A Capsaicin-Based Phytogenic Solution Improves Performance and Thermal Tolerance of Heat-Stressed Growing Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. General
2.2. Animals, Diet, and Experimental Procedure
2.3. Serum Antioxidant Activity and Amino Acid Metabolites
2.4. Gut Histomorphology
2.5. Gene Expression
2.5.1. Total RNA Extraction and Purification
2.5.2. Reverse Transcription
2.5.3. Real-Time PCR
2.6. Statistical Analysis
3. Results
3.1. Ambient and Body Temperature
3.2. Respiration Rate
3.3. Performance
3.4. Antioxidant Activity of Diets and Intestinal Digesta
3.5. Serum Antioxidant Enzyme Activity
3.6. Small Intestine Histomorphology
3.7. Gene Expression
3.8. Serum AA Concentrations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Renaudeau, D.; Collin, A.; Yahav, S.; De Basilio, V.; Gourdine, J.L.; Collier, R.J. Adaptation to Hot Climate and Strategies to Alleviate Heat Stress in Livestock Production. Animal 2012, 6, 707–728. [Google Scholar] [CrossRef] [PubMed]
- Thornton, P.; Nelson, G.; Mayberry, D.; Herrero, M. Increases in extreme heat stress in domesticated livestock species during the twenty-first century. Glob Chang. Biol. 2021, 27, 5762–5772. [Google Scholar] [CrossRef] [PubMed]
- Pearce, S.C.; Sanz-Fernandez, M.V.; Hollis, J.H.; Baumgard, L.H.; Gabler, N.K. Short-Term Exposure to Heat Stress Attenuates Appetite and Intestinal Integrity in Growing Pigs. J. Anim. Sci. 2014, 92, 5444–5454. [Google Scholar] [CrossRef] [PubMed]
- Baumgard, L.H.; Keating, A.; Ross, J.W.; Rhoads, R.P. Effects of Heat Stress on the Immune System, Metabolism and Nutrient Partitioning: Implications on Reproductive Success. Rev. Bras. Reprod. Anim. 2015, 39, 173–183. [Google Scholar]
- Collin, A.; Van Milgen, J.; Dubois, S.; Noblet, J. Effect of High Temperature and Feeding Level on Energy Utilization in Piglets. J. Anim. Sci. 2001, 79, 1849–1857. [Google Scholar] [CrossRef] [PubMed]
- Ogoh, S.; Sato, K.; Okazaki, K.; Miyamoto, T.; Hirasawa, A.; Morimoto, K.; Shibasaki, M. Blood Flow Distribution during Heat Stress: Cerebral and Systemic Blood Flow. J. Cereb. Blood Flow Metab. 2013, 33, 1915–1920. [Google Scholar] [CrossRef] [PubMed]
- Slimen, I.B.; Najar, T.; Ghram, A.; Dabbebi, H.; Ben Mrad, M.; Abdrabbah, M. Reactive Oxygen Species, Heat Stress and Oxidative-Induced Mitochondrial Damage. A Review. Int. J. Hyperth. 2014, 30, 513–523. [Google Scholar] [CrossRef] [PubMed]
- Kikusato, M.; Toyomizu, M. Crucial Role of Membrane Potential in Heat Stress-Induced Overproduction of Reactive Oxygen Species in Avian Skeletal Muscle Mitochondria. PLoS ONE 2013, 8, e64412. [Google Scholar] [CrossRef]
- Morales, A.; Pérez, M.; Castro, P.; Ibarra, N.; Bernal, H.; Baumgard, L.H.; Cervantes, M. Heat Stress Affects the Apparent and Standardized Ileal Digestibilities of Amino Acids in Growing Pigs. J. Anim. Sci. 2016, 94, 3362–3369. [Google Scholar] [CrossRef]
