The Effect of Inhibiting the Wingless/Integrated (WNT) Signaling Pathway on the Early Embryonic Disc Cell Culture in Chickens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Small Molecules and Cytokines
2.3. Cell Culture Media
2.4. Preparation of Feeder Layers
2.5. PSCs Isolation and Culture
2.6. Formation and In Vitro Differentiation of EBs
2.7. RNA Isolation and Reverse Transcription
2.8. Polymerase Chain Reaction (PCR) and Agarose Gel Electrophoresis
2.9. Quantitative Real-Time PCR (qRT-PCR)
2.10. Immunofluorescence
2.11. Statistical Analysis
3. Results
3.1. FGF2, IWR-1, and XAV-939 Promote Efficient Derivation of Chicken PSC-like Cells from BCs
3.2. Effect of Addition of Cytokines or Small Molecules on Maintenance of Chicken PSCs in FIX System
3.3. Detection of Pluripotency in PSC-like Cells Derived from the FIX System
3.4. Expression Analysis of Primed-State Genes in Chicken PSC-like Cells Derived from the FIX System
3.5. PSCs Derived from the FIX System Have the Potential to Differentiate into Three Germ Layer Cells
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Niwa, H.; Burdon, T.; Chambers, I.; Smith, A. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev. 1998, 12, 2048–2060. [Google Scholar] [CrossRef] [PubMed]
- Aubrit, F.; Perugi, F.; Léon, A.; Guéhenneux, F.; Champion-Arnaud, P.; Lahmar, M.; Schwamborn, K. Cell substrates for the production of viral vaccines. Vaccine 2015, 33, 5905–5912. [Google Scholar] [CrossRef] [PubMed]
- Farzaneh, M. Concise Review: Avian Multipotent Stem Cells as a Novel Tool for Investigating Cell-Based Therapies. J. Dairy. Vet. Anim. Res. 2017, 5, 1–4. [Google Scholar] [CrossRef]
- Martin, G.R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA 1981, 78, 7634–7638. [Google Scholar] [CrossRef] [PubMed]
- Thomson, J.A.; Itskovitz-Eldor, J.; Shapiro, S.S.; Waknitz, M.A.; Swiergiel, J.J.; Marshall, V.S.; Jones, J.M. Embryonic Stem Cell Lines Derived from Human Blastocysts. Sci. New Ser. 1998, 282, 1145–1147. [Google Scholar] [CrossRef] [PubMed]
- Ying, Q.-L.; Wray, J.; Nichols, J.; Batlle-Morera, L.; Doble, B.; Woodgett, J.; Cohen, P.; Smith, A. The ground state of embryonic stem cell self-renewal. Nature 2008, 453, 519–523. [Google Scholar] [CrossRef] [PubMed]
- Xue, B.; Li, Y.; He, Y.; Wei, R.; Sun, R.; Yin, Z.; Bou, G.; Liu, Z. Porcine Pluripotent Stem Cells Derived from IVF Embryos Contribute to Chimeric Development In Vivo. PLoS ONE 2016, 11, e0151737. [Google Scholar] [CrossRef] [PubMed]
- Kawamata, M.; Ochiya, T. Generation of genetically modified rats from embryonic stem cells. Proc. Natl. Acad. Sci. USA 2010, 107, 14223–14228. [Google Scholar] [CrossRef] [PubMed]
- van de Lavoir, M.; Mather-Love, C. Avian Embryonic Stem Cells. Methods Enzym. 2006, 418, 38–64. [Google Scholar] [CrossRef]
- Petitte, J.N. Isolation and Maintenance of Avian ES Cells. In Handbook Stem Cells; Elsevier: Amsterdam, The Netherlands, 2004; pp. 471–477. [Google Scholar] [CrossRef]
- Pain, B.; Clark, M.E.; Shen, M.; Nakazawa, H.; Sakurai, M.; Samarut, J.; Etches, R.J. Long-term in vitro culture and characterisation of avian embryonic stem cells with multiple morphogenetic potentialities. Development 1996, 122, 2339–2348. [Google Scholar] [CrossRef]
- Nichols, J.; Smith, A. Naive and primed pluripotent states. Cell Stem Cell 2009, 4, 487–492. [Google Scholar] [CrossRef]
- Weinberger, L.; Ayyash, M.; Novershtern, N.; Hanna, J.H. Dynamic stem cell states: Naive to primed pluripotency in rodents and humans. Nat. Rev. Mol. Cell Biol. 2016, 17, 155–169. [Google Scholar] [CrossRef]
- Wang, X. Formative pluripotent stem cells show features of epiblast cells poised for gastrulation. Cell Res. 2021, 16, 526–541. [Google Scholar] [CrossRef]
