A Potential Nervous Necrosis Virus (NNV) Live Vaccine for Sole Obtained by Genomic Modification
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Attenuation and Propagation of Viral Strains
2.2. In Vitro Replication
2.3. Senegalese Sole Infection Challenges
2.3.1. Pathogenicity Test
2.3.2. Immunization Trials by Different Routes and at Two Temperatures
2.4. Reverse-Transcription Real-Time Quantitative PCR (RT-PCR)
2.5. Immunological Analyses
2.5.1. Specific IgM Production
2.5.2. Immune-Related Genes Expression
2.6. Statistics
3. Results
3.1. Growth Kinetics in E-11
3.2. Pathogenicity Test
3.3. Immunization Trials
3.3.1. Survival Curves and Relative Percent Survival (RPS)
- Intramuscular injection: Vaccination at 18 °C caused low mortality (96% survival; Figure 4A), whereas slightly lower survival (74%) was observed at 22 °C (Figure 4B). After the challenge, the survival of fish vaccinated at 18 and 22 °C was 74 and 64%, respectively, which is significantly higher than that recorded in the mock-vaccinated group (27% at both temperatures; p value < 0.0001). Thus, at both temperatures, RPS values were above 50, but the highest value was obtained in fish vaccinated at 18 °C (64 vs. 51).
- Intraperitoneal injection at 22 °C: Low mortalities were recorded in vaccinated fish (96% survival; Figure 4C) during the immunization period. However, survival was not improved after the challenge, since no significant differences were observed with respect to the control group.
- Immersion: The survival of fish vaccinated at 18 °C was 93% (Figure 4D) and, after the challenge, it was significantly improved (63%) compared to mock-vaccinated groups (36%; p value < 0.05), which represents an RPS of 42%. Unfortunately, unexpected mass mortalities were detected in fish mock-vaccinated at 22 °C during the immunization period, so this condition was not considered in the study.
3.3.2. RNA2 Quantification after the Challenge
3.3.3. Specific Anti-NNV IgM Production
3.3.4. Immune-Related Genes Expression in Brain and Anterior Kidney of Im-Infected Fish at 22 °C
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bandín, I.; Souto, S. Betanodavirus and VER Disease: A 30-Year Research Review. Pathogens 2020, 9, 106. [Google Scholar] [CrossRef] [PubMed]
- Nagai, T.; Nishizawa, T. Sequence of the Non-Structural Protein Gene Encoded by RNA1 of Striped Jack Nervous Necrosis Virus. J. Gen. Virol. 1999, 80, 3019–3022. [Google Scholar] [CrossRef] [PubMed]
- Mori, K.I.; Nakai, T.; Muroga, K.; Arimoto, M.; Mushiake, K.; Furusawa, I. Properties of a New Virus Belonging to Nodaviridae Found in Larval Striped Jack (Pseudocaranx dentex) with Nervous Necrosis. Virology 1992, 187, 368–371. [Google Scholar] [CrossRef] [PubMed]
- Nishizawa, T.; Furuhashi, M.; Nagai, T.; Nakai, T.; Muroga, K. Genomic Classification of Fish Nodaviruses by Molecular Phylogenetic Analysis of the Coat Protein Gene. Appl. Environ. Microbiol. 1997, 63, 1633–1636. [Google Scholar] [CrossRef] [PubMed]
- Toffolo, V.; Negrisolo, E.; Maltese, C.; Bovo, G.; Belvedere, P.; Colombo, L.; Valle, L.D. Phylogeny of Betanodaviruses and Molecular Evolution of Their RNA Polymerase and Coat Proteins. Mol. Phylogenet. Evol. 2007, 43, 298–308. [Google Scholar] [CrossRef] [PubMed]
- Olveira, J.G.; Souto, S.; Dopazo, C.P.; Thiéry, R.; Barja, J.L.; Bandín, I. Comparative Analysis of Both Genomic Segments of Betanodaviruses Isolated from Epizootic Outbreaks in Farmed Fish Species Provides Evidence for Genetic Reassortment. J. Gen. Virol. 2009, 90, 2940–2951. [Google Scholar] [CrossRef]
- Souto, S.; Lopez-Jimena, B.; Alonso, M.C.; García-Rosado, E.; Bandín, I. Experimental Susceptibility of European Sea Bass and Senegalese Sole to Different Betanodavirus Isolates. Vet. Microbiol. 2015, 177, 53–61. [Google Scholar] [CrossRef]
