Potential Implications of Acid-Sensing Ion Channels ASIC2 and ASIC4 in Gonadal Differentiation of Dicentrarchus labrax Subjected to Water Temperature Increase during Gonadal Development
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Samples Collection and Histological Analyses
2.3. Tissue Processing and Histology
2.4. Immunohistochemistry
2.5. Statistical Analysis
3. Results
3.1. Histological Results
3.2. Immunohistochemical Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Torres-Martínez, A.; Hattori, R.S.; Fernandino, J.I.; Somoza, G.M.; Hung, S.D.; Masuda, Y.; Yamamoto, Y.; Strüssmann, C.A. Temperature- and genotype-dependent stress response and activation of the hypothalamus-pituitary-interrenal axis during temperature-induced sex reversal in pejerrey Odontesthes bonariensis, a species with genotypic and environmental sex determination. Mol. Cell Endocrinol. 2024, 582, 112114. [Google Scholar] [CrossRef] [PubMed]
- Del Fresno, P.S.; Garcia de Souza, J.R.; Colautti, D.C.; Yamamoto, Y.; Yokota, M.; Strüssmann, C.A.; Miranda, L.A. Sex reversal of pejerrey (Odontesthes bonariensis), a species with temperature-dependent sex determination, in a seminatural environment. J. Fish. Biol. 2023, 102, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Chen, M.; Shen, Z.G. Molecular biological, physiological, cytological, and epigenetic mechanisms of environmental sex differentiation in teleosts: A systematic review. Ecotoxicol. Environ. Saf. 2023, 267, 115654. [Google Scholar] [CrossRef] [PubMed]
- Arfuso, F.; Guerrera, M.C.; Fortino, G.; Fazio, F.; Santulli, A.; Piccione, G. Water temperature influences growth and gonad differentiation in European sea bass (Dicentrarchus labrax, L. 1758). Theriogenology 2017, 88, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Blázquez, M.; Somoza, G.M. Fish with thermolabile sex determination (TSD) as models to study brain sex differentiation. Gen. Comp. Endocrinol. 2010, 166, 470–477. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Malara, D.; Battaglia, P.; Waiho, K.; Davis, D.A.; Deng, Y.; Shen, Z.; Rao, K. Turnovers of sex-determining mutation in the golden pompano and related species provide insights into microevolution of undifferentiated sex chromosome. Genome Biol. Evol. 2024, 16, evae037. [Google Scholar] [CrossRef] [PubMed]
- Smaga, C.R.; Bock, S.L.; Johnson, J.M.; Rainwater, T.; Singh, R.; Deem, V.; Letter, A.; Brunell, A.; Parrott, B.B. The influence of incubation temperature on offspring traits varies across northern and southern populations of the American alligator (Alligator mississippiensis). Ecol. Evol. 2024, 14, e10915. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Zhang, Y.; Sarida, M.; Hattori, R.S.; Strüssmann, C.A. Coexistence of genotypic and temperature-dependent sex determination in pejerrey Odontesthes bonariensis. PLoS ONE 2014, 9, e102574. [Google Scholar] [CrossRef] [PubMed]
- Saillant, E.; Fostier, A.; Menu, B.; HaVray, P.; Chatain, B. Sexual growth dimorphism in sea bass Dicentrarchus labrax. Aquaculture 2001, 202, 371–387. [Google Scholar] [CrossRef]
- Guerrera, M.C.; Arfuso, F.; Rizzo, M.; Saoca, C.; Fazio, F.; Fortino, G.; Santulli, A.; Piccione, G. Gonadal sexual differentiation of european sea bass (Dicentrarchus labrax, L. 1758) of fingerlings in different size classes. Mar. Freshw. Behav. Physiol. 2016, 49, 347–354. [Google Scholar] [CrossRef]