- Cervantes, M.; Cota, M.; Arce, N.; Castillo, G.; Avelar, E.; Espinoza, S.; Morales, A. Effect of Heat Stress on Performance and Expression of Selected Amino Acid and Glucose Transporters, HSP90, Leptin and Ghrelin in Growing Pigs. J. Therm. Biol. 2016, 59, 69–76. [Google Scholar] [CrossRef]
- Pearce, S.C.; Mani, V.; Weber, T.E.; Rhoads, R.P.; Patience, J.F.; Baumgard, L.H.; Gabler, N.K. Heat Stress and Reduced Plane of Nutrition Decreases Intestinal Integrity and Function in Pigs. J. Anim. Sci. 2013, 91, 5183–5193. [Google Scholar] [CrossRef] [PubMed]
- Sakkas, P. The Effects of Feed Additives on Farm Animals under Heat Stress Conditions BT—Sustainable Use of Feed Additives in Livestock: Novel Ways for Animal Production; Arsenos, G., Giannenas, I., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 285–326. ISBN 978-3-031-42855-5. [Google Scholar]
- Lan, R.; Kim, I. Effects of Feeding Diets Containing Essential Oils and Betaine to Heat-Stressed Growing-Finishing Pigs. Arch. Anim. Nutr. 2018, 72, 368–378. [Google Scholar] [CrossRef]
- Cottrell, J.J.; Furness, J.B.; Wijesiriwardana, U.A.; Ringuet, M.; Liu, F.; Digiacomo, K.; Leury, B.J.; J.clarke, I.; Dunshea, F.R. The Effect of Heat Stress on Respiratory Alkalosis and Insulin Sensitivity in Cinnamon Supplemented Pigs. Animals 2020, 10, 690. [Google Scholar] [CrossRef] [PubMed]
- Fattori, V.; Hohmann, M.S.N.; Rossaneis, A.C.; Pinho-Ribeiro, F.A.; Verri, W.A. Capsaicin: Current Understanding of Its Mechanisms and Therapy of Pain and Other Pre-Clinical and Clinical Uses. Molecules 2016, 21, 844. [Google Scholar] [CrossRef] [PubMed]
- Garami, A.; Shimansky, Y.P.; Rumbus, Z.; Vizin, R.C.L.; Farkas, N.; Hegyi, J.; Szakacs, Z.; Solymar, M.; Csenkey, A.; Chiche, D.A.; et al. Hyperthermia Induced by Transient Receptor Potential Vanilloid-1 (TRPV1) Antagonists in Human Clinical Trials: Insights from Mathematical Modeling and Meta-Analysis. Pharmacol. Ther. 2020, 208, 107474. [Google Scholar] [CrossRef] [PubMed]
- Inagaki, H.; Kurganov, E.; Park, Y.; Furube, E.; Miyata, S. Oral Gavage of Capsaicin Causes TRPV1-Dependent Acute Hypothermia and TRPV1-Independent Long-Lasting Increase of Locomotor Activity in the Mouse. Physiol. Behav. 2019, 206, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Szolcsányi, J. Effect of Capsaicin on Thermoregulation: An Update with New Aspects. Temperature 2015, 2, 277–296. [Google Scholar] [CrossRef]
- Biggs, M.E.; Kroscher, K.A.; Zhao, L.D.; Zhang, Z.; Wall, E.H.; Bravo, D.M.; Rhoads, R.P. Dietary Supplementation of Artificial Sweetener and Capsicum Oleoresin as a Strategy to Mitigate the Negative Consequences of Heat Stress on Pig Performance. J. Anim. Sci. 2020, 98, skaa131. [Google Scholar] [CrossRef]
- Kroscher, K.A.; Fausnacht, D.W.; Mcmillan, R.P.; El-Kadi, S.W.; Wall, E.H.; Bravo, D.M.; Rhoads, R.P. Supplementation with Artificial Sweetener and Capsaicin Alters Metabolic Flexibility and Performance in Heat-Stressed and Feed-Restricted Pigs. J. Anim. Sci. 2022, 100, skac195. [Google Scholar] [CrossRef]