- Yu, L.; Wei, Y.; Sun, H.-X.; Mahdi, A.K.; Pinzon Arteaga, C.A.; Sakurai, M.; Sakurai, M.; Schmitz, D.A.; Zheng, C.; Ballard, E.D.; et al. Derivation of Intermediate Pluripotent Stem Cells Amenable to Primordial Germ Cell Specification. Cell Stem Cell 2021, 28, 550–567.e12. [Google Scholar] [CrossRef]
- Zhou, W.; Choi, M.; Margineantu, D.; Margaretha, L.; Hesson, J.; Cavanaugh, C.; Blau, C.A.; Horwitz, M.S.; Hockenbery, D.; Ware, C.; et al. HIF1α induced switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition. EMBO J. 2012, 31, 2103–2116. [Google Scholar] [CrossRef] [PubMed]
- Petitte, J.N.; Clark, M.E.; Liu, G.; Gibbins, A.M.V.; Etches, R.J. Production of somatic and germline chimeras in the chicken by transfer of early blastodermal cells. Development 1990, 108, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Amporn, C.; Tang, P.-C.; Wang, C.-K. Derivation and characterization of putative embryonic stem cells isolated from blastoderms of Taiwan Country chicken for the production of chimeric chickens. Anim. Biotechnol. 2020, 33, 920–929. [Google Scholar] [CrossRef] [PubMed]
- Farzaneh, M.; Zare, M.; Hassani, S.-N.; Baharvand, H. Effects of various culture conditions on pluripotent stem cell derivation from chick embryos. J. Cell Biochem. 2018, 119, 6325–6336. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wu, Y.; Li, X.; Wei, S.; Xing, Y.; Lian, Z.; Han, H. An Alternative Method for Long-Term Culture of Chicken Embryonic Stem Cell In Vitro. Stem Cells Int. 2018, 2018, 2157451. [Google Scholar] [CrossRef]
- Sato, N.; Meijer, L.; Skaltsounis, L.; Greengard, P.; Brivanlou, A.H. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat. Med. 2004, 10, 55–63. [Google Scholar] [CrossRef]
- Wu, J.; Okamura, D.; Li, M.; Suzuki, K.; Luo, C.; Ma, L.; He, Y.; Li, Z.; Benner, C.; Tamura, I.; et al. An alternative pluripotent state confers interspecies chimaeric competency. Nature 2015, 521, 316–321. [Google Scholar] [CrossRef] [PubMed]
- Aubel, P.; Pain, B. Chicken Embryonic Stem Cells: Establishment and Characterization. In Epiblast Stem Cells; Alberio, R., Ed.; Humana Press: Totowa, NJ, USA, 2013; Volume 1074, pp. 137–150. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Chang, W.-C.; Lin, S.-P.; Minami, M.; Jean, C.; Hayashi, H.; Rival-Gervier, S.; Kanaki, T.; Wu, S.-C.; Pain, B. Three-dimensional culture of chicken primordial germ cells (cPGCs) in defined media containing the functional polymer FP003. PLoS ONE 2018, 13, e0200515. [Google Scholar] [CrossRef] [PubMed]
- Whyte, J.; Glover, J.D.; Woodcock, M.; Brzeszczynska, J.; Taylor, L.; Sherman, A.; Kaiser, P.; McGrew, M.J. FGF, Insulin, and SMAD Signaling Cooperate for Avian Primordial Germ Cell Self-Renewal. Stem Cell Rep. 2015, 5, 1171–1182. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Rengaraj, D.; Won, S.; Jung, K.M.; Woo, S.J.; Lee, H.; Kim, Y.M.; Kim, H.; Han, J.Y. Chicken blastoderms and primordial germ cells possess a higher expression of DNA repair genes and lower expression of apoptosis genes to preserve their genome stability. Sci. Rep. 2022, 12, 49. [Google Scholar] [CrossRef]
- Vilarino, M.; Soto, D.A.; Bogliotti, Y.S.; Yu, L.; Zhang, Y.; Wang, C.; Paulson, E.; Zhong, C.; Jin, M.; Belmonte, J.C.I.; et al. Derivation of sheep embryonic stem cells under optimized conditions. Reproduction 2020, 160, 761–772. [Google Scholar] [CrossRef]
- Brons, I.G.M.; Smithers, L.E.; Trotter, M.W.B.; Rugg-Gunn, P.; Sun, B.; de Sousa Lopes, S.M.C.; Howlett, S.K.; Clarkson, A.; Ahrlund-Richter, L.; Pedersen, R.A.; et al. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 2007, 448, 191–195. [Google Scholar] [CrossRef]