- Ferrari, S.; Chatain, B.; Cousin, X.; Leguay, D.; Vergnet, A.; Vidal, M.-O.; Vandeputte, M.; Bégout, M.-L. Early individual electronic identification of sea bass using RFID microtags: A first example of early phenotyping of sex-related growth. Aquaculture 2014, 426–427, 165–171. [Google Scholar] [CrossRef]
- Vandeputte, M.; Piferrer, F. Genetic and environmental components of sex determination in the European sea bass (Dicentrarchus labrax). In Sex Control in Aquaculture: Theory and Practice; Wang, H.P., Piferrer, F., Chen, S.L., Shen, Z.G., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2019; pp. 307–320. [Google Scholar]
- D’cotta, H.; Fostier, A.; Guiguen, Y.; Govoroun, M.; Baroiller, J.-F. Aromatase Plays a Key Role during Normal and Temperature-Induced Sex Differentiation of Tilapia Oreochromis niloticus. Mol. Reprod. Dev. 2001, 59, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Ankley, G.T.; Santana-Rodriguez, K.; Jensen, K.M.; Miller, D.H.; Villeneuve, D.L. AOP Report: Adverse Outcome Pathways for Aromatase Inhibition or Androgen Receptor Agonism Leading to Male-Biased Sex Ratio and Population Decline in Fish. Environ. Toxicol. Chem. 2023, 42, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Qu, Z.-W.; Liu, T.-T.; Ren, C.; Gan, X.; Qiu, C.-Y.; Ren, P.; Rao, Z.; Hu, W.-P. 17β-Estradiol Enhances ASIC Activity in Primary Sensory Neurons to Produce Sex Difference in Acidosis-Induced Nociception. Endocrinology 2015, 156, 4660–4671. [Google Scholar] [CrossRef] [PubMed]
- Ren, P.; Wang, W.-B.; Pan, H.-H.; Qiu, C.-Y.; Hu, W.-P. Up-Regulation of ASIC3 Expression by β-Estradiol. Neurosci. Lett. 2018, 684, 200–204. [Google Scholar] [CrossRef] [PubMed]
- Montalbano, G.; Levanti, M.; Mhalhel, K.; Abbate, F.; Laurà, R.; Guerrera, M.C.; Aragona, M.; Germanà, A. Acid-Sensing Ion Channels in Zebrafish. Animals 2021, 11, 2471. [Google Scholar] [CrossRef] [PubMed]
- Darboux, I.; Lingueglia, E.; Champigny, G.; Coscoy, S.; Barbry, P.; Lazdunski, M. dGNaC1, a Gonad-Specific Amiloride-Sensitive Na+Channel. J. Biol. Chem. 1998, 273, 9424–9429. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.T.; Proffitt, M.R.; Smith, A.R.; Rusch, D.B. Genes linked to species diversity in a sexually dimorphic communication signal in electric fish. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 2018, 204, 93–112. [Google Scholar] [CrossRef]
- Gründer, S.; Vanek, J.; Pissas, K.-P. Acid-Sensing Ion Channels and Downstream Signalling in Cancer Cells: Is There a Mechanistic Link? Pflügers Arch.-Eur. J. Physiol. 2024. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Pavlidis, M.; Koumoundouros, G.; Sterioti, A.; Somarakis, S.; Divanach, S.; Kentouri, M. Evidence of temperature-dependent sex determination in the European sea bass (Dicentrarchus labrax L.). J. Exp. Zool. 2000, 287, 225–232. [Google Scholar] [CrossRef]
- Klimogianni, A.; Koumoundouros, G.; Kaspiris, P.; Kentouri, M. Effect of temperature on the embryonic and yolk-sac larval development of common Pandora, Pagellus erythrinus (Linnaeus, 1758). Mar. Biol. 2004, 145, 1015–1022. [Google Scholar] [CrossRef]
- Baroiller, J.F.; D’Cotta, H. Environment and sex determination in farmed fish. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2001, 130, 399–409. [Google Scholar] [CrossRef] [PubMed]