- An, Z.; Zhang, X.; Gao, S.; Zhou, D.; Riaz, U.; Abdelrahman, M.; Hua, G.; Yang, L. Effects of Capsicum Oleoresin Supplementation on Lactation Performance, Plasma Metabolites, and Nutrient Digestibility of Heat Stressed Dairy Cow. Animals 2022, 12, 797. [Google Scholar] [CrossRef]
- Oh, J.; Giallongo, F.; Frederick, T.; Pate, J.; Walusimbi, S.; Elias, R.J.; Wall, E.H.; Bravo, D.; Hristov, A.N. Effects of Dietary Capsicum Oleoresin on Productivity and Immune Responses in Lactating Dairy Cows. J. Dairy Sci. 2015, 98, 6327–6339. [Google Scholar] [CrossRef]
- Abulaiti, A.; Ahmed, Z.; Naseer, Z.; El-Qaliouby, H.S.; Iqbal, M.F.; Hua, G.H.; Yang, L.G. Effect of Capsaicin Supplementation on Lactational and Reproductive Performance of Holstein Cows during Summer. Anim. Prod. Sci. 2021, 61, 1321–1328. [Google Scholar] [CrossRef]
- Srinivasan, K. Biological Activities of Red Pepper (Capsicum Annuum) and Its Pungent Principle Capsaicin: A Review. Crit. Rev. Food Sci. Nutr. 2016, 56, 1488–1500. [Google Scholar] [CrossRef] [PubMed]
- Prakash, U.N.S.; Srinivasan, K. Fat Digestion and Absorption in Spice-Pretreated Rats. J. Sci. Food Agric. 2012, 92, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Platel, K.; Srinivasan, K. Influence of Dietary Spices or Their Active Principles on Digestive Enzymes of Small Intestinal Mucosa in Rats. Int. J. Food Sci. Nutr. 1996, 47, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Sanz-Fernandez, M.V.; Stoakes, S.K.; Johnson, J.S.; Abuajamieh, M.; Seibert, J.T.; Pearce, S.C.; Gabler, N.K.; Rhoads, R.P.; Baumgard, L.H. Heat Stress: What’s the Gut Got To Do with It? In Proceedings of the 74th Minnesota Nutrition Conference Proceedings, Prior. Lake, MN, USA, 17–18 September 2013; pp. 1–18. [Google Scholar]
- Kampman-van De Hoek, E.; Sakkas, P.; Gerrits, W.J.J.; Van Den Borne, J.J.G.C.; Van Der Peet-Schwering, C.M.C.; Jansman, A.J.M. Induced Lung Inflammation and Dietary Protein Supply Affect Nitrogen Retention and Amino Acid Metabolism in Growing Pigs. Br. J. Nutr. 2015, 113, 414–425. [Google Scholar] [CrossRef] [PubMed]
- NOM-062-ZOO-1999; Especificaciones Técnicas para la Producción, Cuidado y Uso de los Animales de Laboratorio. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación: Mexico City, Mexico, 2001.
- Federation of Animal Science Societies (FASS). Guide for the Care and Use of Agricultural Animals in Research and Teaching, 3rd ed.; Federation of Animal Science Societies (FASS): Champaign, IL, USA, 2010. [Google Scholar]
- Rothfusz, L.P. The Heat Index Equation (or, More than You Ever Wanted to Know about Heat Index); National Oceanic and Atmospheric Administration, National Weather Service, Office of Meteorology 9023: Fort Worth, TX, USA, 1990; pp. 23–90.