- Guo, J.; Wu, B.; Li, S.; Bao, S.; Zhao, L.; Hu, S.; Sun, W.; Su, J.; Dai, Y.; Li, X.; et al. Contribution of Mouse Embryonic Stem Cells and Induced Pluripotent Stem Cells to Chimeras through Injection and Coculture of Embryos. Stem Cells Int. 2014, 2014, 1–9. [Google Scholar] [CrossRef]
- Yang, J.; Ryan, D.J.; Lan, G.; Zou, X.; Liu, P. In vitro establishment of expanded-potential stem cells from mouse pre-implantation embryos or embryonic stem cells. Nat. Protoc. 2019, 14, 350–378. [Google Scholar] [CrossRef]
- Gao, X.; Nowak-Imialek, M.; Chen, X.; Chen, D.; Herrmann, D.; Ruan, D.; Chen, A.C.H.; Eckersley-Maslin, M.A.; Ahmad, S.; Lee, Y.L.; et al. Establishment of porcine and human expanded potential stem cells. Nat. Cell Biol. 2019, 21, 687–699. [Google Scholar] [CrossRef]
- van de Lavoir, M.-C.; Mather-Love, C.; Leighton, P.; Diamond, J.H.; Heyer, B.S.; Roberts, R.; Zhu, L.; Winters-Digiacinto, P.; Kerchner, A.; Gessaro, T.; et al. High-grade transgenic somatic chimeras from chicken embryonic stem cells. Mech. Dev. 2006, 123, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Jean, C.; Oliveira, N.M.; Intarapat, S.; Fuet, A.; Mazoyer, C.; De Almeida, I.; Trevers, K.; Boast, S.; Aubel, P.; Bertocchini, F.; et al. Transcriptome analysis of chicken, E.S.; blastodermal germ cells reveals that chick ES cells are equivalent to mouse ES cells rather than, E.p.i.S.C. Stem Cell Res 2015, 14, 54–67. [Google Scholar] [CrossRef] [PubMed]
Gene | Primer Sequence | Annealing Temp. | Product Size (bp) | Reference |
---|---|---|---|---|
POUV F | GTTGTCCGGGTCTGGTTCT | 60 °C | 189 | [24] |
POUV R | GTGGAAAGGTGGCATGTAGAC | |||
SOX2 F | GTGAACCAGAGGATGGACAGTTACG | 60 °C | 185 | [25] |
SOX2 R | TGCGAGCTGGTCATGGAGTTG | |||
NANOG F | GGTTTCAGAACCAACGGATG | 60 °C | 121 | [24] |
NANOG R | GTGGGGGGTCATATCCAGGTA | |||
AXIN1 F | CGGATACGATGTCGCTCACA | 60 °C | 108 | — |
AXIN1 R | CACGTCCATTTGCTTTGGCA | |||
AXIN2 F | AAGCAAAATGCTGCCTTCGG | 60 °C | 161 | — |
AXIN2 R | CTGGGGCAAAGACATAGCCA | |||
FGF5 F | GGGGATCGTAGGAATCCGAG | 60 °C | 197 | — |
FGF5 R | TGTTGAGGGCCACATACCAC | |||
OTX2 F | GGATTTGTTGCATCCGTCCG | 60 °C | 194 | — |
OTX2 R | TGAACCACACCTGCACTCTG | |||
PAX6 F | GAGAACCCACTATCCCGATGT | 60 °C | 200 | — |
PAX6 R | GGTAAACGCTTGTGCTGAAAC | |||
HNF1A F | AGCCAGAACCTACTGAGCAC | 60 °C | 288 | — |
HNF1A R | GCTCCCCATGCTGTTTATCAC | |||
PPARA F | AATCACCCAGTGGAGCAGAAA | 60 °C | 266 | — |
PPARA R | CTCAGACCTTGGCATTCGTC | |||
GAPDH F | GAGGGTAGTGAAGGCTGCTG | 60 °C | 113 | [24] |
GAPDH R | CATCAAAGGTGGAGGAATGG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, W.; Zheng, D.; Liu, G.; Wu, G.; Peng, Y.; Wu, J.; Jin, K.; Zuo, Q.; Zhang, Y.; Li, G.; et al. The Effect of Inhibiting the Wingless/Integrated (WNT) Signaling Pathway on the Early Embryonic Disc Cell Culture in Chickens. Animals 2024, 14, 1382. https://doi.org/10.3390/ani14091382
Ren W, Zheng D, Liu G, Wu G, Peng Y, Wu J, Jin K, Zuo Q, Zhang Y, Li G, et al. The Effect of Inhibiting the Wingless/Integrated (WNT) Signaling Pathway on the Early Embryonic Disc Cell Culture in Chickens. Animals. 2024; 14(9):1382. https://doi.org/10.3390/ani14091382
Chicago/Turabian StyleRen, Wenjie, Dan Zheng, Guangzheng Liu, Gaoyuan Wu, Yixiu Peng, Jun Wu, Kai Jin, Qisheng Zuo, Yani Zhang, Guohui Li, and et al. 2024. "The Effect of Inhibiting the Wingless/Integrated (WNT) Signaling Pathway on the Early Embryonic Disc Cell Culture in Chickens" Animals 14, no. 9: 1382. https://doi.org/10.3390/ani14091382
APA StyleRen, W., Zheng, D., Liu, G., Wu, G., Peng, Y., Wu, J., Jin, K., Zuo, Q., Zhang, Y., Li, G., Han, W., Cui, X. -S., Chen, G., Li, B., & Niu, Y. -J. (2024). The Effect of Inhibiting the Wingless/Integrated (WNT) Signaling Pathway on the Early Embryonic Disc Cell Culture in Chickens. Animals, 14(9), 1382. https://doi.org/10.3390/ani14091382