 1244.0 | 1204.3 | 72.08 | 0.246 | 0.137 | 0.014 |
FCR | 1.39 | 1.36 | 1.35 | 1.36 | 1.37 | 1.36 | 1.37 | 1.36 | 0.05 | 0.344 | 0.654 | 0.350 |
Mortality, % | 4.17 | 1.67 | 2.50 | 1.67 | 2.92 | 2.08 | 3.33 | 1.67 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
White, M.B.; Calik, A.; Dalloul, R.A. Hatchery and Dietary Application of Synbiotics in Broilers: Performance and mRNA Abundance of Ileum Tight Junction Proteins, Nutrient Transporters, and Immune Response Markers. Animals 2024, 14, 970. https://doi.org/10.3390/ani14060970
White MB, Calik A, Dalloul RA. Hatchery and Dietary Application of Synbiotics in Broilers: Performance and mRNA Abundance of Ileum Tight Junction Proteins, Nutrient Transporters, and Immune Response Markers. Animals. 2024; 14(6):970. https://doi.org/10.3390/ani14060970
Chicago/Turabian StyleWhite, Mallory B., Ali Calik, and Rami A. Dalloul. 2024. "Hatchery and Dietary Application of Synbiotics in Broilers: Performance and mRNA Abundance of Ileum Tight Junction Proteins, Nutrient Transporters, and Immune Response Markers" Animals 14, no. 6: 970. https://doi.org/10.3390/ani14060970
APA StyleWhite, M. B., Calik, A., & Dalloul, R. A. (2024). Hatchery and Dietary Application of Synbiotics in Broilers: Performance and mRNA Abundance of Ileum Tight Junction Proteins, Nutrient Transporters, and Immune Response Markers. Animals, 14(6), 970. https://doi.org/10.3390/ani14060970