- NRC (National Research Council). Nutrient Requirements of Swine; The National Academies Press: Washington, DC, USA, 2012; ISBN 978-0-309-48903-4. [Google Scholar]
- Moeser, A.J.; Borst, L.B.; Overman, B.L.; Pittman, J.S. Defects in Small Intestinal Epithelial Barrier Function and Morphology Associated with Peri-Weaning Failure to Thrive Syndrome (PFTS) in Swine. Res. Vet. Sci. 2012, 93, 975–982. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Official Methods of Analysis of AOAC International, 18th ed.; AOAC International Gaithersburg, Maryland: Gaithersburg, MD, USA, 2023; ISBN 0935584773; 9780935584776.
- O’Driscoll, J.; Ryan, J.P. A Modified Haematoxylin and Eosin Stain for Histological Sections of Lymph Nodes. J. Clin. Pathol. 1978, 31, 700. [Google Scholar] [CrossRef]
- Rueden, C.T.; Schindelin, J.; Hiner, M.C.; De Zonia, B.E.; Walter, A.E.; Arena, E.T.; Eliceiri, K.W. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinform. 2017, 18, 529. [Google Scholar] [CrossRef]
- Sambrook, J.; Russell, D.W. Molecular Cloning: A Laboratory Manual, 3rd ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2001; Volume 1. [Google Scholar]
- Vásquez, N.; Cervantes, M.; Bernal-Barragán, H.; Rodríguez-Tovar, L.E.; Morales, A. Short- and Long-Term Exposure to Heat Stress Differently Affect Performance, Blood Parameters, and Integrity of Intestinal Epithelia of Growing Pigs. Animals 2022, 12, 2529. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Yin, P.; Liu, F.; Cheng, G.; Guo, K.; Lu, A.; Zhu, X.; Luan, W.; Xu, J. Effect of Heat Stress on the Porcine Small Intestine: A Morphological and Gene Expression Study. Comp. Biochem. Physiol.—A Mol. Integr. Physiol. 2010, 156, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Morales, A.; Sánchez, V.; Pérez, B.; Camacho, R.L.; Arce, N.; Avelar, E.; González-Vega, J.C.; Htoo, J.K.; Cervantes, M. Effect of DL-Methionine Supplementation above Requirement on Performance; Intestinal Morphology, Antioxidant Activity, and Gene Expression; And Serum Concentration of Amino Acids in Heat Stressed Pigs. J. Anim. Sci. 2023, 101, skac379. [Google Scholar] [CrossRef] [PubMed]
- Pereira, C.B.; Dohmeier, H.; Kunczik, J.; Hochhausen, N.; Tolba, R.; Czaplik, M. Contactless Monitoring of Heart and Respiratory Rate in Anesthetized Pigs Using Infrared Thermography. PLoS ONE 2019, 14, e0224747. [Google Scholar] [CrossRef]
- Zhao, Z.D.; Yang, W.Z.; Gao, C.; Fu, X.; Zhang, W.; Zhou, Q.; Chen, W.; Ni, X.; Lin, J.K.; Yang, J.; et al. A Hypothalamic Circuit That Controls Body Temperature. Proc. Natl. Acad. Sci. USA 2017, 114, 2042–2047. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.L.; Knight, Z.A. Regulation of Body Temperature by the Nervous System. Neuron 2018, 98, 31–48. [Google Scholar] [CrossRef] [PubMed]