- Vandeputte, M.; Clota, F.; Sadoul, B.; Blanc, M.O.; Blondeau-Bidet, E.; Bégout, M.L.; Cousin, X.; Geffroy, B. Low temperature has opposite effects on sex determination in a marine fish at the larval/postlarval and juvenile stages. Ecol. Evol. 2020, 10, 13825–13835. [Google Scholar] [CrossRef] [PubMed]
- Henderson, P.A.; Corps, M. The role of temperature and cannibalism in interannual recruitment variation of bass in British waters. J. Fish. Biol. 1997, 50, 280–295. [Google Scholar]
- Ruan, Y.; Li, X.; Zhai, G.; Lou, Q.; Jin, X.; He, J.; Yin, Z. Estrogen Signaling Inhibits the Expression of anti-Müllerian hormone (amh) and gonadal-soma-derived factor (gsdf) during the Critical Time of Sexual Fate Determination in Zebrafish. Int. J. Mol. Sci. 2024, 25, 1740. [Google Scholar] [CrossRef] [PubMed]
- Ayala, M.D.; López-Albors, O.; Gil, F.; García-Alcázar, A.; Abellán, E.; Alarcón, J.A.; Álvarez, M.C.; Ramírez-Zarzosa, G.; Moreno, F. Temperature effects on muscle growth in two populations (Atlantic and Mediterranean) of sea bass, Dicentrarchus labrax L. Aquaculture 2001, 202, 359–370. [Google Scholar] [CrossRef]
- Faggion, S.; Vandeputte, M.; Vergnet, A.; Clota, F.; Blanc, M.-O.; Sanchez, P.; Ruelle, F.; Allal, F. Sex dimorphism in European sea bass (Dicentrarchus labrax L.): New insights into sex-related growth patterns during very early life stages. PLoS ONE 2021, 16, e0239791. [Google Scholar] [CrossRef] [PubMed]
- Blázquez, M.; Carrillo, M.; Zanuy, S.; Piferrer, F. Sex ratios in offspring of sex-reversed sea bass and the relationship between growth and phenotypic sex differentiation. J. Fish. Biol. 1999, 55, 916–930. [Google Scholar]
- Blázquez, M.; Zanuy, S.; Carrillo, M.; Piferrer, F. Effects of rearing temperature on sex differentiation in the European sea bass (Dicentrarchus labrax L.). J. Exp. Zool. 1998, 281, 207–216. [Google Scholar] [CrossRef]
- Carvacho, I.; Piesche, M.; Maier, T.J.; Machaca, K. Ion Channel Function During Oocyte Maturation and Fertilization. Front. Cell Dev. Biol. 2018, 6, 63. [Google Scholar] [CrossRef]
- Waldmann, R.; Champigny, G.; Bassilana, F.; Voilley, N.; Lazdunski, M. Molecular Cloning and Functional Expression of a Novel Amiloride-Sensitive Na+ Channel. J. Biol. Chem. 1995, 270, 27411–27414. [Google Scholar] [CrossRef] [PubMed]
- Blanchard, M.G.; Kellenberger, S. Effect of a Temperature Increase in the Non-Noxious Range on Proton-Evoked ASIC and TRPV1 Activity. Pflugers Arch. 2011, 461, 123–139. [Google Scholar] [CrossRef] [PubMed]
- Saillant, E.; Fostier, A.; Haffray, P.; Menu, B.; Thimonier, J.; Chatain, B. Temperature effects and genotype-temperature interactions on sex determination in the European sea bass (Dicentrarchus labrax L.). J. Exp. Zool. 2002, 292, 494–505. [Google Scholar] [CrossRef]
- Johnston, I.A.; Vieira, V.L.A.; Temple, G.K. Functional consequences population differences in the developmental plasticity of muscle to temperature in Atlantic herring Clupea harengus. Mar. Ecol. Prog. Ser. 2001, 213, 285–300. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Sun, L.X.; Zhu, J.J.; Zhao, Y.; Wang, H.; Liu, H.J.; Ji, X.S. Epigenetic control of cyp19a1a expression is critical for high temperature induced Nile tilapia masculinization. J. Therm. Biol. 2017, 69, 76–84. [Google Scholar] [CrossRef]