- Souto, S.; Olveira, J.G.; Bandín, I. Influence of Temperature on Betanodavirus Infection in Senegalese Sole (Solea senegalensis). Vet. Microbiol. 2015, 179, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Toffan, A.; Pascoli, F.; Pretto, T.; Panzarin, V.; Abbadi, M.; Buratin, A.; Quartesan, R.; Gijón, D.; Padrós, F. Viral Nervous Necrosis in Gilthead Sea Bream (Sparus aurata) Caused by Reassortant Betanodavirus RGNNV/SJNNV: An Emerging Threat for Mediterranean Aquaculture. Sci. Rep. 2017, 7, 46755. [Google Scholar] [CrossRef]
- Souto, S.; Biacchesi, S.; Olveira, J.G.; Mérour, E.; Brémont, M.; Bandín, I. In Vitro and in Vivo Characterization of Molecular Determinants of Virulence in Reassortant Betanodavirus. J. Gen. Virol. 2015, 96, 1287–1296. [Google Scholar] [CrossRef]
- Souto, S.; Olveira, J.G.; Dopazo, C.P.; Borrego, J.J.; Bandín, I. Modification of Betanodavirus Virulence by Substitutions in the 3’ Terminal Region of RNA2. J. Gen. Virol. 2018, 99, 1210–1220. [Google Scholar] [CrossRef]
- Gémez-Mata, J.; Souto, S.; Bandín, I.; Alonso, M.D.C.; Borrego, J.J.; Labella, A.M.; García-Rosado, E. Immune Response of Senegalese Sole against Betanodavirus Mutants with Modified Virulence. Pathogens 2021, 10, 1388. [Google Scholar] [CrossRef]
- Valero, Y.; Awad, E.; Buonocore, F.; Arizcun, M.; Esteban, M.Á.; Meseguer, J.; Chaves-Pozo, E.; Cuesta, A. An Oral Chitosan DNA Vaccine against Nodavirus Improves Transcription of Cell-Mediated Cytotoxicity and Interferon Genes in the European Sea Bass Juveniles Gut and Survival upon Infection. Dev. Comp. Immunol. 2016, 65, 64–72. [Google Scholar] [CrossRef]
- Hazreen-Nita, M.; Azila, A.; Mukai, Y.; Firdaus-Nawi, M.; Nur-Nazifah, M. A Review of Betanodavirus Vaccination as Preventive Strategy to Viral Nervous Necrosis (VNN) Disease in Grouper. Aquac. Int. 2019, 27, 1565–1577. [Google Scholar] [CrossRef]
- Barsøe, S.; Toffan, A.; Pascoli, F.; Stratmann, A.; Pretto, T.; Marsella, A.; Er-Rafik, M.; Vendramin, N.; Olesen, N.J.; Sepúlveda, D.; et al. Long-Term Protection and Serologic Response of European Sea Bass Vaccinated with a Betanodavirus Virus-like Particle Produced in Pichia pastoris. Vaccines 2021, 9, 447. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Xiong, Y.; Tao, D.; Wang, T.; Chen, T.; Du, X.; Cao, G.; Tu, J.; Dai, J. Construction of Attenuated Strains for Red-Spotted Grouper Nervous Necrosis Virus (RGNNV) via Reverse Genetic System. Viruses 2022, 14, 1737. [Google Scholar] [CrossRef] [PubMed]
- López-Vázquez, C.; Souto, S.; Olveira, J.G.; Riaza, A.; González, Ó.; Brea, C.; Labella, A.M.; Castro, D.; Bandín, I. Nervous Necrosis Virus (NNV) Booster Vaccination Increases Senegalese Sole Survival and Enhances Immunoprotection. Animals 2023, 13, 51. [Google Scholar] [CrossRef] [PubMed]
- Souto, S.; Mérour, E.; Coupanec, A.L.; Lamoureux, A.; Bernard, J.; Brémont, M.; Millet, J.K.; Biacchesi, S. Recombinant Viral Hemorrhagic Septicemia Virus with Rearranged Genomes as Vaccine Vectors to Protect against Lethal Betanodavirus Infection. Front. Immunol. 2023, 14, 1138961. [Google Scholar] [CrossRef]
- Ma, J.; Bruce, T.J.; Jones, E.M.; Cain, K.D. A Review of Fish Vaccine Development Strategies: Conventional Methods and Modern Biotechnological Approaches. Microorganisms 2019, 7, 569. [Google Scholar] [CrossRef]
- Mondal, H.; Thomas, J. A Review on the Recent Advances and Application of Vaccines against Fish Pathogens in Aquaculture. Aquac. Int. 2022, 30, 1971–2000. [Google Scholar] [CrossRef]
- Reed, L.J.; Muench, H. A Simple Method of Estimating Fifty per Cent Endpoints. Am. J. Hyg. 1938, 27, 493–497. [Google Scholar]