- Morrison, S.F.; Nakamura, K. Central Mechanisms for Thermoregulation. Annu. Rev. Physiol. 2019, 81, 285–308. [Google Scholar] [CrossRef]
- Bagriantsev, S.N.; Gracheva, E.O. Molecular Mechanisms of Temperature Adaptation. J. Physiol. 2015, 593, 3483–3491. [Google Scholar] [CrossRef]
- Katschinski, D.M. On Heat and Cells and Proteins. News Physiol. Sci. 2004, 19, 11–15. [Google Scholar] [CrossRef]
- Caterina, M.J.; Schumacher, M.A.; Tominaga, M.; Rosen, T.A.; Levine, J.D.; Julius, D. The Capsaicin Receptor: A Heat-Activated Ion Channel in the Pain Pathway. Nature 1997, 389, 816–824. [Google Scholar] [CrossRef]
- Vetter, I.; Kym, P.R.; Szallasi, A. Feeling Hot, Feeling Cold: TRP Channels—A Great Story Unfolds. Temperature 2015, 2, 150–151. [Google Scholar] [CrossRef] [PubMed]
- Cao, E.; Liao, M.; Cheng, Y.; Julius, D. TRPV1 Structures in Distinct Conformations Reveal Activation Mechanisms. Nature 2013, 504, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Lushchak, V.I. Free Radicals, Reactive Oxygen Species, Oxidative Stress and Its Classification. Chem. Biol. Interact. 2014, 224, 164–175. [Google Scholar] [CrossRef]
- Pardo, Z.; Seiquer, I. Supplemental Zinc Exerts a Positive Effect against the Heat Stress Damage in Intestinal Epithelial Cells: Assays in a Caco-2 Model. J. Funct. Foods 2021, 83, 104569. [Google Scholar] [CrossRef]
- Kurutas, E.B. The Importance of Antioxidants Which Play the Role in Cellular Response against Oxidative/Nitrosative Stress: Current State. Nutr. J. 2016, 15, 71. [Google Scholar] [CrossRef] [PubMed]
- Akbarian, A.; Michiels, J.; Degroote, J.; Majdeddin, M.; Golian, A.; De Smet, S. Association between Heat Stress and Oxidative Stress in Poultry; Mitochondrial Dysfunction and Dietary Interventions with Phytochemicals. J. Anim. Sci. Biotechnol. 2016, 7, 37. [Google Scholar] [CrossRef] [PubMed]
- Pearce, S.C.; Gabler, N.K.; Ross, J.W.; Escobar, J.; Patience, J.F.; Rhoads, R.P.; Baumgard, L.H. The Effects of Heat Stress and Plane of Nutrition on Metabolism in Growing Pigs. J. Anim. Sci. 2013, 91, 2108–2118. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Parrilla, E.; De La Rosa, L.A.; Amarowicz, R.; Shahidi, F. Antioxidant Activity of Fresh and Processed Jalapeño and Serrano Peppers. J. Agric. Food Chem. 2011, 59, 163–173. [Google Scholar] [CrossRef]
- Long, S.; Liu, S.; Wang, J.; Mahfuz, S.; Piao, X. Natural Capsicum Extract Replacing Chlortetracycline Enhances Performance via Improving Digestive Enzyme Activities, Antioxidant Capacity, Anti-Inflammatory Function, and Gut Health in Weaned Pigs. Anim. Nutr. 2021, 7, 305–314. [Google Scholar] [CrossRef]