- Sun, L.N.; Jiang, X.L.; Xie, Q.P.; Yuan, J.; Huang, B.F.; Tao, W.J.; Zhou, L.Y.; Nagahama, Y.; Wang, D.S. Transdifferentiation of differentiated ovary into functional testis by long-term treatment of aromatase inhibitor in Nile tilapia. Endocrinology 2014, 155, 1476–1488. [Google Scholar] [CrossRef]
- Navarro-Martín, L.; Viñas, J.; Ribas, L.; Díaz, N.; Gutiérrez, A.; Di Croce, L.; Piferrer, F. DNA methylation of the gonadal aromatase (cyp19a) promoter is involved in temperature-dependent sex ratio shifts in the European sea bass. PLoS Genet. 2011, 7, e1002447. [Google Scholar] [CrossRef]
Taxa | Max Score | Total Score | Query Cover | E Value | Per. Ident | Positives | Acc. Len | Accession |
---|---|---|---|---|---|---|---|---|
ASIC4 | ||||||||
Homo sapiens | - | - | - | - | - | - | 539 | Q96FT7-4 |
Mus musculus | 109 | 109 | 100% | 1.00 × 10−33 | 100.00% | 100% | 586 | XP_036020902.1 |
Rattus norvegicus | 108 | 108 | 100% | 1.00 × 10−33 | 100.00% | 100% | 539 | NP_071570.2 |
Dicentrarchus labrax | 90.1 | 90.1 | 96% | 7.00 × 10−27 | 75.51% | 87% | 505 | A0A8P4FWP9 |
ASIC2 | ||||||||
Homo sapiens | - | - | - | - | - | - | 512 | Q16515-1 |
Mus musculus | 72.4 | 72.4 | 97% | 4.00 × 10−21 | 93.94% | 100% | 596 | XP_006532059.1 |
Rattus norvegicus | 73.2 | 73.2 | 97% | 2.00 × 10−21 | 93.94% | 100% | 563 | XP_032768433.1 |
Dicentrarchus labrax | 53.9 | 53.9 | 100% | 2.00 × 10−14 | 67.65% | 85% | 558 | XP_051244300.1 |
Groups | Body Weight (g) | Total Length (cm) | Standard Length (cm) | Percent Females | Sex Ratio Differences |
---|---|---|---|---|---|
CG | 68.8 ± 17.6 a | 17.4 ± 1.4 a | 15.1 ± 1.3 a | 40.0% | Χ2 = 6.48 |
EG | 133.2 ± 38.1 | 22.2 ± 2.0 | 18.3 ± 2.3 | 58.3% | p = 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mhalhel, K.; Arena, R.; Rizzo, M.; Piccione, G.; Aragona, M.; Levanti, M.; Aragona, F.; Arfuso, F. Potential Implications of Acid-Sensing Ion Channels ASIC2 and ASIC4 in Gonadal Differentiation of Dicentrarchus labrax Subjected to Water Temperature Increase during Gonadal Development. Animals 2024, 14, 1024. https://doi.org/10.3390/ani14071024
Mhalhel K, Arena R, Rizzo M, Piccione G, Aragona M, Levanti M, Aragona F, Arfuso F. Potential Implications of Acid-Sensing Ion Channels ASIC2 and ASIC4 in Gonadal Differentiation of Dicentrarchus labrax Subjected to Water Temperature Increase during Gonadal Development. Animals. 2024; 14(7):1024. https://doi.org/10.3390/ani14071024
Chicago/Turabian StyleMhalhel, Kamel, Rosaria Arena, Maria Rizzo, Giuseppe Piccione, Marialuisa Aragona, Maria Levanti, Francesca Aragona, and Francesca Arfuso. 2024. "Potential Implications of Acid-Sensing Ion Channels ASIC2 and ASIC4 in Gonadal Differentiation of Dicentrarchus labrax Subjected to Water Temperature Increase during Gonadal Development" Animals 14, no. 7: 1024. https://doi.org/10.3390/ani14071024
APA StyleMhalhel, K., Arena, R., Rizzo, M., Piccione, G., Aragona, M., Levanti, M., Aragona, F., & Arfuso, F. (2024). Potential Implications of Acid-Sensing Ion Channels ASIC2 and ASIC4 in Gonadal Differentiation of Dicentrarchus labrax Subjected to Water Temperature Increase during Gonadal Development. Animals, 14(7), 1024. https://doi.org/10.3390/ani14071024