- Olveira, J.G.; Souto, S.; Dopazo, C.P.; Bandín, I. Isolation of Betanodavirus from Farmed Turbot Psetta maxima Showing No Signs of Viral Encephalopathy and Retinopathy. Aquaculture 2013, 406–407, 125–130. [Google Scholar] [CrossRef]
- Olveira, J.G.; Souto, S.; Bandín, I.; Dopazo, C.P. Development and Validation of a SYBR Green Real Time PCR Protocol for Detection and Quantification of Nervous Necrosis Virus (NNV) Using Different Standards. Animals 2021, 11, 1100. [Google Scholar] [CrossRef] [PubMed]
- Valero, Y.; Olveira, J.G.; López-Vázquez, C.; Dopazo, C.P.; Bandín, I. BEI Inactivated Vaccine Induces Innate and Adaptive Responses and Elicits Partial Protection upon Reassortant Betanodavirus Infection in Senegalese Sole. Vaccines 2021, 9, 458. [Google Scholar] [CrossRef] [PubMed]
- Souto, S.; Olveira, J.G.; López-Vázquez, C.; Dopazo, C.P.; Labella, A.; Bandín, I. Nervous Necrosis Virus (NNV) Vaccination of Carrier Senegalese Sole (Solea senegalensis). Aquaculture 2024, 579, 740211. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Montero, D.; Benitez-Dorta, V.; Caballero, M.J.; Ponce, M.; Torrecillas, S.; Izquierdo, M.; Zamorano, M.J.; Manchado, M. Dietary vegetable oils: Effects on the expression of immune-related genes in Senegalese sole (Solea senegalensis) intestine. Fish Shellfish Immunol. 2015, 44, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Gémez-Mata, J.; Labella, A.M.; Bandín, I.; Borrego, J.J.; García-Rosado, E. Immunogene expression analysis in betanodavirus infected-Senegalese sole using an OpenArray® platform. Gene 2021, 774, 145430. [Google Scholar] [CrossRef] [PubMed]
- Venter, P.A.; Schneemann, A. Recent Insights into the Biology and Biomedical Applications of Flock House Virus. Cell. Mol. Life Sci. 2008, 65, 2675–2687. [Google Scholar] [CrossRef]
- Iwamoto, T.; Mise, K.; Takeda, A.; Okinaka, Y.; Mori, K.I.; Arimoto, M.; Okuno, T.; Nakai, T. Characterization of Striped Jack Nervous Necrosis Virus Subgenomic RNA3 and Biological Activities of Its Encoded Protein B2. J. Gen. Virol. 2005, 86, 2807–2816. [Google Scholar] [CrossRef]
- Eckerle, L.D.; Ball, L.A. Replication of the RNA Segments of a Bipartite Viral Genome Is Coordinated by a Transactivating Subgenomic RNA. Virology 2002, 296, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Nishizawa, T.; Gye, H.J.; Takami, I.; Oh, M.J. Potentiality of a Live Vaccine with Nervous Necrosis Virus (NNV) for Sevenband Grouper Epinephelus septemfasciatus at a Low Rearing Temperature. Vaccine 2012, 30, 1056–1063. [Google Scholar] [CrossRef] [PubMed]
- Oh, M.J.; Gye, H.J.; Nishizawa, T. Assessment of the Sevenband Grouper Epinephelus septemfasciatus with a Live Nervous Necrosis Virus (NNV) Vaccine at Natural Seawater Temperature. Vaccine 2013, 31, 2025–2027. [Google Scholar] [CrossRef] [PubMed]
- Sudheesh, P.S.; Cain, K.D. Prospects and Challenges of Developing and Commercializing Immersion Vaccines for Aquaculture. Int. Biol. Rev. 2017, 1, 1–20. [Google Scholar]
- Adams, A. Progress, Challenges and Opportunities in Fish Vaccine Development. Fish Shellfish Immunol. 2019, 90, 210–214. [Google Scholar] [CrossRef]
- Péducasse, S.; Castric, J.; Thiéry, R.; Jeffroy, J.; Ven, A.L.; Laurencin, F.B. Comparative Study of Viral Encephalopathy and Retinopathy in Juvenile Sea Bass Dicentrarchus labrax Infected in Different Ways. Dis. Aquat. Organ. 1999, 36, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Collet, B. Innate Immune Responses of Salmonid Fish to Viral Infections. Dev. Comp. Immunol. 2014, 43, 160–173. [Google Scholar] [CrossRef]
- Zou, J.; Secombes, C.J. Teleost Fish Interferons and Their Role in Immunity. Dev. Comp. Immunol. 2011, 35, 1376–1387. [Google Scholar] [CrossRef]