- Sahin, N.; Orhan, C.; Tuzcu, M.; Juturu, V.; Sahin, K. Capsaicinoids Improve Egg Production by Regulating Ovary Nuclear Transcription Factors against Heat Stress in Quail. Br. Poult. Sci. 2017, 58, 177–183. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, J.; Cheng, K.; Zhang, L.; Wang, T. Capsaicin Alleviates the Intestinal Oxidative Stress via Activation of TRPV1/PKA/UCP2 and Keap1/Nrf2 Pathways in Heat-Stressed Mice. J. Funct. Foods 2023, 108, 105749. [Google Scholar] [CrossRef]
- Hu, C.; Yang, J.; Qi, Z.; Wu, H.; Wang, B.; Zou, F.; Mei, H.; Liu, J.; Wang, W.; Liu, Q. Heat Shock Proteins: Biological Functions, Pathological Roles, and Therapeutic Opportunities. MedComm 2022, 3, e161. [Google Scholar] [CrossRef] [PubMed]
- Morales, A.; Cota, S.E.M.; Ibarra, N.O.; Arce, N.; Htoo, J.K.; Cervantes, M. Effect of Heat Stress on the Serum Concentrations of Free Amino Acids and Some of Their Metabolites in Growing Pigs1. J. Anim. Sci. 2016, 94, 2835–2842. [Google Scholar] [CrossRef] [PubMed]
- Sanz Fernandez, M.V.; Stoakes, S.K.; Abuajamieh, M.; Seibert, J.T.; Johnson, J.S.; Horst, E.A.; Rhoads, R.P.; Baumgard, L.H. Heat Stress Increases Insulin Sensitivity in Pigs. Physiol. Rep. 2015, 3, e12478. [Google Scholar] [CrossRef] [PubMed]
- Szyller, J.; Bil-Lula, I. Heat Shock Proteins in Oxidative Stress and Ischemia/Reperfusion Injury and Benefits from Physical Exercises: A Review to the Current Knowledge. Oxid. Med. Cell. Longev. 2021, 2021, 6678457. [Google Scholar] [CrossRef] [PubMed]
- Chasovnikova, L.V.; Formazyuk, V.E.; Sergienko, V.I.; Boldyrev, A.A.; Severin, S.E. The Antioxidative Properties of Carnosine and Other Drugs. Biochem. Int. 1990, 20, 1097–1103. [Google Scholar] [PubMed]
- Wu, G.; Bazer, F.W.; Davis, T.A.; Kim, S.W.; Li, P.; Marc Rhoads, J.; Carey Satterfield, M.; Smith, S.B.; Spencer, T.E.; Yin, Y. Arginine Metabolism and Nutrition in Growth, Health and Disease. Amino Acids 2009, 37, 153–168. [Google Scholar] [CrossRef] [PubMed]
- Morales, A.; González, F.; Bernal, H.; Camacho, R.L.; Arce, N.; Vásquez, N.; González-Vega, J.C.; Htoo, J.K.; Viana, M.T.; Cervantes, M. Effect of Arginine Supplementation on the Morphology and Function of Intestinal Epithelia and Serum Concentrations of Amino Acids in Pigs Exposed to Heat Stress. J. Anim. Sci. 2021, 99, skab179. [Google Scholar] [CrossRef]
- Coma, J.; Carrion, D.; Zimmerman, D.R. Use of Plasma Urea Nitrogen as a Rapid Response Criterion to Determine the Lysine Requirement of Pigs. J. Anim. Sci. 1995, 73, 472–481. [Google Scholar] [CrossRef]
- Elia, M.; Carter, A.; Bacon, S.; Winearls, C.G.; Smith, R. Clinical Usefulness of Urinary 3-Methylhistidine Excretion in Indicating Muscle Protein Breakdown. Br. Med. J. 1981, 282, 351–354. [Google Scholar] [CrossRef]
- Liu, F.; Yin, J.; Du, M.; Yan, P.; Xu, J.; Zhu, X.; Yu, J. Heat-Stress-Induced Damage to Porcine Small Intestinal Epithelium Associated with Downregulation of Epithelial Growth Factor Signaling. J. Anim. Sci. 2009, 87, 1941–1949. [Google Scholar] [CrossRef]
- Prakash, U.N.S.; Srinivasan, K. Beneficial Influence of Dietary Spices on the Ultrastructure and Fluidity of the Intestinal Brush Border in Rats. Br. J. Nutr. 2010, 104, 31–39. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, J.; Wang, T.; Zhang, J.; Zhang, L.; Wang, T. Effects of Capsaicin on Growth Performance, Meat Quality, Digestive Enzyme Activities, Intestinal Morphology, and Organ Indexes of Broilers. Front. Vet. Sci. 2022, 9, 2–11. [Google Scholar] [CrossRef]
- Collin, A.; van Milgen, J.; Dubois, S.; Noblet, J. Effect of High Temperature on Feeding Behaviour and Heat Production in Group-Housed Young Pigs. Br. J. Nutr. 2001, 86, 63–70. [Google Scholar] [CrossRef]
Ingredient | Basal | Additive PHY |
---|---|---|
Wheat | 84.46 | 84.26 |
SBM | 12 | 12 |
L-Lys.HCl | 0.54 | 0.54 |
L-Thr | 0.14 | 0.14 |
DL-Met | 0.06 | 0.06 |
Phytogenic solution 1 | 0.20 | |
Limestone | 1.40 | 1.40 |
Dicalcium phosphate | 0.65 | 0.66 |
Iodized salt | 0.35 | 0.35 |
Vitamin and mineral premix 2 | 0.40 | 0.40 |
Calculated content, % | ||
Crude protein | 12.8 | 12.8 |
SID Lys | 0.99 | 0.99 |
SID Thr | 0.62 | 0.62 |
SID Met | 0.28 | 0.28 |
Net energy, MJ/kg | 10.1 | 10.1 |
mRNA | Primer Sequence | Amplicon (bp) |
---|---|---|
Sus scrofa 90-kDa heat shock protein (HSP90, GenBank: NM_213973.1) | ||
Fw 5′GATCACTTGGCTGTGAAGCA3′ | 470 | |
Rv 5′TTGAGGGAAACCATCTCGTC3′ | ||
Sus scrofa solute carrier family 7 member 1 (CAT-1, GenBank: NM_001012613.1) | ||
Fw 5′CAGATGCTGCGGGTTTGTAA3′ | 344 | |
Rv 5′GCGTCACTCATTCTTGCCAT3′ | ||
Sus scrofa myosin, heavy chain 4, skeletal muscle (GenBank: NM_001123141.1) | ||
Fw 5′CTTCCCAAGCAGAATCCTTT3′ | 300 | |
Rv 5′CTCCTCTCCATCATCTTCC3′ | ||
Sus scrofa ribosomal protein L4 (RPL4, GenBank: DQ845176.1) | ||
Fw 5′TGAGCTCTATGGCACTTGGC3′ | 239 | |
Rv 5′GAATGGTGTTTCGGCGCATT3′ |
Treatment 1 | Contrast p-Value 2 | |||||
---|---|---|---|---|---|---|
TN-C | HS-C | HS-PHY | SEM | AT | PHY | |
Initial body weight, kg | 26.4 | 27.8 | 27.0 | 1.0 | 0.300 | 0.524 |
Daily weight gain, kg/d | 0.850 | 0.348 | 0.457 | 0.04 | 0.001 | 0.048 |
Daily feed intake, kg/d | 1.770 | 1.057 | 1.246 | 0.04 | 0.001 | 0.006 |
Feed/gain ratio | 2.082 | 3.037 | 2.726 | 0.42 | 0.005 | 0.070 |
Treatment 1 | Contrast p-Value 2 | |||||
---|---|---|---|---|---|---|
TN-C | HS-C | HS-PHY | SEM | AT | PHY | |
SOD | 2.507 | 1.907 | 2.476 | 1.60 | 0.018 | 0.013 |
CAT | 137.1 | 114.5 | 152.1 | 12.2 | 0.219 | 0.042 |
GPX | 911 | 1014 | 1022 | 46 | 0.129 | 0.904 |
Treatment 1 | Contrast p-Value 2 | |||||
---|---|---|---|---|---|---|
TN-C | HS-C | HS-PHY | SEM | AT | PHY | |