- Medzhitov, R. Recognition of Microorganisms and Activation of the Immune Response. Nature 2007, 449, 819–826. [Google Scholar] [CrossRef]
- Zou, J.; Secombes, C.J. The Function of Fish Cytokines. Biology 2016, 5, 23. [Google Scholar] [CrossRef]
- Ashfaq, H.; Soliman, H.; Saleh, M.; El-Matbouli, M. CD4: A Vital Player in the Teleost Fish Immune System. Vet. Res. 2019, 50, 1. [Google Scholar] [CrossRef]
- Somamoto, T.; Koppang, E.O.; Fischer, U. Antiviral Functions of CD8+ Cytotoxic T Cells in Teleost Fish. Dev. Comp. Immunol. 2014, 43, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Zagury, D.; Burny, A.; Gallo, R.C. Toward a new generation of vaccines: The anti-cytokine therapeutic vaccines. Proc. Natl. Acad. Sci. USA 2001, 98, 8024–8029. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.K.; Wu, Y.C.; Chi, S.C. Humoral and cytokine responses in giant groupers after vaccination and challenge with betanodavirus. Dev. Comp. Immunol. 2017, 67, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.M.; Wang, T.Y.; Chen, T.Y. Immunity to betanodavirus infections of marine fish. Dev. Comp. Immunol. 2014, 43, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Rouxel, R.N.; Tafalla, C.; Mérour, E.; Leal, E.; Biacchesi, S.; Brémont, M. Attenuated Infectious Hematopoietic Necrosis Virus with Rearranged Gene Order as Potential Vaccine. J. Virol. 2016, 90, 10857–10866. [Google Scholar] [CrossRef] [PubMed]
- Zeng, R.; Pan, W.; Lin, Y.; He, J.; Luo, Z.; Li, Z.; Weng, S.; He, J.; Guo, C. Development of a Gene-Deleted Live Attenuated Candidate Vaccine against Fish Virus (ISKNV) with Low Pathogenicity and High Protection. iScience 2021, 24, 102750. [Google Scholar] [CrossRef]
- Zeng, R.; Pan, W.; Lin, Y.; Liang, M.; Fu, J.; Weng, S.; He, J.; Guo, C. A Safe and Efficient Double-Gene-Deleted Live Attenuated Immersion Vaccine to Prevent the Disease Caused by the Infectious Spleen and Kidney Necrosis Virus. J. Virol. 2023, 97, e00857-23. [Google Scholar] [CrossRef]
Gene | Primers Sequence (5′-3′) | Amplicon Size (bp) | Accesion No (a), or Unigene ID (b) |
---|---|---|---|
cd4 | F: GACCTCAGGCTGCAATGGT R: TGAGCAGAGTGATGGACAGACT | 65 | solea_v4.1_unigene450963 [27] |
cd8 | F: GTCGCAGTTCTGCTCTCCGC R: TCGGTTGCAGTAGAGGACGG | 97 | solea_v4.1_unigene59609 |
mx | F: CCTCTCTCCTTCAGGATCCTCCTCCTGTGC R: CAAAACAAGAAACTATCTGCCTGGTGGTTC | 104 | AY790537 [28] |
rtp3 | F: GACGCCCCAATGGTGGAT R: CCAGATTCTTCATGAGGATGGTGAT | 64 | XM_044043478 [28] |
tlr7 | F: GGGAGTGAGGTCAAAGTGGA R: CGTGGAAGGAGGAGGAGTTT | 130 | XM_044052250 [25] |
tnfα | F: TGTGTACATGGGAGCTGTGT R: CACAGAGCGAACACACCAAA | 126 | XM_044052089 [25] |
ß-act | F: GACGACATGGAGAAGATC R: GGTGTTGAAGGTCTCAAA | 150 | DQ485686 [17,24,25] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vázquez-Salgado, L.; Souto, S.; Olveira, J.G.; Bandín, I. A Potential Nervous Necrosis Virus (NNV) Live Vaccine for Sole Obtained by Genomic Modification. Animals 2024, 14, 983. https://doi.org/10.3390/ani14060983
Vázquez-Salgado L, Souto S, Olveira JG, Bandín I. A Potential Nervous Necrosis Virus (NNV) Live Vaccine for Sole Obtained by Genomic Modification. Animals. 2024; 14(6):983. https://doi.org/10.3390/ani14060983
Chicago/Turabian StyleVázquez-Salgado, Lucía, Sandra Souto, José G. Olveira, and Isabel Bandín. 2024. "A Potential Nervous Necrosis Virus (NNV) Live Vaccine for Sole Obtained by Genomic Modification" Animals 14, no. 6: 983. https://doi.org/10.3390/ani14060983
APA StyleVázquez-Salgado, L., Souto, S., Olveira, J. G., & Bandín, I. (2024). A Potential Nervous Necrosis Virus (NNV) Live Vaccine for Sole Obtained by Genomic Modification. Animals, 14(6), 983. https://doi.org/10.3390/ani14060983