Duodenum | ||||||
Villus height, µm | 617 | 604 | 617 | 11.0 | 0.452 | 0.424 |
Crypt depth, µm | 362 | 304 | 309 | 1.00 | 0.001 | 0.717 |
Height/depth | 1.73 | 2.07 | 2.06 | 0.05 | 0.001 | 0.922 |
Jejunum | ||||||
Villus height, µm | 644 | 570 | 662 | 12.5 | 0.001 | 0.001 |
Crypt depth, µm | 319 | 275 | 274 | 8.6 | 0.001 | 0.975 |
Height/depth | 2.09 | 2.13 | 2.49 | 0.06 | 0.618 | 0.001 |
Ileum | ||||||
Villus height, µm | 554 | 502 | 496 | 12.2 | 0.005 | 0.703 |
Crypt depth, µm | 278 | 224 | 239 | 7.4 | 0.001 | 0.124 |
Height/depth | 2.04 | 2.31 | 2.19 | 0.07 | 0.001 | 0.200 |
Item 1 | Treatment | Contrast p-Value 2 | ||||
---|---|---|---|---|---|---|
TN-C | HS-C | HS-PHY | SEM | AT | PHY | |
1-m-His | 4.0 | 4.1 | 3.7 | 0.5 | 0.913 | 0.649 |
3-m-His | 0.8 | 1.0 | 1.0 | 0.1 | 0.085 | 0.863 |
Carnosine | 9.6 | 5.3 | 7.2 | 1.4 | 0.050 | 0.361 |
Citrulline | 13.9 | 22.5 | 21.8 | 2.1 | 0.013 | 0.818 |
Cystathionine | 0.7 | 2.3 | 2.3 | 0.6 | 0.083 | 0.989 |
OH-Lysine | 1.3 | 1.5 | 1.4 | 0.2 | 0.571 | 0.869 |
OH-Proline | 13.0 | 11.3 | 11.1 | 1.7 | 0.485 | 0.917 |
Ornithine | 9.2 | 14.9 | 14.7 | 1.3 | 0.008 | 0.902 |
P-Serine | 3.8 | 3.1 | 2.7 | 0.4 | 0.238 | 0.493 |
Sarcosine | 2.9 | 3.5 | 3.2 | 0.3 | 0.166 | 0.478 |
AAAA | 7.4 | 11.5 | 10.4 | 2.2 | 0.209 | 0.724 |
AABA | 1.2 | 2.4 | 3.1 | 0.5 | 0.100 | 0.332 |
β-Alanine | 0.6 | 0.8 | 1.2 | 0.3 | 0.677 | 0.392 |
GABA | 0.8 | 1.9 | 1.5 | 0.3 | 0.015 | 0.310 |
Taurine | 20 | 26 | 25 | 0.9 | 0.001 | 0.325 |
Urea | 184 | 377 | 289 | 19 | 0.001 | 0.008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cervantes, M.; Sakkas, P.; Soto, M.; Gómez, A.J.; Camacho, R.L.; Arce, N.; Quilichini, N.; Morales, A. A Capsaicin-Based Phytogenic Solution Improves Performance and Thermal Tolerance of Heat-Stressed Growing Pigs. Animals 2024, 14, 973. https://doi.org/10.3390/ani14060973
Cervantes M, Sakkas P, Soto M, Gómez AJ, Camacho RL, Arce N, Quilichini N, Morales A. A Capsaicin-Based Phytogenic Solution Improves Performance and Thermal Tolerance of Heat-Stressed Growing Pigs. Animals. 2024; 14(6):973. https://doi.org/10.3390/ani14060973
Chicago/Turabian StyleCervantes, Miguel, Panagiotis Sakkas, Moisés Soto, Alejandra Jaquelin Gómez, Reyna L. Camacho, Néstor Arce, Nicolas Quilichini, and Adriana Morales. 2024. "A Capsaicin-Based Phytogenic Solution Improves Performance and Thermal Tolerance of Heat-Stressed Growing Pigs" Animals 14, no. 6: 973. https://doi.org/10.3390/ani14060973
APA StyleCervantes, M., Sakkas, P., Soto, M., Gómez, A. J., Camacho, R. L., Arce, N., Quilichini, N., & Morales, A. (2024). A Capsaicin-Based Phytogenic Solution Improves Performance and Thermal Tolerance of Heat-Stressed Growing Pigs. Animals, 14(6), 973. https://doi.org/10.3390/ani14060973